1
|
Malatos S, Fazzini L, Raptis A, Nana P, Kouvelos G, Tasso P, Gallo D, Morbiducci U, Xenos MA, Giannoukas A, Matsagkas M. Evaluation of Hemodynamic Properties After Chimney and Fenestrated Endovascular Aneurysm Repair. Ann Vasc Surg 2024; 104:237-247. [PMID: 38492732 DOI: 10.1016/j.avsg.2023.12.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 03/18/2024]
Abstract
BACKGROUND Fenestrated (FEVAR) and chimney (ChEVAR) endovascular aortic repair have been applied in anatomically suitable complex aortic aneurysms. However, local hemodynamic changes may occur after repair. This study aimed to compare FEVAR's and ChEVAR's hemodynamic properties, focusing on visceral arteries. METHODS Preoperative and postoperative computed tomography angiographies have been used to reconstruct patient-based models. Data of 3 patients, for each modality, were analyzed. Following geometric reconstruction, computational fluid dynamics simulations were used to extract near-wall and intravascular hemodynamic indicators, such as pressure drops, velocity, wall shear stress, time averaged wall shear stress, oscillatory shear index, relative residence time, and local normalized helicity. RESULTS An overall improvement in hemodynamics was detected after repair, with either technique. Preoperatively, a disturbed prothrombotic wall shear stress profile was recorded in several zones of the sac. The local normalized helicity results showed a better organization of the helical structures at postoperative setting, decreasing thrombus formation, with both modalities. Similarly, time averaged wall shear stress increased and oscillatory shear index decreased postoperatively, signaling nondisturbed blood flow. The relative residence time was locally reduced. The flow in visceral arteries tended to be more streamlined in ChEVAR, compared to evident recirculation regions at renal and superior mesenteric artery fenestrations (P = 0.06). CONCLUSIONS ChEVAR and FEVAR seem to improve hemodynamics toward normal values with a reduction of recirculation zones in the main graft and aortic branches. Visceral artery flow comparison revealed that ChEVAR tended to present lower recirculation regions at parallel grafts' entries while FEVAR showed less intense flow regurgitation in visceral stents.
Collapse
Affiliation(s)
- Stavros Malatos
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Larissa, Greece
| | - Laura Fazzini
- Department of Mechanical and Aerospace Engineering, Biomedical Engineering, Politecnico di Torino, Torino, Italy
| | - Anastasios Raptis
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Larissa, Greece
| | - Petroula Nana
- Department of Vascular Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | - George Kouvelos
- Department of Vascular Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Paola Tasso
- Department of Mechanical and Aerospace Engineering, Biomedical Engineering, Politecnico di Torino, Torino, Italy
| | - Diego Gallo
- Department of Mechanical and Aerospace Engineering, Biomedical Engineering, Politecnico di Torino, Torino, Italy
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Biomedical Engineering, Politecnico di Torino, Torino, Italy
| | - Michail A Xenos
- Department of Vascular Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Department of Mathematics, Section of Applied and Computational Mathematics, University of Ioannina, Ioannina, Greece
| | - Athanasios Giannoukas
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Larissa, Greece; Department of Vascular Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Miltiadis Matsagkas
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Larissa, Greece; Department of Vascular Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
2
|
Lu K, Qin W, Sun X, Si Y, Ding G, Fu W, Wang S. Computational study of fenestration and parallel grafts used in TEVAR of aortic arch aneurysms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3664. [PMID: 36447341 DOI: 10.1002/cnm.3664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 06/16/2023]
Abstract
To explore the differences between fenestration technique and parallel grafts technique of thoracic endovascular aortic repair, and evaluate the risk of complications after interventional treatment of aortic arch aneurysms. A three-dimensional aortic model was established from the follow-up imaging data of patient who reconstructed the superior arch vessel by the chimney technique, which was called the chimney model. Based on the chimney model, the geometric of the reconstructed vessel was modified by virtual surgery, and the normal model, fenestration model and periscope model were established. The blood flow waveforms measured by 2D phase contrast magnetic resonance imaging were processed as the boundary conditions of the ascending aorta inlet and the superior arch vessels outlets of the normal model. The pressure waveform of descending aorta was obtained using three-element Windkessel model, and specific pressure boundary conditions were imposed at reconstructed branches for the postoperative models. Through computational fluid dynamics simulations, the hemodynamic parameters of each model were obtained. The reconstructed vessel flow rate of the periscope model and the fenestration model are 33% and 50% of that of the normal model, respectively. The pressure difference between the inner and outer walls of the fenestration stent and periscope stent is 3.15 times and 7.56 times that of the chimney stent. The velocity in the fenestration stent and periscope stent is uneven. The high relative residence time is concentrated in the region around the branch stents, which is prone to thrombosis. The "gutter" part of the chimney model may become larger due to the effect of the stent-graft DF, increasing the risk of endoleak. For patients with incomplete circle of Willis, the periscope technique to reconstruct the supra-arch vessels may affect blood perfusion. It is recommended to use balloon-expandable stent for fenestration stent and periscope stent, and self-expanding stent for chimney stent. For patients with aortic arch aneurysms, the fenestration technique may be superior to the parallel grafts technique.
Collapse
Affiliation(s)
- Kai Lu
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Wang Qin
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Xiaofan Sun
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Si
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guanghong Ding
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
- Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
- Institute of Biomedical Engineering Technology, Academy of Engineering and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| |
Collapse
|
3
|
Ong CW, Wee IJY, Toma M, Cui F, Xu XY, Richards AM, Leo HL, Choong AMTL. Haemodynamic changes in visceral hybrid repairs of type III and type V thoracoabdominal aortic aneurysms. Sci Rep 2023; 13:13760. [PMID: 37612440 PMCID: PMC10447573 DOI: 10.1038/s41598-023-40323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
The visceral hybrid procedure combining retrograde visceral bypass grafting and completion endovascular stent grafting is a feasible alternative to conventional open surgical or wholly endovascular repairs of thoracoabdominal aneurysms (TAAA). However, the wide variability in visceral hybrid configurations means that a priori prediction of surgical outcome based on haemodynamic flow profiles such as velocity pattern and wall shear stress post repair remain challenging. We sought to appraise the clinical relevance of computational fluid dynamics (CFD) analyses in the setting of visceral hybrid TAAA repairs. Two patients, one with a type III and the other with a type V TAAA, underwent successful elective and emergency visceral hybrid repairs, respectively. Flow patterns and haemodynamic parameters were analysed using reconstructed pre- and post-operative CT scans. Both type III and type V TAAAs showed highly disturbed flow patterns with varying helicity values preoperatively within their respective aneurysms. Low time-averaged wall shear stress (TAWSS) and high endothelial cell action potential (ECAP) and relative residence time (RRT) associated with thrombogenic susceptibility was observed in the posterior aspect of both TAAAs preoperatively. Despite differing bypass configurations in the elective and emergency repairs, both treatment options appear to improve haemodynamic performance compared to preoperative study. However, we observed reduced TAWSS in the right iliac artery (portending a theoretical risk of future graft and possibly limb thrombosis), after the elective type III visceral hybrid repair, but not the emergency type V repair. We surmise that this difference may be attributed to the higher neo-bifurcation of the aortic stent graft in the type III as compared to the type V repair. Our results demonstrate that CFD can be used in complicated visceral hybrid repair to yield potentially actionable predictive insights with implications on surveillance and enhanced post-operative management, even in patients with complicated geometrical bypass configurations.
Collapse
Affiliation(s)
- Chi Wei Ong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Ian J Y Wee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Milan Toma
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, New York, USA
| | - Fangsen Cui
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
- Christchurch Heart Institute, University of Otago, New Zealand, New Zealand
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Andrew M T L Choong
- Division of Vascular and Endovascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore, Singapore.
- Asian Aortic & Vascular Centre, Singapore, Singapore.
| |
Collapse
|
4
|
Milnerowicz AI, Milnerowicz A, Bańkowski T, Protasiewicz M. Pressure gradient measurement to verify hemodynamic results of the chimney endovascular aortic repair (chEVAR) technique. PLoS One 2021; 16:e0249549. [PMID: 33852618 PMCID: PMC8046246 DOI: 10.1371/journal.pone.0249549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/21/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The use of the pressure gradient measurements to assess the renal artery flow hemodynamics after chimney endovascular aortic repair (chEVAR). METHODS The study was a prospective analysis of 37 chEVAR procedures performend in 24 patients with perirenal aortic aneurysm. In all patients the measurement of: distal renal artery pressure (Pd), aortic pressure (Pa), Pd/Pa ratio (Pd/Pa) and mean gradient (MG) between the aorta and the distal renal artery were performed. Measurements were taken with 0.014 inch pressure wire catheter before and after the chEVAR procedure. MG greater than 9 mmHg and Pd/Pa ratio below 0.90 were considered as the measures of a significant decrease in distal pressure that limited flow in renal arteries. The 6 month follow-up computed tomographic angiography (CTA) was performed in all patients to diagnose potential endoleak presence and to verify the patency of the chimney stent-grafts. RESULTS All procedures were successful, and no periprocedural complications were observed in any of the patients. The mean gradient values before and after the chimney implantation did not change significantly (6,2±2,0 mmHg and 6,8±2,2 mmHg, respectively). Similarly, no significant change in Pd/Pa values was noted with the value of 0.9 observed both before and after the procedure. All chimney stents were patent on the control CTA. Type Ia endoleak was found in 4 (10.8%) patients. CONCLUSIONS The application of the described technique seems to be a safe method which allows a direct measurement of renal artery flow hemodynamics before and after chimney implantation during the chEVAR technique. The use of covered balloon expandable stents, ensures the proper blood flow in the renal arteries during the chEVAR technique.
Collapse
Affiliation(s)
| | | | - Tomasz Bańkowski
- Department of Cardiology, Lower Silesia Specialist Hospital of Tadeusz Marciniak Emergency Medicine Center, Wrocław, Poland
| | - Marcin Protasiewicz
- Department of Cardiology, Medical University of Wrocław, Wrocław, Poland
- * E-mail:
| |
Collapse
|
5
|
Spatial Configuration of Abdominal Aortic Aneurysm Analysis as a Useful Tool for the Estimation of Stent-Graft Migration. Diagnostics (Basel) 2020; 10:diagnostics10100737. [PMID: 32977588 PMCID: PMC7598279 DOI: 10.3390/diagnostics10100737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to prepare a self-made mathematical algorithm for the estimation of risk of stent-graft migration with the use of data on abdominal aortic aneurysm (AAA) size and geometry of blood flow through aneurysm sac before or after stent-graft implantation. AngioCT data from 20 patients aged 50–60 years, before and after stent-graft placement in the AAA was analyzed. In order to estimate the risk of stent-graft migration for each patient we prepared an opposite spatial configuration of virtually reconstructed stent-graft with long body or short body. Thus, three groups of 3D geometries were analyzed: 20 geometries representing 3D models of aneurysm, 20 geometries representing 3D models of long body stent-grafts, and 20 geometries representing 3D models of short body stent-graft. The proposed self-made algorithm demonstrated its efficiency and usefulness in estimating wall shear stress (WSS) values. Comparison of the long or short type of stent-graft with AAA geometries allowed to analyze the implants’ spatial configuration. Our study indicated that short stent-graft, after placement in the AAA sac, generated lower drug forces compare to the long stent-graft. Each time shape factor was higher for short stent-graft compare to long stent-graft.
Collapse
|