1
|
Carstensen JB, Gaemelke T, Overgaard K, Andersen TB. The effect of fatiguing muscle contractions on kicking performance in experienced soccer players. Sports Biomech 2024:1-20. [PMID: 39632354 DOI: 10.1080/14763141.2024.2433084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
The objective of this study was to clarify the effects of fatiguing muscle contractions of the m. quadriceps femoris on kicking abilities of experienced soccer players. 16 male professional (n = 5) and amateur players (n = 11) performed kicking tests in two conditions (fatigue and control) on separate days in a randomised crossover design. The fatiguing protocol performed with the kicking leg consisted of 5 sets of 10 maximal voluntary concentric and eccentric knee extensions. Maximal voluntary isometric contraction force (MVIC), 15 hz/50 hz stimulation force ratio (force ratio), and kicking abilities were assessed before and after completion of the fatiguing protocol or rest (control). The fatiguing protocol successfully induced fatigue of 14.0 ± 2.7% (mean ± SE) reduced MVIC and 14.0 ± 3.7% reduced force ratio while no reductions occurred in the control condition. Between group difference showed ball speed declined 2.1 ± 0.95% more following the fatigue protocol compared to control condition. On the control day shooting accuracy improved by 13.3 ± 5.6% and was numerically impaired on the intervention day by 1.0 ± 9.2%. Despite this, no significant between group difference was observed in shooting accuracy (p = 0.18). The study demonstrated that fatigue induced by prior muscle contractions impairs maximal shooting speed, but we observed no significant impairment of shooting accuracy.
Collapse
Affiliation(s)
- Jeppe B Carstensen
- Department of Public Health, Section for Sports Science, Aarhus University, Aarhus, Denmark
| | - Tobias Gaemelke
- Department of Public Health, Section for Sports Science, Aarhus University, Aarhus, Denmark
| | - Kristian Overgaard
- Department of Public Health, Section for Sports Science, Aarhus University, Aarhus, Denmark
| | - Thomas B Andersen
- Department of Public Health, Section for Sports Science, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Santinelli FB, Abasıyanık Z, Ramari C, Gysemberg G, Kos D, Pau M, Kalron A, Meyns P, Ozakbas S, Feys P. Manifestations of walking fatigability in people with multiple sclerosis based on gait quality and distance walked during the six minutes walking test. Mult Scler Relat Disord 2024; 91:105909. [PMID: 39366168 DOI: 10.1016/j.msard.2024.105909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Distance walking fatigability (DWF) in people with multiple sclerosis (pwMS) is defined as a decrease in the distance walking over time. However, declines in gait quality (i.e., gait quality fatigability- GQF) may occur independently or alongside DWF. OBJECTIVE i) to investigate how walking fatigability manifests and its prevalence in pwMS; ii) to describe the temporal pattern of the changes of specific gait characteristics during the 6-minute walking test (6MWT) METHODS: Eighty-eight pwMS (EDSS 4[0-6.5], 49[21-70] years) and 47 healthy controls (HC- 46[25-60] years) performed the 6MWT wearing inertial measurement units. Gait characteristics (stride length, sensor-based gait speed, cadence, double support, step duration, stance phase, step duration asymmetry, step duration variability, foot-strike, toe-off, and leg circumduction) and walking distance were recorded in 1-minute intervals. A fatigability index was calculated by comparing the last and first minute of the 6MWT to identify abnormal worsening based on cutoff scores. The manifestation of walking fatigability was counted. The temporal pattern of worsening of gait characteristics during the 6MWT was examined in pwMS exceeding the cutoff values, compared to pwMS without abnormal changes and HC, using a two-way ANOVA (group vs. minutes) RESULTS: Thirty-five pwMS presented both DWF and GQF, 2 presented isolated DWF, 27 presented isolated GQF, and 24 presented non-walking fatigability. PwMS having GQF presented worsening in gait characteristics (cadence, step duration, step duration variability, or toe-off angle) from minute 2 onwards of the 6MWT, while HCs and pwMS without abnormal changes stabilized gait from minute 2 towards the end of the 6MWT. CONCLUSION Walking fatigability in pwMS manifests not only as a decrease in walking distance but also as changes in gait quality. Understanding changes in gait characteristics during walking can help tailor rehabilitation interventions.
Collapse
Affiliation(s)
- Felipe Balistieri Santinelli
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; UMSC, Hasselt/Pelt, Belgium.
| | - Zuhal Abasıyanık
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; UMSC, Hasselt/Pelt, Belgium; Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Izmir Katip Celebi University, Izmir, Turkey
| | - Cintia Ramari
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; UMSC, Hasselt/Pelt, Belgium; Brazilian Committee for Treatment and Research in Multiple Sclerosis, BCTRIMS, Belo Horizonte, Brazil
| | - Griet Gysemberg
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; UMSC, Hasselt/Pelt, Belgium; Noorderhart Rehabilitation and MS Center, Pelt, Belgium
| | - Daphne Kos
- National MS Center Melsbroek, Melsbroek, Belgium; KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Alon Kalron
- Tel-Aviv University, Department of Physical Therapy, School of Health Professions, Faculty of Medicine and Health Sciences and Sagol School of Neuroscience, Tel-Aviv, Israel
| | - Pieter Meyns
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Serkan Ozakbas
- Izmir University of Economics, Medical Point Hospital, Izmir, Turkey
| | - Peter Feys
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; UMSC, Hasselt/Pelt, Belgium
| |
Collapse
|
3
|
Ramari C, D'hooge M, Dalgas U, Feinstein A, Amato MP, Brichetto G, Chataway J, Chiaravalloti ND, Cutter GR, DeLuca J, Farrell R, Filippi M, Freeman J, Inglese M, Meza C, Motl RW, Rocca MA, Sandroff BM, Salter A, Kos D, Feys P. Prevalence and Associated Clinical Characteristics of Walking-Related Motor, Cognitive, and Fatigability in Progressive Multiple Sclerosis: Baseline Results From the CogEx Study. Neurorehabil Neural Repair 2024; 38:327-338. [PMID: 38426484 DOI: 10.1177/15459683241236161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND People with progressive multiple sclerosis (PMS) present motor (eg, walking) and cognitive impairments, and report fatigue. Fatigue encompasses fatigability which is objectively measured by the capacity to sustain a motor or cognitive task. OBJECTIVE To investigate the prevalence of walking and cognitive fatigability (CF) and the associated clinical characteristics in a large sample of PMS patients. METHODS PMS patients (25-65 years old) were included from 11 sites (Europe and North America), having cognitive impairment (1.28 standard deviation below normative data for the symbol digit modality test [SDMT]). Walking fatigability (WF) was assessed using the distance walk index (DWI) and CF using the SDMT (scores from the last 30 seconds compared to the first 30 seconds). Additional measures were: cognitive assessment-Brief International Cognitive Assessment for multiple sclerosis (MS), cardiorespiratory fitness, 6-minute walk, physical activity, depressive symptoms, perceived fatigue-Modified Fatigue Impact Scale (MFIS), MS impact-MSIS-29, and walking ability. RESULTS Of 298 participants, 153 (51%) presented WF (DWI = -28.9 ± 22.1%) and 196 (66%) presented CF (-29.7 ± 15%). Clinical characteristics (EDSS, disease duration, and use of assistive device) were worse in patients with versus without WF. They also presented worse scores on MSIS-29 physical, MFIS total and physical and reduced physical capacity. CF patients scored better in the MSIS-29 physical and MFIS psychosocial, compared to non-CF group. Magnitude of CF and WF were not related. CONCLUSIONS Half of the cognitively-impaired PMS population presented WF which was associated with higher disability, physical functions, and fatigue. There was a high prevalence of CF but without strong associations with clinical, cognitive, and physical functions. TRIAL REGISTRATION NUMBER The "CogEx-study," www.clinicaltrial.gov identifier number: NCT03679468.
Collapse
Affiliation(s)
- Cintia Ramari
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Limburg, Belgium
- UMSC University MS Center Hasselt Pelt, Hasselt Pelt, Belgium
| | - Mieke D'hooge
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Limburg, Belgium
- National MS Center, Melsbroek, Belgium
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Anthony Feinstein
- Department of Psychiatry, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Maria Pia Amato
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy
- AISM Rehabilitation Service, Italian Multiple Sclerosis Society, Genoa, Italy
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Nancy D Chiaravalloti
- Kessler Foundation, East Hanover, NJ, USA
- Department of Physical Medicine & Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Gary R Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John DeLuca
- Kessler Foundation, East Hanover, NJ, USA
- Department of Physical Medicine & Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Rachel Farrell
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jennifer Freeman
- Faculty of Health, School of Health Professions, University of Plymouth, Devon, UK
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cecilia Meza
- Department of Psychiatry, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Brian M Sandroff
- Kessler Foundation, East Hanover, NJ, USA
- Department of Physical Medicine & Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Amber Salter
- Department of Neurology, Section on Statistical Planning and Analysis, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Peter Feys
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Limburg, Belgium
- UMSC University MS Center Hasselt Pelt, Hasselt Pelt, Belgium
| |
Collapse
|
4
|
Gaemelke T, Laustsen C, Feys P, Folkestad L, Andersen MS, Jørgensen NR, Jørgensen ML, Jespersen SN, Ringgaard S, Eskildsen SF, Dalgas U, Hvid LG. Effects of power training in older patients with multiple sclerosis on neurodegeneration, neuromuscular function, and physical function. A study protocol for the "power training in older multiple sclerosis patients (PoTOMS) randomized control trial. Contemp Clin Trials Commun 2024; 38:101279. [PMID: 38444875 PMCID: PMC10912361 DOI: 10.1016/j.conctc.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Approximately one-third of all persons with multiple sclerosis (pwMS) are older, i.e., having an age ≥60 years. Whilst ageing and MS separately elicit deteriorating effects on brain morphology, neuromuscular function, and physical function, the combination of ageing and MS may pose a particular challenge. To counteract such detrimental changes, power training (i.e., a type of resistance exercise focusing on moderate-to-high loading at maximal intended movement velocity) presents itself as a viable and highly effective solution. Power training is known to positively impact physical function, neuromuscular function, as well as brain morphology. Existing evidence is promising but limited to young and middle-aged pwMS, with the effects of power training remaining to be elucidated in older pwMS. Methods The presented 'Power Training in Older MS patients (PoTOMS)' trial is a national, multi-center, parallel-group, randomized controlled trial. The trial compares 24 weeks of usual care(n = 30) to 24 weeks of usual care and power training (n = 30). The primary outcome is whole brain atrophy rate. The secondary outcomes include changes in brain micro and macro structures, neuromuscular function, physical function, cognitive function, bone health, and patient-reported outcomes. Ethics and dissemination The presented study is approved by The Regional Ethics Committee (reference number 1-10-72-222-20) and registered at the Danish Data Protection Agency (reference number 2016-051-000001). All study findings will be published in scientific peer-reviewed journals and presented at relevant scientific conferences independent of the results. The www.clinicaltrials.gov identifier is NCT04762342.
Collapse
Affiliation(s)
- Tobias Gaemelke
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Feys
- REVAL, Rehabilitation Research Center, BIOMED, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Lars Folkestad
- Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | | | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Sune Nørhøj Jespersen
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steffen Ringgaard
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon F. Eskildsen
- Center of Functionally Integrative Neuroscience and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Lars G. Hvid
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
- The Danish MS Hospitals, Ry and Haslev, Denmark
| |
Collapse
|
5
|
Gaemelke T, Jørgensen MLK, Riemenschneider M, Dalgas U, Hvid LG. The combined deleterious effects of multiple sclerosis and ageing on neuromuscular function. Exp Gerontol 2023; 184:112339. [PMID: 38029888 DOI: 10.1016/j.exger.2023.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The prevalence of older (>60 years) people with multiple sclerosis (pwMS) is increasing. This introduces numerous challenges, as both MS and ageing independently contribute to the deterioration of neuromuscular function. AIM The aim was to compare the neuromuscular function in pwMS and healthy controls (HC) across three age groups: young, middle-aged, and old. METHODS Using a cross-sectional study design, the maximal muscle strength (Fmax) and rate of force development (RFD) of the knee extensors (KE) and plantar flexors (PF) were assessed using an isokinetic dynamometer. In addition, voluntary activation (VA) and resting twitch (RT) were measured using the interpolated twitch technique. RESULTS The Fmax, RFD, and VA of the KE were reduced in pwMS compared to HC across age groups. In pwMS, reductions were observed in PF Fmax, RFD, and RT, predominantly in the middle-aged and old age groups. Reductions increased with age in KE for both groups (except for VA) but in PF only for pwMS. The "trajectory" differed between pwMS and HC, as pwMS showed reductions from young to middle age, while HC showed reductions from middle to old age in KE. CONCLUSION The combined negative effects of MS and ageing on neuromuscular function were especially present in the PF but also substantial in the KE. RFD showed large deficits for pwMS compared to HC across age groups. The findings can partly be explained by a reduction in VA and RT, but further investigations of neural regulation are needed to explain large RFD deficits.
Collapse
Affiliation(s)
- Tobias Gaemelke
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | | | | | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Lars G Hvid
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark; The Danish MS Hospitals, Ry and Haslev, Denmark
| |
Collapse
|
6
|
Millet GY, Bertrand MF, Lapole T, Féasson L, Rozand V, Hupin D. Measuring objective fatigability and autonomic dysfunction in clinical populations: How and why? Front Sports Act Living 2023; 5:1140833. [PMID: 37065809 PMCID: PMC10101442 DOI: 10.3389/fspor.2023.1140833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Fatigue is a major symptom in many diseases, often among the most common and severe ones and may last for an extremely long period. Chronic fatigue impacts quality of life, reduces the capacity to perform activities of daily living, and has socioeconomical consequences such as impairing return to work. Despite the high prevalence and deleterious consequences of fatigue, little is known about its etiology. Numerous causes have been proposed to explain chronic fatigue. They encompass psychosocial and behavioral aspects (e.g., sleep disorders) and biological (e.g., inflammation), hematological (e.g., anemia) as well as physiological origins. Among the potential causes of chronic fatigue is the role of altered acute fatigue resistance, i.e. an increased fatigability for a given exercise, that is related to physical deconditioning. For instance, we and others have recently evidenced that relationships between chronic fatigue and increased objective fatigability, defined as an abnormal deterioration of functional capacity (maximal force or power), provided objective fatigability is appropriately measured. Indeed, in most studies in the field of chronic diseases, objective fatigability is measured during single-joint, isometric exercises. While those studies are valuable from a fundamental science point of view, they do not allow to test the patients in ecological situations when the purpose is to search for a link with chronic fatigue. As a complementary measure to the evaluation of neuromuscular function (i.e., fatigability), studying the dysfunction of the autonomic nervous system (ANS) is also of great interest in the context of fatigue. The challenge of evaluating objective fatigability and ANS dysfunction appropriately (i.e.,. how?) will be discussed in the first part of the present article. New tools recently developed to measure objective fatigability and muscle function will be presented. In the second part of the paper, we will discuss the interest of measuring objective fatigability and ANS (i.e. why?). Despite the beneficial effects of physical activity in attenuating chronic fatigue have been demonstrated, a better evaluation of fatigue etiology will allow to personalize the training intervention. We believe this is key in order to account for the complex, multifactorial nature of chronic fatigue.
Collapse
Affiliation(s)
- Guillaume Y. Millet
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
- Institut Universitaire de France (IUF), Paris, France
- Correspondence: Guillaume Y. Millet
| | - Mathilde F. Bertrand
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
| | - Thomas Lapole
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
| | - Léonard Féasson
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
- Service de physiologie clinique et de l'exercice, CHU de Saint-Étienne, Saint-Étienne, France
- Centre Référent Maladies Neuromusculaires rares - Euro-NmD, CHU de Saint-Étienne, Saint-Étienne, France
| | - Vianney Rozand
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
| | - David Hupin
- Service de physiologie clinique et de l'exercice, CHU de Saint-Étienne, Saint-Étienne, France
- Jean Monnet University Saint-Etienne, Mines Saint-Etienne, University hospital of Saint-Etienne, INSERM, SAINBIOSE, U1059, DVH team, Saint-Etienne, France
| |
Collapse
|
7
|
Royer N, Coates K, Aboodarda SJ, Camdessanché JP, Millet GY. How is neuromuscular fatigability affected by perceived fatigue and disability in people with multiple sclerosis? Front Neurol 2022; 13:983643. [DOI: 10.3389/fneur.2022.983643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Whereas fatigue is recognized to be the main complaint of patients with multiple sclerosis (PwMS), its etiology, and particularly the role of resistance to fatigability and its interplay with disability level, remains unclear. The purposes of this review were to (i) clarify the relationship between fatigue/disability and neuromuscular performance in PwMS and (ii) review the corticospinal and muscular mechanisms of voluntary muscle contraction that are altered by multiple sclerosis, and how they may be influenced by disability level or fatigue. Neuromuscular function at rest and during exercise are more susceptible to impairement, due to deficits in voluntary activation, when the disability is greater. Fatigue level is related to resistance to fatigability but not to neuromuscular function at rest. Neurophysiological parameters related to signal transmission such as central motor conduction time, motor evoked potentials amplitude and latency are affected by disability and fatigue levels but their relative role in the impaired production of torque remain unclear. Nonetheless, cortical reorganization represents the most likely explanation for the heightened fatigability during exercise for highly fatigued and/or disabled PwMS. Further research is needed to decipher how the fatigue and disability could influence fatigability for an ecological task, especially at the corticospinal level.
Collapse
|
8
|
Identification of disability status in persons with multiple sclerosis by lower limb neuromuscular function – emphasis on rate of force development. Mult Scler Relat Disord 2022; 67:104082. [DOI: 10.1016/j.msard.2022.104082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022]
|
9
|
Enoka RM, Almuklass AM, Alenazy M, Alvarez E, Duchateau J. Distinguishing between Fatigue and Fatigability in Multiple Sclerosis. Neurorehabil Neural Repair 2021; 35:960-973. [PMID: 34583577 DOI: 10.1177/15459683211046257] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fatigue is one of the most common debilitating symptoms reported by persons with multiple sclerosis (MS). It reflects feelings of tiredness, lack of energy, low motivation, and difficulty in concentrating. It can be measured at a specific instant in time as a perception that arises from interoceptive networks involved in the regulation of homeostasis. Such ratings indicate the state level of fatigue and likely reflect an inability to correct deviations from a balanced homeostatic state. In contrast, the trait level of fatigue is quantified in terms of work capacity (fatigability), which can be either estimated (perceived fatigability) or measured (objective fatigability). Clinically, fatigue is most often quantified with questionnaires that require respondents to estimate their past capacity to perform several cognitive, physical, and psychosocial tasks. These retrospective estimates provide a measure of perceived fatigability. In contrast, the change in an outcome variable during the actual performance of a task provides an objective measure of fatigability. Perceived and objective fatigability do not assess the same underlying construct. Persons with MS who report elevated trait levels of fatigue exhibit deficits in interoceptive networks (insula and dorsal anterior cingulate cortex), including increased functional connectivity during challenging tasks. The state and trait levels of fatigue reported by an individual can be modulated by reward and pain pathways. Understanding the distinction between fatigue and fatigability is critical for the development of effective strategies to reduce the burden of the symptom for individuals with MS.
Collapse
Affiliation(s)
- Roger M Enoka
- Department of Integrative Physiology, 1877University of Colorado Boulder, Boulder, CO, USA
| | - Awad M Almuklass
- College of Medicine, 48149King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alenazy
- Department of Integrative Physiology, 1877University of Colorado Boulder, Boulder, CO, USA
| | - Enrique Alvarez
- Department of Neurology, 129263University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacques Duchateau
- Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, 26659Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|