1
|
Mu J, Hao P, Duan H, Zhao W, Wang Z, Yang Z, Li X. Non-human primate models of focal cortical ischemia for neuronal replacement therapy. J Cereb Blood Flow Metab 2023; 43:1456-1474. [PMID: 37254891 PMCID: PMC10414004 DOI: 10.1177/0271678x231179544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Despite the high prevalence, stroke remains incurable due to the limited regeneration capacity in the central nervous system. Neuronal replacement strategies are highly diverse biomedical fields that attempt to replace lost neurons by utilizing exogenous stem cell transplants, biomaterials, and direct neuronal reprogramming. Although these approaches have achieved encouraging outcomes mostly in the rodent stroke model, further preclinical validation in non-human primates (NHP) is still needed prior to clinical trials. In this paper, we briefly review the recent progress of promising neuronal replacement therapy in NHP stroke studies. Moreover, we summarize the key characteristics of the NHP as highly valuable translational tools and discuss (1) NHP species and their advantages in terms of genetics, physiology, neuroanatomy, immunology, and behavior; (2) various methods for establishing NHP focal ischemic models to study the regenerative and plastic changes associated with motor functional recovery; and (3) a comprehensive analysis of experimentally and clinically accessible outcomes and a potential adaptive mechanism. Our review specifically aims to facilitate the selection of the appropriate NHP cortical ischemic models and efficient prognostic evaluation methods in preclinical stroke research design of neuronal replacement strategies.
Collapse
Affiliation(s)
- Jiao Mu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Yang L, Martin JH. Effects of motor cortex neuromodulation on the specificity of corticospinal tract spinal axon outgrowth and targeting in rats. Brain Stimul 2023; 16:759-771. [PMID: 37094762 PMCID: PMC10501380 DOI: 10.1016/j.brs.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Neural activity helps construct neural circuits during development and this function is leveraged by neuromodulation protocols to promote connectivity and repair in maturity. Neuromodulation targeting the motor cortex (MCX) strengthens connections for evoking muscle contraction (MEPs). Mechanisms include promoting local MCX and corticospinal tract (CST) synaptic efficacy and also axon terminal structural changes. OBJECTIVE In this study, we address the question of potential causality between neuronal activation and the neuronal structural response. METHODS We used patterned optogenetic activation (ChR2-EYFP), daily for 10-days, to deliver intermittent theta burst stimulation (iTBS) to activate MCX neurons within the forelimb representation in healthy rats, while differentiating them from neurons in the same population that were not activated. We used chemogenetic DREADD activation to produce a daily period of non-patterned neuronal activation. RESULTS We found a significant increase in CST axon length, axon branching, contacts targeted to a class of premotor interneuron (Chx10), as well as projections into the motor pools in the ventral horn in optically activated but not neighboring non-activated neurons. A period of 2-h of continuous activation daily for 10 days using DREADD chemogenetic activation with systemic clozapine N-oxide (CNO) administration also increased CST axon length and branching, but not the ventral horn and Chx10 targeting effects. Both patterned optical and chemogenetic activation reduced MCX MEP thresholds. CONCLUSION Our findings show that targeting of CST axon sprouting is dependent on patterned activation, but that CST spinal axon outgrowth and branching are not. Our optogenetic findings, by distinguishing optically activated and non-activated CST axons, suggests that the switch for activity-dependent axonal outgrowth is neuron-intrinsic.
Collapse
Affiliation(s)
- Lillian Yang
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
3
|
Plautz EJ, Barbay S, Frost SB, Stowe AM, Dancause N, Zoubina EV, Eisner-Janowicz I, Guggenmos DJ, Nudo RJ. Spared Premotor Areas Undergo Rapid Nonlinear Changes in Functional Organization Following a Focal Ischemic Infarct in Primary Motor Cortex of Squirrel Monkeys. J Neurosci 2023; 43:2021-2032. [PMID: 36788028 PMCID: PMC10027035 DOI: 10.1523/jneurosci.1452-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Recovery of motor function after stroke is accompanied by reorganization of movement representations in spared cortical motor regions. It is widely assumed that map reorganization parallels recovery, suggesting a causal relationship. We examined this assumption by measuring changes in motor representations in eight male and six female squirrel monkeys in the first few weeks after injury, a time when motor recovery is most rapid. Maps of movement representations were derived using intracortical microstimulation techniques in primary motor cortex (M1), ventral premotor cortex (PMv), and dorsal premotor cortex (PMd) in 14 adult squirrel monkeys before and after a focal infarct in the M1 distal forelimb area. Maps were derived at baseline and at either 2 (n = 7) or 3 weeks (n = 7) postinfarct. In PMv the forelimb maps remained unchanged at 2 weeks but contracted significantly (-42.4%) at 3 weeks. In PMd the forelimb maps expanded significantly (+110.6%) at 2 weeks but contracted significantly (-57.4%) at 3 weeks. Motor deficits were equivalent at both time points. These results highlight two features of plasticity after M1 lesions. First, significant contraction of distal forelimb motor maps in both PMv and PMd is evident by 3 weeks. Second, an unpredictable nonlinear pattern of reorganization occurs in the distal forelimb representation in PMd, first expanding at 2 weeks, and then contracting at 3 weeks postinjury. Together with previous results demonstrating reliable map expansions in PMv several weeks to months after M1 injury, the subacute time period may represent a critical window for the timing of therapeutic interventions.SIGNIFICANCE STATEMENT The relationship between motor recovery and motor map reorganization after cortical injury has rarely been examined in acute/subacute periods. In nonhuman primates, premotor maps were examined at 2 and 3 weeks after injury to primary motor cortex. Although maps are known to expand late after injury, the present study demonstrates early map expansion at 2 weeks (dorsal premotor cortex) followed by contraction at 3 weeks (dorsal and ventral premotor cortex). This nonlinear map reorganization during a time of gradual behavioral recovery suggests that the relationship between map plasticity and motor recovery is much more complex than previously thought. It also suggests that rehabilitative motor training may have its most potent effects during this early dynamic phase of map reorganization.
Collapse
Affiliation(s)
- Erik J Plautz
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Scott Barbay
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Shawn B Frost
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Ann M Stowe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Numa Dancause
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Elena V Zoubina
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Ines Eisner-Janowicz
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - David J Guggenmos
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Randolph J Nudo
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
4
|
Lu P, Freria CM, Graham L, Tran AN, Villarta A, Yassin D, Huie JR, Ferguson AR, Tuszynski MH. Rehabilitation combined with neural progenitor cell grafts enables functional recovery in chronic spinal cord injury. JCI Insight 2022; 7:e158000. [PMID: 35993363 PMCID: PMC9462483 DOI: 10.1172/jci.insight.158000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
We reported previously that neural progenitor cell (NPC) grafts form neural relays across sites of subacute spinal cord injury (SCI) and support functional recovery. Here, we examine whether NPC grafts after chronic delays also support recovery and whether intensive rehabilitation further enhances recovery. One month after severe bilateral cervical contusion, rats received daily intensive rehabilitation, NPC grafts, or both rehabilitation and grafts. Notably, only the combination of rehabilitation and grafting significantly improved functional recovery. Moreover, improved functional outcomes were associated with a rehabilitation-induced increase in host corticospinal axon regeneration into grafts. These findings identify a critical and synergistic role of rehabilitation and neural stem cell therapy in driving neural plasticity to support functional recovery after chronic and severe SCI.
Collapse
Affiliation(s)
- Paul Lu
- Veterans Administration Medical Center, San Diego, California, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Camila M. Freria
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Lori Graham
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Amanda N. Tran
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Ashley Villarta
- Veterans Administration Medical Center, San Diego, California, USA
| | - Dena Yassin
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - J. Russell Huie
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Adam R. Ferguson
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Mark H. Tuszynski
- Veterans Administration Medical Center, San Diego, California, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Frost SB, Chen D, Barbay S, Friel KM, Plautz EJ, Nudo RJ. Reorganization of Ventral Premotor Cortex After Ischemic Brain Injury: Effects of Forced Use. Neurorehabil Neural Repair 2022; 36:514-524. [PMID: 35559809 PMCID: PMC9378490 DOI: 10.1177/15459683221101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Physical use of the affected upper extremity can have a beneficial effect on motor recovery in people after stroke. Few studies have examined neurological mechanisms underlying the effects of forced use in non-human primates. In particular, the ventral premotor cortex (PMV) has been previously implicated in recovery after injury. OBJECTIVE To examine changes in motor maps in PMV after a period of forced use following ischemic infarct in primary motor cortex (M1). METHODS Intracortical microstimulation (ICMS) techniques were used to derive motor maps in PMV of four adult squirrel monkeys before and after an experimentally induced ischemic infarct in the M1 distal forelimb area (DFL) in the dominant hemisphere. Monkeys wore a sleeved jacket (generally 24 hrs/day) that forced limb use contralateral to the infarct in tasks requiring skilled digit use. No specific rehabilitative training was provided. RESULTS At 3 mos post-infarct, ICMS maps revealed a significant expansion of the DFL representation in PMV relative to pre-infarct baseline (mean = +77.3%; n = 3). Regression analysis revealed that the magnitude of PMV changes was largely driven by M1 lesion size, with a modest effect of forced use. One additional monkey examined after ∼18 months of forced use demonstrated a 201.7% increase, unprecedented in non-human primate studies. CONCLUSIONS Functional reorganization in PMV following an ischemic infarct in the M1 DFL is primarily driven by M1 lesion size. Additional expansion occurs in PMV with extremely long periods of forced use but such extended constraint is not considered clinically feasible.
Collapse
Affiliation(s)
- Shawn B. Frost
- Dept. Rehabilitation Medicine; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Landon Center on Aging; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Dept. of Molecular and Integrative Physiology; Univ. of Kansas Medical Center, Kansas City, KS 66160
| | - Daofen Chen
- Landon Center on Aging; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Physical Therapy & Rehabilitation Science; Univ. of Kansas Medical Center, Kansas City, KS 66160
| | - Scott Barbay
- Dept. Rehabilitation Medicine; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Landon Center on Aging; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Dept. of Molecular and Integrative Physiology; Univ. of Kansas Medical Center, Kansas City, KS 66160
| | - Kathleen M. Friel
- Landon Center on Aging; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Dept. of Molecular and Integrative Physiology; Univ. of Kansas Medical Center, Kansas City, KS 66160
| | - Erik J. Plautz
- Landon Center on Aging; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Dept. of Molecular and Integrative Physiology; Univ. of Kansas Medical Center, Kansas City, KS 66160
| | - Randolph J. Nudo
- Dept. Rehabilitation Medicine; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Landon Center on Aging; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Dept. of Molecular and Integrative Physiology; Univ. of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
6
|
A cortical injury model in a non-human primate to assess execution of reach and grasp actions: implications for recovery after traumatic brain injury. J Neurosci Methods 2021; 361:109283. [PMID: 34237383 PMCID: PMC9969347 DOI: 10.1016/j.jneumeth.2021.109283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Technological advances in developing experimentally controlled models of traumatic brain injury (TBI) are prevalent in rodent models and these models have proven invaluable in characterizing temporal changes in brain and behavior after trauma. To date no long-term studies in non-human primates (NHPs) have been published using an experimentally controlled impact device to follow behavioral performance over time. NEW METHOD We have employed a controlled cortical impact (CCI) device to create a focal contusion to the hand area in primary motor cortex (M1) of three New World monkeys to characterize changes in reach and grasp function assessed for 3 months after the injury. RESULTS The CCI destroyed most of M1 hand representation reducing grey matter by 9.6 mm3, 12.9 mm3, and 15.5 mm3 and underlying corona radiata by 7.4 mm3, 6.9 mm3, and 5.6 mm3 respectively. Impaired motor function was confined to the hand contralateral to the injury. Gross hand-use was only mildly affected during the first few days of observation after injury while activity requiring skilled use of the hand was impaired over three months. COMPARISON WITH EXISTING METHOD(S) This study is unique in establishing a CCI model of TBI in an NHP resulting in persistent impairments in motor function evident in volitional use of the hand. CONCLUSIONS Establishing an NHP model of TBI is essential to extend current rodent models to the complex neural architecture of the primate brain. Moving forward this model can be used to investigate novel therapeutic interventions to improve or restore impaired motor function after trauma.
Collapse
|
7
|
Reeves J, Jones R, Liu A, Bent L, Martinez-Santos A, Nester C. No change in foot soft tissue morphology and skin sensitivity after three months of using foot orthoses that alter plantar pressure. FOOTWEAR SCIENCE 2021. [DOI: 10.1080/19424280.2021.1961880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Joanna Reeves
- School of Health Sciences, University of Salford, Salford, United Kingdom
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Richard Jones
- School of Health Sciences, University of Salford, Salford, United Kingdom
| | - Anmin Liu
- School of Health Sciences, University of Salford, Salford, United Kingdom
| | - Leah Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | | | - Christopher Nester
- School of Health Sciences, University of Salford, Salford, United Kingdom
| |
Collapse
|
8
|
Manifestations of Apprehension and Anxiety in a Sprague Dawley Cranial Defect Model. J Craniofac Surg 2021; 31:2364-2367. [PMID: 33136892 DOI: 10.1097/scs.0000000000006777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Syndrome of the trephined is a neurologic condition that commonly arises in patients who undergo craniectomy and have a prolonged cranial defect. Symptoms of this condition include headache, difficulties concentrating, diminished fine motor/dexterity skills, mood changes, and anxiety/apprehension. The authors hypothesize that an animal model demonstrating anxiety/apprehension in rats who undergo craniectomy is feasible utilizing standardized animal behavioral testing. METHODS Sprague Dawley rats were the stratified to 1 of 2 groups for comparison of neurobehavioral outcomes. Group #1 (closed cranial group) had their cranial trephination immediately closed with acrylic to restore normal cranial anatomy and Group #2 (open cranial group) had their cranial trephination enlarged to represent a decompressive hemicraniectomy immediately. Anxiety/apprehension was studied using a standardized rodent open field test. Statistical comparison of differences among the 2 groups was performed. RESULTS Ten rats were studied with 5 rats in each group. Standard rodent open field testing of anxiety demonstrated no difference among the 2 groups at 1 week. Rats in the "Open cranial group" demonstrated progressively more anxiety over the following 3-month period. Rats in the "Open cranial group" demonstrated increasing anxiety levels as compared with rats in the "Closed cranial group." At week 16, the "Open cranial group" anxiety levels were significantly greater than week 4 (t = 2.24, P = 0.04) demonstrating a significant linear trend over time (R = 0.99; P = 0.002). The "Closed cranial group" did not show this trend (R = 07; P = 0.74). CONCLUSION Our study demonstrates that anxiety and apprehension are more prevalent in rats with an open, prolonged cranial defect in comparison to those with a closed cranium. This correlates with similar finds in humans with syndrome of the trephined.
Collapse
|
9
|
Sims SKKC, Rizzo A, Howard K, Farrand A, Boger H, Adkins DL. Comparative Enhancement of Motor Function and BDNF Expression Following Different Brain Stimulation Approaches in an Animal Model of Ischemic Stroke. Neurorehabil Neural Repair 2020; 34:925-935. [PMID: 32909525 PMCID: PMC7572816 DOI: 10.1177/1545968320952798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Combinatory intervention such as high-frequency (50-100 Hz) excitatory cortical stimulation (ECS) given concurrently with motor rehabilitative training (RT) improves forelimb function, except in severely impaired animals after stroke. Clinical studies suggest that low-frequency (≤1 Hz) inhibitory cortical stimulation (ICS) may provide an alternative approach to enhance recovery. Currently, the molecular mediators of CS-induced behavioral effects are unknown. Brain-derived neurotrophic factor (BDNF) has been associated with improved recovery and neural remodeling after stroke and thus may be involved in CS-induced behavioral recovery. OBJECTIVE To investigate whether inhibitory stimulation during RT improves functional recovery of severely impaired rats, following focal cortical ischemia and if this recovery alters BDNF expression (study 1) and depends on BDNF binding to TrkB receptors (study 2). METHODS Rats underwent ECS + RT, ICS + RT, or noCS + RT treatment daily for 3 weeks following a unilateral ischemic lesion to the motor cortex. Electrode placement for stimulation was either placed ipsilateral (ECS) or contralateral (ICS) to the lesion. After treatment, BDNF expression was measured in cortical tissue samples (study 1). In study 2, the TrkB inhibitor, ANA-12, was injected prior to treatment daily for 21 days. RESULTS ICS + RT treatment significantly improved impaired forelimb recovery compared with ECS + RT and noCS + RT treatment. CONCLUSION ICS given concurrently with rehabilitation improves motor recovery in severely impaired animals, and alters cortical BDNF expression; nevertheless, ICS-mediated improvements are not dependent on BDNF binding to TrkB. Conversely, inhibition of TrkB receptors does disrupt motor recovery in ECS + RT treated animals.
Collapse
Affiliation(s)
| | | | | | - Ariana Farrand
- Medical University of South Carolina, Charleston, SC, USA
| | - Heather Boger
- Medical University of South Carolina, Charleston, SC, USA
| | - DeAnna L Adkins
- National Institute of Neurological Diseases and Stroke, Rockville, MD, USA
| |
Collapse
|
10
|
Ito A, Kubo N, Liang N, Aoyama T, Kuroki H. Regenerative Rehabilitation for Stroke Recovery by Inducing Synergistic Effects of Cell Therapy and Neurorehabilitation on Motor Function: A Narrative Review of Pre-Clinical Studies. Int J Mol Sci 2020; 21:ijms21093135. [PMID: 32365542 PMCID: PMC7247676 DOI: 10.3390/ijms21093135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological diseases severely affect the quality of life of patients. Although existing treatments including rehabilitative therapy aim to facilitate the recovery of motor function, achieving complete recovery remains a challenge. In recent years, regenerative therapy has been considered as a potential candidate that could yield complete functional recovery. However, to achieve desirable results, integration of transplanted cells into neural networks and generation of appropriate microenvironments are essential. Furthermore, considering the nascent state of research in this area, we must understand certain aspects about regenerative therapy, including specific effects, nature of interaction when administered in combination with rehabilitative therapy (regenerative rehabilitation), and optimal conditions. Herein, we review the current status of research in the field of regenerative therapy, discuss the findings that could hold the key to resolving the challenges associated with regenerative rehabilitation, and outline the challenges to be addressed with future studies. The current state of research emphasizes the importance of determining the independent effect of regenerative and rehabilitative therapies before exploring their combined effects. Furthermore, the current review highlights the progression in the treatment perspective from a state of compensation of lost function to that of a possibility of complete functional recovery.
Collapse
Affiliation(s)
- Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (N.K.); (H.K.)
- Correspondence:
| | - Naoko Kubo
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (N.K.); (H.K.)
| | - Nan Liang
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan;
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan;
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (N.K.); (H.K.)
| |
Collapse
|
11
|
Cooperrider J, Momin A, Baker KB, Machado AG. Cerebellar Neuromodulation for Stroke. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:57-63. [PMID: 33585074 DOI: 10.1007/s40141-019-00253-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Purpose of Review This paper reviews the current preclinical and clinical evidence for cerebellar deep brain stimulation for stroke rehabilitation. Recent Findings We have demonstrated the effectiveness of cerebellar stimulation for stroke rehabilitation in rodent models, which has been reproduced by other groups. Synaptogenesis, neurogenesis, and vicariation of function in the perilesional cortex likely contribute to the mechanistic underpinnings of the effectiveness of this therapy. A Phase I clinical trial investigating dentate nucleus stimulation for improvement of hemiparesis due to stroke is currently underway, and results thus far are encouraging. Summary Activation of the rodent cerebellar dentate nucleus promotes functional motor recovery following stroke. Although results of a Phase I clinical trial are pending, substantial preclinical evidence indicates that deep brain stimulation of the dentate nucleus is a promising therapeutic modality.
Collapse
Affiliation(s)
- Jessica Cooperrider
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Arbaz Momin
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Kenneth B Baker
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, 44195
| | - Andre G Machado
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195
| |
Collapse
|
12
|
Affiliation(s)
- David T Bundy
- From the Department of Rehabilitation Medicine (D.T.B., R.J.N.), University of Kansas Medical Center, Kansas City, KS
| | - Randolph J Nudo
- From the Department of Rehabilitation Medicine (D.T.B., R.J.N.), University of Kansas Medical Center, Kansas City, KS.,Landon Center on Aging (R.J.N.), University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
13
|
Ramanathan DS, Guo L, Gulati T, Davidson G, Hishinuma AK, Won SJ, Knight RT, Chang EF, Swanson RA, Ganguly K. Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke. Nat Med 2018; 24:1257-1267. [PMID: 29915259 PMCID: PMC6093781 DOI: 10.1038/s41591-018-0058-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 04/25/2018] [Indexed: 12/24/2022]
Abstract
Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation.
Collapse
Affiliation(s)
- Dhakshin S Ramanathan
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- Mental Health Service, VA San Diego Health System, San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Ling Guo
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Tanuj Gulati
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Gray Davidson
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - April K Hishinuma
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Seok-Joon Won
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Edward F Chang
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Raymond A Swanson
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Karunesh Ganguly
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
|
15
|
Hylin MJ, Kerr AL, Holden R. Understanding the Mechanisms of Recovery and/or Compensation following Injury. Neural Plast 2017; 2017:7125057. [PMID: 28512585 PMCID: PMC5415868 DOI: 10.1155/2017/7125057] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/24/2017] [Accepted: 03/26/2017] [Indexed: 11/30/2022] Open
Abstract
Injury due to stroke and traumatic brain injury result in significant long-term effects upon behavioral functioning. One central question to rehabilitation research is whether the nature of behavioral improvement observed is due to recovery or the development of compensatory mechanisms. The nature of functional improvement can be viewed from the perspective of behavioral changes or changes in neuroanatomical plasticity that follows. Research suggests that these changes correspond to each other in a bidirectional manner. Mechanisms surrounding phenomena like neural plasticity may offer an opportunity to explain how variables such as experience can impact improvement and influence the definition of recovery. What is more, the intensity of the rehabilitative experiences may influence the ability to recover function and support functional improvement of behavior. All of this impacts how researchers, clinicians, and medical professionals utilize rehabilitation.
Collapse
Affiliation(s)
- Michael J. Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Abigail L. Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Ryan Holden
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
16
|
Shin SS, Pelled G. Novel Neuromodulation Techniques to Assess Interhemispheric Communication in Neural Injury and Neurodegenerative Diseases. Front Neural Circuits 2017; 11:15. [PMID: 28337129 PMCID: PMC5343068 DOI: 10.3389/fncir.2017.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/20/2017] [Indexed: 12/23/2022] Open
Abstract
Interhemispheric interaction has a major role in various neurobehavioral functions. Its disruption is a major contributor to the pathological changes in the setting of brain injury such as traumatic brain injury, peripheral nerve injury, and stroke, as well as neurodegenerative diseases. Because interhemispheric interaction has a crucial role in functional consequence in these neuropathological states, a review of noninvasive and state-of-the-art molecular based neuromodulation methods that focus on or have the potential to elucidate interhemispheric interaction have been performed. This yielded approximately 170 relevant articles on human subjects or animal models. There has been a recent surge of reports on noninvasive methods such as transcranial magnetic stimulation and transcranial direct current stimulation. Since these are noninvasive techniques with little to no side effects, their widespread use in clinical studies can be easily justified. The overview of novel neuromodulation methods and how they can be applied to study the role of interhemispheric communication in neural injury and neurodegenerative disease is provided. Additionally, the potential of each method in therapeutic use as well as investigating the pathophysiology of interhemispheric interaction in neurodegenerative diseases and brain injury is discussed. New technologies such as transcranial magnetic stimulation or transcranial direct current stimulation could have a great impact in understanding interhemispheric pathophysiology associated with acquired injury and neurodegenerative diseases, as well as designing improved rehabilitation therapies. Also, advances in molecular based neuromodulation techniques such as optogenetics and other chemical, thermal, and magnetic based methods provide new capabilities to stimulate or inhibit a specific brain location and a specific neuronal population.
Collapse
Affiliation(s)
- Samuel S Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Galit Pelled
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
17
|
Moore TL, Pessina MA, Finklestein SP, Killiany RJ, Bowley B, Benowitz L, Rosene DL. Inosine enhances recovery of grasp following cortical injury to the primary motor cortex of the rhesus monkey. Restor Neurol Neurosci 2016; 34:827-48. [PMID: 27497459 PMCID: PMC6503840 DOI: 10.3233/rnn-160661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inosine, a naturally occurring purine nucleoside, has been shown to stimulate axonal growth in cell culture and promote corticospinal tract axons to sprout collateral branches after stroke, spinal cord injury and TBI in rodent models. OBJECTIVE To explore the effects of inosine on the recovery of motor function following cortical injury in the rhesus monkey. METHODS After being trained on a test of fine motor function of the hand, monkeys received a lesion limited to the area of the hand representation in primary motor cortex. Beginning 24 hours after this injury and continuing daily thereafter, monkeys received orally administered inosine (500 mg) or placebo. Retesting of motor function began on the 14th day after injury and continued for 12 weeks. RESULTS During the first 14 days after surgery, there was evidence of significant recovery within the inosine-treated group on measures of fine motor function of the hand, measures of hand strength and digit flexion. While there was no effect of treatment on the time to retrieve a reward, the treated monkeys returned to asymptotic levels of grasp performance significantly faster than the untreated monkeys. Additionally, the treated monkeys evidenced a greater degree of recovery in terms of maturity of grasp pattern. CONCLUSION These findings demonstrate that inosine can enhance recovery of function following cortical injury in monkeys.
Collapse
Affiliation(s)
- Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Monica A. Pessina
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Ronald J. Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Bethany Bowley
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Larry Benowitz
- Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|