1
|
Rubino C, Lakhani B, Larssen BC, Kraeutner SN, Andrushko JW, Borich MR, Boyd LA. Gamified Practice Improves Paretic Arm Motor Behavior in Individuals With Stroke. Neurorehabil Neural Repair 2024; 38:832-844. [PMID: 39342450 PMCID: PMC11566063 DOI: 10.1177/15459683241286449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Stroke is a heterogeneous condition, making choice of treatment, and determination of how to structure rehabilitation outcomes difficult. Individualized goal-directed and repetitive physical practice is an important determinant of motor learning. Yet, many investigations of motor learning after stroke deliver task practice without consideration of individual capability of the learner. OBJECTIVE We developed a gamified arm rehabilitation task for people with stroke that is personalized to individual capacity for paretic arm movement, provides a high dose of practice, progresses through increasingly difficulty levels that are dependent on the performance of the individual, and is practiced in an engaging environment. The objectives of the current study were to determine if 10 days of gamified, object intercept training using the paretic arm would improve arm movement speed and clinical outcome measures of impairment or function. METHODS Individuals with chronic stroke and age-matched controls engaged in 10 days of gamified, skilled motor practice of a semi-immersive virtual reality-based intercept and release task. The paretic arm was assessed using the Fugl-Meyer Assessment (motor impairment) and Wolf Motor Function Test (motor function) before and after training. RESULTS Both groups showed faster arm movement speed with practice; individuals with stroke demonstrated reduced paretic arm motor impairment and increased function after the intervention. Age and sex (for both groups), and time post-stroke were not related to changes in movement speed. CONCLUSIONS Findings indicate that gamified motor training positively affects paretic arm motor behavior in individuals with mild to severe chronic stroke.
Collapse
Affiliation(s)
- Cristina Rubino
- Graduate Program in Rehabilitation Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Bimal Lakhani
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Beverley C. Larssen
- Graduate Program in Rehabilitation Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Sarah N. Kraeutner
- Department of Psychology, University of British Columbia, Okanagan, BC, Canada
| | - Justin W. Andrushko
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Michael R. Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| | - Lara A. Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Dahms C, Noll A, Wagner F, Schmidt A, Brodoehl S, Klingner CM. Connecting the dots: Motor and default mode network crossroads in post-stroke motor learning deficits. Neuroimage Clin 2024; 42:103601. [PMID: 38579595 PMCID: PMC11004993 DOI: 10.1016/j.nicl.2024.103601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Strokes frequently result in long-term motor deficits, imposing significant personal and economic burdens. However, our understanding of the underlying neural mechanisms governing motor learning in stroke survivors remains limited - a fact that poses significant challenges to the development and optimisation of therapeutic strategies. OBJECTIVE This study investigates the diversity in motor learning aptitude and its associated neurological mechanisms. We hypothesised that stroke patients exhibit compromised overall motor learning capacity, which is associated with altered activity and connectivity patterns in the motor- and default-mode-network in the brain. METHODS We assessed a cohort of 40 chronic-stage, mildly impaired stroke survivors and 39 age-matched healthy controls using functional Magnetic Resonance Imaging (fMRI) and connectivity analyses. We focused on neural activity and connectivity patterns during an unilateral motor sequence learning task performed with the unimpaired or non-dominant hand. Primary outcome measures included task-induced changes in neural activity and network connectivity. RESULTS Compared to controls, stroke patients showed significantly reduced motor learning capacity, associated with diminished cerebral lateralization. Task induced activity modulation was reduced in the motor network but increased in the default mode network. The modulated activation strength was associated with an opposing trend in task-induced functional connectivity, with increased connectivity in the motor network and decreased connectivity in the DMN. CONCLUSIONS Stroke patients demonstrate altered neural activity and connectivity patterns during motor learning with their unaffected hand, potentially contributing to globally impaired motor learning skills. The reduced ability to lateralize cerebral activation, along with the enhanced connectivity between the right and left motor cortices in these patients, may signify maladaptive neural processes that impede motor adaptation, possibly affecting long-term rehabilitation post-stroke. The contrasting pattern of activity modulation and connectivity alteration in the default mode network suggests a nuanced role of this network in post-stroke motor learning. These insights could have significant implications for the development of customised rehabilitation strategies for stroke patients.
Collapse
Affiliation(s)
- Christiane Dahms
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany.
| | - Alexander Noll
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| | - Franziska Wagner
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| | - Alexander Schmidt
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| | - Stefan Brodoehl
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| | - Carsten M Klingner
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| |
Collapse
|
3
|
Kirby ED, Andrushko JW, Rinat S, D'Arcy RCN, Boyd LA. Investigating female versus male differences in white matter neuroplasticity associated with complex visuo-motor learning. Sci Rep 2024; 14:5951. [PMID: 38467763 PMCID: PMC10928090 DOI: 10.1038/s41598-024-56453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Magnetic resonance imaging (MRI) has increasingly been used to characterize structure-function relationships during white matter neuroplasticity. Biological sex differences may be an important factor that affects patterns of neuroplasticity, and therefore impacts learning and rehabilitation. The current study examined a participant cohort before and after visuo-motor training to characterize sex differences in microstructural measures. The participants (N = 27) completed a 10-session (4 week) complex visuo-motor training task with their non-dominant hand. All participants significantly improved movement speed and their movement speed variability over the training period. White matter neuroplasticity in females and males was examined using fractional anisotropy (FA) and myelin water fraction (MWF) along the cortico-spinal tract (CST) and the corpus callosum (CC). FA values showed significant differences in the middle portion of the CST tract (nodes 38-51) across the training period. MWF showed a similar cluster in the inferior portion of the tract (nodes 18-29) but did not reach significance. Additionally, at baseline, males showed significantly higher levels of MWF measures in the middle body of the CC. Combining data from females and males would have resulted in reduced sensitivity, making it harder to detect differences in neuroplasticity. These findings offer initial insights into possible female versus male differences in white matter neuroplasticity during motor learning. This warrants investigations into specific patterns of white matter neuroplasticity for females versus males across the lifespan. Understanding biological sex-specific differences in white matter neuroplasticity may have significant implications for the interpretation of change associated with learning or rehabilitation.
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Vancouver, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Vancouver, BC, Canada.
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Lara A Boyd
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
4
|
Kraeutner SN, Rubino C, Ferris JK, Rinat S, Penko L, Chiu L, Greeley B, Jones CB, Larssen BC, Boyd LA. Frontoparietal function and underlying structure reflect capacity for motor skill acquisition during healthy aging. Neurobiol Aging 2024; 133:78-86. [PMID: 37918189 DOI: 10.1016/j.neurobiolaging.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
While capacity for motor skill acquisition changes with healthy aging, there has been little consideration of how age-related changes in brain function or baseline brain structure support motor skill acquisition. We examined: (1) age-dependent changes in functional reorganization related to frontoparietal regions during motor skill acquisition, and (2) whether capacity for motor skill acquisition relates to baseline white matter microstructure in frontoparietal tracts. Healthy older and younger adults engaged in 4 weeks of skilled motor practice. Resting-state functional connectivity (rsFC) assessed functional reorganization before and after practice. Diffusion tensor imaging indexed microstructure of a frontoparietal tract at baseline, generated by rsFC seeds. Motor skill acquisition was associated with decreases in rsFC in healthy older adults and increases in rsFC in healthy younger adults. Frontoparietal tract microstructure was lower in healthy older versus younger adults, yet it was negatively associated with rate of skill acquisition regardless of group. Findings indicate that age-dependent alterations in frontoparietal function and baseline structure of a frontoparietal tract reflect capacity for motor skill acquisition.
Collapse
Affiliation(s)
- Sarah N Kraeutner
- Department of Psychology, University of British Columbia, Kelowna, British Columbia, Canada; Djavad Mowafaghian, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Cristina Rubino
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer K Ferris
- Gerontology Research Centre, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Shie Rinat
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren Penko
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Larissa Chiu
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Greeley
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christina B Jones
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beverley C Larssen
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lara A Boyd
- Djavad Mowafaghian, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Reibelt A, Quandt F, Schulz R. Posterior parietal cortical areas and recovery after motor stroke: a scoping review. Brain Commun 2023; 5:fcad250. [PMID: 37810465 PMCID: PMC10551853 DOI: 10.1093/braincomms/fcad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Brain imaging and electrophysiology have significantly enhanced our current understanding of stroke-related changes in brain structure and function and their implications for recovery processes. In the motor domain, most studies have focused on key motor areas of the frontal lobe including the primary and secondary motor cortices. Time- and recovery-dependent alterations in regional anatomy, brain activity and inter-regional connectivity have been related to recovery. In contrast, the involvement of posterior parietal cortical areas in stroke recovery is poorly understood although these regions are similarly important for important aspects of motor functioning in the healthy brain. Just in recent years, the field has increasingly started to explore to what extent posterior parietal cortical areas might undergo equivalent changes in task-related activation, regional brain structure and inter-regional functional and structural connectivity after stroke. The aim of this scoping review is to give an update on available data covering these aspects and thereby providing novel insights into parieto-frontal interactions for systems neuroscience stroke recovery research in the upper limb motor domain.
Collapse
Affiliation(s)
- Antonia Reibelt
- Experimental Electrophysiology and Neuroimaging Lab, Department of Neurology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Fanny Quandt
- Experimental Electrophysiology and Neuroimaging Lab, Department of Neurology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Robert Schulz
- Experimental Electrophysiology and Neuroimaging Lab, Department of Neurology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
6
|
Li Z, Wang Z, Cao D, You R, Hu J. Altered dynamic functional network connectivity states in patients with acute basal ganglia ischemic stroke. Brain Res 2023:148406. [PMID: 37201623 DOI: 10.1016/j.brainres.2023.148406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Dynamic functional network connectivity (dFNC) patterns are successfully able to capture the time-varying features of intrinsic fluctuations throughout a scan. We explored dFNC alterations across the entire brain in patients with acute ischemic stroke (AIS) of the basal ganglia (BG). METHOD Resting-state functional magnetic resonance imaging data were acquired from 26 patients with first-ever AIS in the BG and 26 healthy controls (HCs). Independent component analysis, the sliding window method, and the K-means clustering method were used to obtain reoccurring dynamic network connectivity patterns. Moreover, temporal features across diverse dFNC states were compared between the two groups, and the local and global efficiencies across states were analyzed to explore the characteristics of the topological networks among states. RESULTS Four dFNC states were characterized for comparison of dynamic brain network connectivity patterns. In contrast to the HC group, the AIS group spent a significantly higher fraction of time in State 1, which is characterized by a relatively weaker brain network connectome. Conversely, compared with HC, patients with AIS showed a lower mean dwell time in State 2, which was characterized by a relatively stronger brain network connectome. Additionally, functional networks exhibited variable efficiency of information transfer across 4 states. CONCLUSIONS AIS not only altered the interaction between the different dynamic networks but also promoted characteristic alterations in the temporal and topological features of large-scale dynamic network connectivity.
Collapse
Affiliation(s)
- Zhongming Li
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Zhimin Wang
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Dairong Cao
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ruixiong You
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianping Hu
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Mattos DJS, Rutlin J, Hong X, Zinn K, Shimony JS, Carter AR. The Role of Extra-motor Networks in Upper Limb Motor Performance Post-stroke. Neuroscience 2023; 514:1-13. [PMID: 36736882 PMCID: PMC11009936 DOI: 10.1016/j.neuroscience.2023.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Motor improvement post-stroke may happen even if resting state functional connectivity between the ipsilesional and contralesional components of the sensorimotor network is not fully recovered. Therefore, we investigated which extra-motor networks might support upper limb motor gains in response to treatment post-stroke. METHODS Both resting state functional connectivity and upper limb capacity were measured prior to and after an 8-week intervention of task-specific training in 29 human participants [59.24 ± (SD) 10.40 yrs., 12 females and 17 males] with chronic stroke. The sensorimotor and five extra-motor networks were defined: default mode, frontoparietal, cingulo-opercular, dorsal attention network, and salience networks. The Network Level Analysis toolbox was used to identify network pairs whose connectivities were enriched in connectome-behavior relationships. RESULTS Mean upper limb capacity score increased 5.45 ± (SD) 5.55 following treatment. Baseline connectivity of some motor but mostly extra-motor network interactions of cingulo-opercular and default-mode networks were predictive of upper limb capacity following treatment. Also, changes in connectivity for extra-motor interactions of salience with default mode, cingulo-opercular, and dorsal attention networks were correlated with gains in upper limb capacity. CONCLUSIONS These connectome-behavior patterns suggest larger involvement of cingulo-opercular networks in prediction of treatment response and of salience networks in maintenance of improved skilled behavior. These results support our hypothesis that cognitive networks may contribute to recovery of motor performance after stroke and provide additional insights into the neural correlates of intensive training.
Collapse
Affiliation(s)
- Daniela J S Mattos
- Departments of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Jerrel Rutlin
- Departments of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Xin Hong
- Departments of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kristina Zinn
- Departments of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joshua S Shimony
- Departments of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Alexandre R Carter
- Departments of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
8
|
Schranz C, Vatinno A, Ramakrishnan V, Seo NJ. Neuroplasticity after upper-extremity rehabilitation therapy with sensory stimulation in chronic stroke survivors. Brain Commun 2022; 4:fcac191. [PMID: 35938072 PMCID: PMC9351980 DOI: 10.1093/braincomms/fcac191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/19/2022] [Accepted: 07/21/2022] [Indexed: 01/16/2023] Open
Abstract
This study investigated the effect of using subthreshold vibration as a peripheral sensory stimulation during therapy on cortical activity. Secondary analysis of a pilot triple-blinded randomized controlled trial. Twelve chronic stroke survivors underwent 2-week upper-extremity task-practice therapy. Half received subthreshold vibratory stimulation on their paretic wrist (treatment group) and the other half did not (control). EEG connectivity and event-related de-/resynchronization for the sensorimotor network during hand grip were examined at pre-intervention, post-intervention and follow-up. Statistically significant group by time interactions were observed for both connectivity and event-related spectral perturbation. For the treatment group, connectivity increased at post-intervention and decreased at follow-up. Event-related desynchronization decreased and event-related resynchronization increased at post-intervention, which was maintained at follow-up. The control group had the opposite trend for connectivity and no change in event-related spectral perturbation. The stimulation altered cortical sensorimotor activity. The findings complement the clinical results of the trial in which the treatment group significantly improved gross manual dexterity while the control group did not. Increased connectivity in the treatment group may indicate neuroplasticity for motor learning, while reduced event-related desynchronization and increased event-related resynchronization may indicate lessened effort for grip and improved inhibitory control. EEG may improve understanding of neural processes underlying motor recovery.
Collapse
Affiliation(s)
- Christian Schranz
- Correspondence to: Christian Schranz, PhD 77 President Street, Charleston SC 29425, USA E-mail:
| | - Amanda Vatinno
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Viswanathan Ramakrishnan
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Na Jin Seo
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425, USA,Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425, USA,Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
9
|
Modality of Practice Modulates Resting State Connectivity During Motor Learning. Neurosci Lett 2022; 781:136659. [PMID: 35483502 DOI: 10.1016/j.neulet.2022.136659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022]
Abstract
When bookending skilled motor practice, changes in resting state functional magnetic resonance imaging (rs-fMRI; used to characterise synchronized patterns of activity when the brain is at rest) reflect functional reorganization that supports motor memory consolidation and learning. Despite its use in practice in numerous domains, the neural mechanisms underlying motor memory consolidation and learning that result from motor imagery practice (MIP) relative to physical practice are not well understood. The current study examined how rs-fMRI is modulated by skilled motor practice that results through either MIP or physical practice. Two groups of participants engaged in five days of MIP or physical practice of a dart throwing task. Performance and rs-fMRI were captured before and after training. Relative to physical practice, where focal changes in rs-fMRI within a cerebellar-cortical network were observed, MIP stimulated widespread changes in rs-fMRI within a frontoparietal network encompassing bilateral regions. Findings indicate that functional reorganization that supports motor memory consolidation and learning is not equivalent across practice modality. Ultimately, this work provides new information regarding the unique neural underpinnings MIP relies on to drive motor memory consolidation and learning.
Collapse
|