1
|
Sagehorn M, Kisker J, Johnsdorf M, Gruber T, Schöne B. A comparative analysis of face and object perception in 2D laboratory and virtual reality settings: insights from induced oscillatory responses. Exp Brain Res 2024; 242:2765-2783. [PMID: 39395060 PMCID: PMC11568981 DOI: 10.1007/s00221-024-06935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
In psychophysiological research, the use of Virtual Reality (VR) for stimulus presentation allows for the investigation of how perceptual processing adapts to varying degrees of realism. Previous time-domain studies have shown that perceptual processing involves modality-specific neural mechanisms, as evidenced by distinct stimulus-locked components. Analyzing induced oscillations across different frequency bands can provide further insights into neural processes that are not strictly phase-locked to stimulus onset. This study uses a simple perceptual paradigm presenting images of faces and cars on both a standard 2D monitor and in an immersive VR environment. To investigate potential modality-dependent differences in attention, cognitive load, and task-related post-movement processing, the induced alpha, theta and beta band responses are compared between the two modalities. No evidence was found for differences in stimulus-dependent attention or task-related post-movement processing between the 2D conditions and the realistic virtual conditions in electrode space, as posterior alpha suppression and re-synchronization of centro-parietal beta did not differ between conditions. However, source analysis revealed differences in the attention networks engaged during 2D and 3D perception. Midfrontal theta was significantly stronger in laboratory conditions, indicating higher cognitive load than in the VR environment. Exploratory analysis of posterior theta showed stronger responses in VR, possibly reflecting the processing of depth information provided only by the 3D material. In addition, the theta response seems to be generated by distinct neuronal sources under realistic virtual conditions indicating enhanced involvement of semantic information processing and social cognition.
Collapse
Affiliation(s)
- Merle Sagehorn
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Lise-Meitner-Str. 3, 49076, Osnabrück, Germany.
| | - Joanna Kisker
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Lise-Meitner-Str. 3, 49076, Osnabrück, Germany
| | - Marike Johnsdorf
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Lise-Meitner-Str. 3, 49076, Osnabrück, Germany
| | - Thomas Gruber
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Lise-Meitner-Str. 3, 49076, Osnabrück, Germany
| | - Benjamin Schöne
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Lise-Meitner-Str. 3, 49076, Osnabrück, Germany
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Areces-Gonzalez A, Paz-Linares D, Riaz U, Wang Y, Li M, Razzaq FA, Bosch-Bayard JF, Gonzalez-Moreira E, Ontivero-Ortega M, Galan-Garcia L, Martínez-Montes E, Minati L, Valdes-Sosa MJ, Bringas-Vega ML, Valdes-Sosa PA. CiftiStorm pipeline: facilitating reproducible EEG/MEG source connectomics. Front Neurosci 2024; 18:1237245. [PMID: 38680452 PMCID: PMC11047451 DOI: 10.3389/fnins.2024.1237245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/22/2024] [Indexed: 05/01/2024] Open
Abstract
We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.
Collapse
Affiliation(s)
- Ariosky Areces-Gonzalez
- The Clinical Hospital of Chengdu Brain Sciences Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Technical Sciences, University “Hermanos Saiz Montes de Oca” of Pinar del Río, Pinar del Rio, Cuba
| | - Deirel Paz-Linares
- The Clinical Hospital of Chengdu Brain Sciences Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neuroinformatics, Cuban Neurosciences Center, Havana, Cuba
| | - Usama Riaz
- The Clinical Hospital of Chengdu Brain Sciences Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wang
- The Clinical Hospital of Chengdu Brain Sciences Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Li
- The Clinical Hospital of Chengdu Brain Sciences Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Fuleah A. Razzaq
- The Clinical Hospital of Chengdu Brain Sciences Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jorge F. Bosch-Bayard
- McGill Centre for Integrative Neurosciences MCIN, LudmerCentre for Mental Health, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Eduardo Gonzalez-Moreira
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | | | | | | | - Marlis Ontivero-Ortega
- The Clinical Hospital of Chengdu Brain Sciences Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neuroinformatics, Cuban Neurosciences Center, Havana, Cuba
| | | | | | - Ludovico Minati
- The Clinical Hospital of Chengdu Brain Sciences Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | | | - Maria L. Bringas-Vega
- The Clinical Hospital of Chengdu Brain Sciences Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neuroinformatics, Cuban Neurosciences Center, Havana, Cuba
| | - Pedro A. Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neuroinformatics, Cuban Neurosciences Center, Havana, Cuba
| |
Collapse
|
3
|
Razzaq FA, Calzada-Reyes A, Tang Q, Guo Y, Rabinowitz AG, Bosch-Bayard J, Galan-Garcia L, Virues-Alba T, Suarez-Murias C, Miranda I, Riaz U, Bernardo Lagomasino V, Bryce C, Anderson SG, Galler JR, Bringas-Vega ML, Valdes-Sosa PA. Spectral quantitative and semi-quantitative EEG provide complementary information on the life-long effects of early childhood malnutrition on cognitive decline. Front Neurosci 2023; 17:1149102. [PMID: 37781256 PMCID: PMC10540225 DOI: 10.3389/fnins.2023.1149102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023] Open
Abstract
Objective This study compares the complementary information from semi-quantitative EEG (sqEEG) and spectral quantitative EEG (spectral-qEEG) to detect the life-long effects of early childhood malnutrition on the brain. Methods Resting-state EEGs (N = 202) from the Barbados Nutrition Study (BNS) were used to examine the effects of protein-energy malnutrition (PEM) on childhood and middle adulthood outcomes. sqEEG analysis was performed on Grand Total EEG (GTE) protocol, and a single latent variable, the semi-quantitative Neurophysiological State (sqNPS) was extracted. A univariate linear mixed-effects (LME) model tested the dependence of sqNPS and nutritional group. sqEEG was compared with scores on the Montreal Cognitive Assessment (MoCA). Stable sparse classifiers (SSC) also measured the predictive power of sqEEG, spectral-qEEG, and a combination of both. Multivariate LME was applied to assess each EEG modality separately and combined under longitudinal settings. Results The univariate LME showed highly significant differences between previously malnourished and control groups (p < 0.001); age (p = 0.01) was also significant, with no interaction between group and age detected. Childhood sqNPS (p = 0.02) and adulthood sqNPS (p = 0.003) predicted MoCA scores in adulthood. The SSC demonstrated that spectral-qEEG combined with sqEEG had the highest predictive power (mean AUC 0.92 ± 0.005). Finally, multivariate LME showed that the combined spectral-qEEG+sqEEG models had the highest log-likelihood (-479.7). Conclusion This research has extended our prior work with spectral-qEEG and the long-term impact of early childhood malnutrition on the brain. Our findings showed that sqNPS was significantly linked to accelerated cognitive aging at 45-51 years of age. While sqNPS and spectral-qEEG produced comparable results, our study indicated that combining sqNPS and spectral-qEEG yielded better performance than either method alone, suggesting that a multimodal approach could be advantageous for future investigations. Significance Based on our findings, a semi-quantitative approach utilizing GTE could be a valuable diagnostic tool for detecting the lasting impacts of childhood malnutrition. Notably, sqEEG has not been previously explored or reported as a biomarker for assessing the longitudinal effects of malnutrition. Furthermore, our observations suggest that sqEEG offers unique features and information not captured by spectral quantitative EEG analysis and could lead to its improvement.
Collapse
Affiliation(s)
- Fuleah A. Razzaq
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanbo Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China
| | | | | | | | | | | | - Ileana Miranda
- National Center for Animal and Plant Health, CENSA, San José de las Lajas, Mayabeque, Cuba
| | - Usama Riaz
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Cyralene Bryce
- The George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, University of the West Indies, Cave Hill, Barbados
| | - Simon G. Anderson
- The George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, University of the West Indies, Cave Hill, Barbados
- The George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, University of the West Indies, Cave Hill, Barbados
| | - Janina R. Galler
- The George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, University of the West Indies, Cave Hill, Barbados
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, MA, United States
| | - Maria L. Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China
| | - Pedro A. Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neuroscience Center, La Habana, Cuba
| |
Collapse
|
4
|
Martínez-Briones BJ, Flores-Gallegos R, Cárdenas SY, Barrera-Díaz BE, Fernández T, Silva-Pereyra J. Effects of neurofeedback on the self-concept of children with learning disorders. Front Psychol 2023; 14:1167961. [PMID: 37255511 PMCID: PMC10225657 DOI: 10.3389/fpsyg.2023.1167961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Children with learning disorders (LDs) often have a lower self-concept than their typically developing peers. Neurofeedback (NFB) treatments seem to improve the cognitive and academic performance of these children, but the effects on self-concept have not been studied. In this exploratory study, 34 right-handed children (8-11 y.o.) with LD and delayed electroencephalographic maturation responded to the Piers-Harris Children's Self-Concept Scale. One group received NFB (n = 20), and another group (n = 14) served as control, which included 9 children treated with sham-NFB and 5 on a waiting-list. A nonparametric permutation approach was used to compare the academic performance and self-concept difference (postscores - prescores) between the NFB and control groups. Given the smaller size of the control subgroups, a comparison of the percent changes between sham-NFB and the waiting-list was performed with the non-overlap of all pairs (NAP) technique. In the NFB group, the scores of reading, math, and global self-concept increased significantly, highlighting the self-concept subdomains of physical appearance, nonanxiety, popularity, and happiness. Additionally, the sham-NFB subgroup showed better outcomes than the waiting-list subgroup, perhaps due to noncontrolled factors. We found improved academic performance and self-concept in children with LDs who received NFB treatment. This study is an important exploratory step in studying a relevant treatment that seems to ameliorate symptoms of LDs such as anxiety and low self-concept.
Collapse
Affiliation(s)
- Benito Javier Martínez-Briones
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
| | - Rodrigo Flores-Gallegos
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
| | - Sonia Y. Cárdenas
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
- Universidad Pedagógica Nacional, Querétaro, Mexico
| | - Bertha Elena Barrera-Díaz
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
| | - Thalía Fernández
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
| | - Juan Silva-Pereyra
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlanepantla, Estado de México, Mexico
| |
Collapse
|
5
|
Sagehorn M, Johnsdorf M, Kisker J, Sylvester S, Gruber T, Schöne B. Real-life relevant face perception is not captured by the N170 but reflected in later potentials: A comparison of 2D and virtual reality stimuli. Front Psychol 2023; 14:1050892. [PMID: 37057177 PMCID: PMC10086431 DOI: 10.3389/fpsyg.2023.1050892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
The perception of faces is one of the most specialized visual processes in the human brain and has been investigated by means of the early event-related potential component N170. However, face perception has mostly been studied in the conventional laboratory, i.e., monitor setups, offering rather distal presentation of faces as planar 2D-images. Increasing spatial proximity through Virtual Reality (VR) allows to present 3D, real-life-sized persons at personal distance to participants, thus creating a feeling of social involvement and adding a self-relevant value to the presented faces. The present study compared the perception of persons under conventional laboratory conditions (PC) with realistic conditions in VR. Paralleling standard designs, pictures of unknown persons and standard control images were presented in a PC- and a VR-modality. To investigate how the mechanisms of face perception differ under realistic conditions from those under conventional laboratory conditions, the typical face-specific N170 and subsequent components were analyzed in both modalities. Consistent with previous laboratory research, the N170 lost discriminatory power when translated to realistic conditions, as it only discriminated faces and controls under laboratory conditions. Most interestingly, analysis of the later component [230–420 ms] revealed more differentiated face-specific processing in VR, as indicated by distinctive, stimulus-specific topographies. Complemented by source analysis, the results on later latencies show that face-specific neural mechanisms are applied only under realistic conditions (A video abstract is available in the Supplementary material and via YouTube: https://youtu.be/TF8wiPUrpSY).
Collapse
Affiliation(s)
- Merle Sagehorn
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
- *Correspondence: Merle Sagehorn,
| | - Marike Johnsdorf
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Joanna Kisker
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Sophia Sylvester
- Semantic Information Systems Research Group, Institute of Computer Science, Osnabrück University, Osnabrück, Germany
| | - Thomas Gruber
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Benjamin Schöne
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
6
|
Johnsdorf M, Kisker J, Gruber T, Schöne B. Comparing encoding mechanisms in realistic virtual reality and conventional 2D laboratory settings: Event-related potentials in a repetition suppression paradigm. Front Psychol 2023; 14:1051938. [PMID: 36777234 PMCID: PMC9912617 DOI: 10.3389/fpsyg.2023.1051938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Although the human brain is adapted to function within three-dimensional environments, conventional laboratory research commonly investigates cognitive mechanisms in a reductionist approach using two-dimensional stimuli. However, findings regarding mnemonic processes indicate that realistic experiences in Virtual Reality (VR) are stored in richer and more intertwined engrams than those obtained from the conventional laboratory. Our study aimed to further investigate the generalizability of laboratory findings and to differentiate whether the processes underlying memory formation differ between VR and the conventional laboratory already in early encoding stages. Therefore, we investigated the Repetition Suppression (RS) effect as a correlate of the earliest instance of mnemonic processes under conventional laboratory conditions and in a realistic virtual environment. Analyses of event-related potentials (ERPs) indicate that the ERP deflections at several electrode clusters were lower in VR compared to the PC condition. These results indicate an optimized distribution of cognitive resources in realistic contexts. The typical RS effect was replicated under both conditions at most electrode clusters for a late time window. Additionally, a specific RS effect was found in VR at anterior electrodes for a later time window, indicating more extensive encoding processes in VR compared to the laboratory. Specifically, electrotomographic results (VARETA) indicate multimodal integration involving a broad cortical network and higher cognitive processes during the encoding of realistic objects. Our data suggest that object perception under realistic conditions, in contrast to the conventional laboratory, requires multisensory integration involving an interconnected functional system, facilitating the formation of intertwined memory traces in realistic environments.
Collapse
|
7
|
Bringas Vega ML, Pedroso Ibáñez I, Razzaq FA, Zhang M, Morales Chacón L, Ren P, Galan Garcia L, Gan P, Virues Alba T, Lopez Naranjo C, Jahanshahi M, Bosch-Bayard J, Valdes-Sosa PA. The Effect of Neuroepo on Cognition in Parkinson's Disease Patients Is Mediated by Electroencephalogram Source Activity. Front Neurosci 2022; 16:841428. [PMID: 35844232 PMCID: PMC9280298 DOI: 10.3389/fnins.2022.841428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
We report on the quantitative electroencephalogram (qEEG) and cognitive effects of Neuroepo in Parkinson's disease (PD) from a double-blind safety trial (https://clinicaltrials.gov/, number NCT04110678). Neuroepo is a new erythropoietin (EPO) formulation with a low sialic acid content with satisfactory results in animal models and tolerance in healthy participants and PD patients. In this study, 26 PD patients were assigned randomly to Neuroepo (n = 15) or placebo (n = 11) groups to test the tolerance of the drug. Outcome variables were neuropsychological tests and resting-state source qEEG at baseline and 6 months after administering the drug. Probabilistic Canonical Correlation Analysis was used to extract latent variables for the cognitive and for qEEG variables that shared a common source of variance. We obtained canonical variates for Cognition and qEEG with a correlation of 0.97. Linear Mixed Model analysis showed significant positive dependence of the canonical variate cognition on the dose and the confounder educational level (p = 0.003 and p = 0.02, respectively). Additionally, in the mediation equation, we found a positive dependence of Cognition with qEEG for (p = < 0.0001) and with dose (p = 0.006). Despite the small sample, both tests were powered over 89%. A combined mediation model showed that 66% of the total effect of the cognitive improvement was mediated by qEEG (p = 0.0001), with the remaining direct effect between dose and Cognition (p = 0.002), due to other causes. These results suggest that Neuroepo has a positive influence on Cognition in PD patients and that a large portion of this effect is mediated by brain mechanisms reflected in qEEG.
Collapse
Affiliation(s)
- Maria L. Bringas Vega
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- International Center of Neurological Restoration (CIREN), La Habana, Cuba
| | | | - Fuleah A. Razzaq
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Zhang
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Peng Ren
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Peng Gan
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Carlos Lopez Naranjo
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Marjan Jahanshahi
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jorge Bosch-Bayard
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, Montreal, QC, Canada
| | - Pedro A. Valdes-Sosa
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, Montreal, QC, Canada
| |
Collapse
|
8
|
Rinke P, Schmidt T, Beier K, Kaul R, Scharinger M. Rapid pre-attentive processing of a famous speaker: Electrophysiological effects of Angela Merkel's voice. Neuropsychologia 2022; 173:108312. [PMID: 35781011 DOI: 10.1016/j.neuropsychologia.2022.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
The recognition of human speakers by their voices is a remarkable cognitive ability. Previous research has established a voice area in the right temporal cortex involved in the integration of speaker-specific acoustic features. This integration appears to occur rapidly, especially in case of familiar voices. However, the exact time course of this process is less well understood. To this end, we here investigated the automatic change detection response of the human brain while listening to the famous voice of German chancellor Angela Merkel, embedded in the context of acoustically matched voices. A classic passive oddball paradigm contrasted short word stimuli uttered by Merkel with word stimuli uttered by two unfamiliar female speakers. Electrophysiological voice processing indices from 21 participants were quantified as mismatch negativities (MMNs) and P3a differences. Cortical sources were approximated by variable resolution electromagnetic tomography. The results showed amplitude and latency effects for both MMN and P3a: The famous (familiar) voice elicited a smaller but earlier MMN than the unfamiliar voices. The P3a, by contrast, was both larger and later for the familiar than for the unfamiliar voices. Familiar-voice MMNs originated from right-hemispheric regions in temporal cortex, overlapping with the temporal voice area, while unfamiliar-voice MMNs stemmed from left superior temporal gyrus. These results suggest that the processing of a very famous voice relies on pre-attentive right temporal processing within the first 150 ms of the acoustic signal. The findings further our understanding of the neural dynamics underlying familiar voice processing.
Collapse
Affiliation(s)
- Paula Rinke
- Research Group Phonetics, Institute of German Linguistics, Philipps-University Marburg, Germany; Center for Mind, Brain & Behavior, Universities of Marburg & Gießen, Germany
| | - Tatjana Schmidt
- Center for Mind, Brain & Behavior, Universities of Marburg & Gießen, Germany; Faculté de biologie et de médecine, University of Lausanne, Switzerland
| | - Kjartan Beier
- Research Group Phonetics, Institute of German Linguistics, Philipps-University Marburg, Germany
| | - Ramona Kaul
- Research Group Phonetics, Institute of German Linguistics, Philipps-University Marburg, Germany
| | - Mathias Scharinger
- Research Group Phonetics, Institute of German Linguistics, Philipps-University Marburg, Germany; Research Center »Deutscher Sprachatlas«, Philipps-University Marburg, Germany; Center for Mind, Brain & Behavior, Universities of Marburg & Gießen, Germany.
| |
Collapse
|
9
|
Li M, Wang Y, Lopez-Naranjo C, Hu S, Reyes RCG, Paz-Linares D, Areces-Gonzalez A, Hamid AIA, Evans AC, Savostyanov AN, Calzada-Reyes A, Villringer A, Tobon-Quintero CA, Garcia-Agustin D, Yao D, Dong L, Aubert-Vazquez E, Reza F, Razzaq FA, Omar H, Abdullah JM, Galler JR, Ochoa-Gomez JF, Prichep LS, Galan-Garcia L, Morales-Chacon L, Valdes-Sosa MJ, Tröndle M, Zulkifly MFM, Abdul Rahman MRB, Milakhina NS, Langer N, Rudych P, Koenig T, Virues-Alba TA, Lei X, Bringas-Vega ML, Bosch-Bayard JF, Valdes-Sosa PA. Harmonized-Multinational qEEG norms (HarMNqEEG). Neuroimage 2022; 256:119190. [PMID: 35398285 DOI: 10.1016/j.neuroimage.2022.119190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. (i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. (ii) We also show that harmonized Riemannian norms produce z-scores with increased diagnostic accuracy predicting brain dysfunction produced by malnutrition in the first year of life and detecting COVID induced brain dysfunction. (iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings.
Collapse
Affiliation(s)
- Min Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Carlos Lopez-Naranjo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiang Hu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei 230601, China
| | | | - Deirel Paz-Linares
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Cuban Center for Neurocience, La Habana, Cuba
| | - Ariosky Areces-Gonzalez
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; University of Pinar del Río "Hermanos Saiz Montes de Oca", Pinar del Río, Cuba
| | - Aini Ismafairus Abd Hamid
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada
| | - Alexander N Savostyanov
- Humanitarian Institute, Novosibirsk State University, Novosibirsk 630090, Russia; Laboratory of Psychophysiology of Individual Differences, Federal State Budgetary Scientific Institution Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia; Laboratory of Psychological Genetics at the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carlos A Tobon-Quintero
- Grupo Neuropsicología y Conducta - GRUNECO, Faculty of Medicine, Universidad de Antioquia, Colombia; Research Department, Institución Prestadora de Servicios de Salud IPS Universitaria, Colombia
| | - Daysi Garcia-Agustin
- Cuban Center for Neurocience, La Habana, Cuba; The Cuban center aging longevity and health, Havana Cuba
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China; Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu 611731, China
| | | | - Faruque Reza
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada
| | - Fuleah Abdul Razzaq
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hazim Omar
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Universiti Sains Malaysia Health Campus, Kota Bharu, Kelantan 16150, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada
| | - Janina R Galler
- Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, United States Massachusetts General Hospital for Children, Boston, MA, United States
| | - John F Ochoa-Gomez
- Grupo Neuropsicología y Conducta - GRUNECO, Faculty of Medicine, Universidad de Antioquia, Colombia; Grupo de Neurociencias de Antioquia, Universidad de Antioquia, School of Medicine. Medellín, Colombia
| | - Leslie S Prichep
- Research & Development, BrainScope Company, Inc. Bethesda, MD, United States; Department of Psychiatry (Ret.), Brain Research Laboratories, NYU School of Medicine, New York, NY, United States
| | | | - Lilia Morales-Chacon
- Department of Clinical Neurophysiology, International Center for Neurological Restoration, Playa, Havana 11300, Cuba
| | | | - Marius Tröndle
- Department of Methods of Plasticity Research, Institute of Psychology, University of Zurich, Zurich, Switzerland; University Research Priority Program "Dynamic of Healthy Aging", University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Mohd Faizal Mohd Zulkifly
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada
| | - Muhammad Riddha Bin Abdul Rahman
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; School of Medical Imaging, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | - Natalya S Milakhina
- Laboratory of Psychophysiology of Individual Differences, Federal State Budgetary Scientific Institution Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia; Laboratory of Psychological Genetics at the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nicolas Langer
- Department of Methods of Plasticity Research, Institute of Psychology, University of Zurich, Zurich, Switzerland; University Research Priority Program "Dynamic of Healthy Aging", University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Pavel Rudych
- Laboratory of Psychophysiology of Individual Differences, Federal State Budgetary Scientific Institution Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia; Department of Information Technologies Novosibirsk State University, Novosibirsk 630090, Russia; Federal Research Center for Information and Computational Technologies, Biomedical Data Processing Lab, Novosibirsk 630090, Russia
| | - Thomas Koenig
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | | | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Maria L Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Cuban Center for Neurocience, La Habana, Cuba.
| | - Jorge F Bosch-Bayard
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Cuban Center for Neurocience, La Habana, Cuba; McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada.
| | - Pedro Antonio Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Cuban Center for Neurocience, La Habana, Cuba.
| |
Collapse
|
10
|
Bosch-Bayard J, Razzaq FA, Lopez-Naranjo C, Wang Y, Li M, Galan-Garcia L, Calzada-Reyes A, Virues-Alba T, Rabinowitz AG, Suarez-Murias C, Guo Y, Sanchez-Castillo M, Rogers K, Gallagher A, Prichep L, Anderson SG, Michel CM, Evans AC, Bringas-Vega ML, Galler JR, Valdes-Sosa PA. Early protein energy malnutrition impacts life-long developmental trajectories of the sources of EEG rhythmic activity. Neuroimage 2022; 254:119144. [PMID: 35342003 DOI: 10.1016/j.neuroimage.2022.119144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Protein Energy Malnutrition (PEM) has lifelong consequences on brain development and cognitive function. We studied the lifelong developmental trajectories of resting-state EEG source activity in 66 individuals with histories of Protein Energy Malnutrition (PEM) limited to the first year of life and in 83 matched classmate controls (CON) who are all participants of the 49 years longitudinal Barbados Nutrition Study (BNS). qEEGt source z-spectra measured deviation from normative values of EEG rhythmic activity sources at 5-11 years of age and 40 years later at 45-51 years of age. The PEM group showed qEEGt abnormalities in childhood, including a developmental delay in alpha rhythm maturation and an insufficient decrease in beta activity. These profiles may be correlated with accelerated cognitive decline.
Collapse
Affiliation(s)
- Jorge Bosch-Bayard
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; McGill Center for Integrative Neuroscience Center MCIN. Ludmer Center for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Fuleah Abdul Razzaq
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| | - Carlos Lopez-Naranjo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | | | | | | | - Arielle G Rabinowitz
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Yanbo Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Kassandra Rogers
- LION Lab, Sainte-Justine University Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Anne Gallagher
- LION Lab, Sainte-Justine University Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | | | - Simon G Anderson
- Caribbean Institute for Health Research, University of the West Indies, Barbados
| | | | - Alan C Evans
- McGill Center for Integrative Neuroscience Center MCIN. Ludmer Center for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Maria L Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Cuban Neuroscience Center, La Habana, Cuba
| | - Janina R Galler
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Boston, MA, USA
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; McGill Center for Integrative Neuroscience Center MCIN. Ludmer Center for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada; Cuban Neuroscience Center, La Habana, Cuba.
| |
Collapse
|
11
|
Henrich K, Scharinger M. Predictive Processing in Poetic Language: Event-Related Potentials Data on Rhythmic Omissions in Metered Speech. Front Psychol 2022; 12:782765. [PMID: 35069363 PMCID: PMC8769205 DOI: 10.3389/fpsyg.2021.782765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Predictions during language comprehension are currently discussed from many points of view. One area where predictive processing may play a particular role concerns poetic language that is regularized by meter and rhyme, thus allowing strong predictions regarding the timing and stress of individual syllables. While there is growing evidence that these prosodic regularities influence language processing, less is known about the potential influence of prosodic preferences (binary, strong-weak patterns) on neurophysiological processes. To this end, the present electroencephalogram (EEG) study examined whether the predictability of strong and weak syllables within metered speech would differ as a function of meter (trochee vs. iamb). Strong, i.e., accented positions within a foot should be more predictable than weak, i.e., unaccented positions. Our focus was on disyllabic pseudowords that solely differed between trochaic and iambic structure, with trochees providing the preferred foot in German. Methodologically, we focused on the omission Mismatch Negativity (oMMN) that is elicited when an anticipated auditory stimulus is omitted. The resulting electrophysiological brain response is particularly interesting because its elicitation does not depend on a physical stimulus. Omissions in deviant position of a passive oddball paradigm occurred at either first- or second-syllable position of the aforementioned pseudowords, resulting in a 2-by-2 design with the factors foot type and omission position. Analyses focused on the mean oMMN amplitude and latency differences across the four conditions. The result pattern was characterized by an interaction of the effects of foot type and omission position for both amplitudes and latencies. In first position, omissions resulted in larger and earlier oMMNs for trochees than for iambs. In second position, omissions resulted in larger oMMNs for iambs than for trochees, but the oMMN latency did not differ. The results suggest that omissions, particularly in initial position, are modulated by a trochaic preference in German. The preferred strong-weak pattern may have strengthened the prosodic prediction, especially for matching, trochaic stimuli, such that the violation of this prediction led to an earlier and stronger prediction error. Altogether, predictive processing seems to play a particular role in metered speech, especially if the meter is based on the preferred foot type.
Collapse
Affiliation(s)
- Karen Henrich
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Mathias Scharinger
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
- Research Group Phonetics, Philipps-University of Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior, Universities of Marburg and Giessen, Marburg, Germany
| |
Collapse
|
12
|
Song S, Nordin AD. Mobile Electroencephalography for Studying Neural Control of Human Locomotion. Front Hum Neurosci 2021; 15:749017. [PMID: 34858154 PMCID: PMC8631362 DOI: 10.3389/fnhum.2021.749017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 01/09/2023] Open
Abstract
Walking or running in real-world environments requires dynamic multisensory processing within the brain. Studying supraspinal neural pathways during human locomotion provides opportunities to better understand complex neural circuity that may become compromised due to aging, neurological disorder, or disease. Knowledge gained from studies examining human electrical brain dynamics during gait can also lay foundations for developing locomotor neurotechnologies for rehabilitation or human performance. Technical barriers have largely prohibited neuroimaging during gait, but the portability and precise temporal resolution of non-invasive electroencephalography (EEG) have expanded human neuromotor research into increasingly dynamic tasks. In this narrative mini-review, we provide a (1) brief introduction and overview of modern neuroimaging technologies and then identify considerations for (2) mobile EEG hardware, (3) and data processing, (4) including technical challenges and possible solutions. Finally, we summarize (5) knowledge gained from human locomotor control studies that have used mobile EEG, and (6) discuss future directions for real-world neuroimaging research.
Collapse
Affiliation(s)
- Seongmi Song
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Andrew D Nordin
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience, College Station, TX, United States
| |
Collapse
|
13
|
Martínez-Briones BJ, Bosch-Bayard J, Biscay-Lirio RJ, Silva-Pereyra J, Albarrán-Cárdenas L, Fernández T. Effects of Neurofeedback on the Working Memory of Children with Learning Disorders-An EEG Power-Spectrum Analysis. Brain Sci 2021; 11:brainsci11070957. [PMID: 34356191 PMCID: PMC8303215 DOI: 10.3390/brainsci11070957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Learning disorders (LDs) are diagnosed in children impaired in the academic skills of reading, writing and/or mathematics. Children with LDs usually exhibit a slower resting-state electroencephalogram (EEG), corresponding to a neurodevelopmental lag. Frequently, children with LDs show working memory (WM) impairment, associated with an abnormal task-related EEG with overall slower EEG activity (more delta and theta power, and less gamma activity in posterior sites). These EEG patterns indicate inefficient neural resource management. Neurofeedback (NFB) treatments aimed at normalizing the resting-state EEG of LD children have shown improvements in cognitive-behavioral indices and diminished EEG abnormalities. Given the typical findings of WM impairment in children with LDs, we aimed to explore the effects of an NFB treatment on the WM of children with LDs by analyzing the WM-related EEG power spectrum. EEGs of 18 children (8–11 y.o.) with LDs were recorded, pre- and post-treatment, during performance of a Sternberg-type WM task. Thirty sessions of an NFB treatment (NFB-group, n = 10) or 30 sessions of a placebo-sham treatment (sham-group, n = 8) were administered. We analyzed the before and after treatment group differences for the behavioral performance and the WM-related EEG power spectrum. The NFB group showed faster response times in the WM task post-treatment. They also exhibited a decreased theta power and increased beta and gamma power at the frontal and posterior sites post-treatment. We explain these findings in terms of NFB improving the efficiency of neural resource management, maintenance of memory representations, and improved subvocal memory rehearsal.
Collapse
Affiliation(s)
- Benito J. Martínez-Briones
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro QE 76230, Mexico; (B.J.M.-B.); (J.B.-B.); (L.A.-C.)
| | - Jorge Bosch-Bayard
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro QE 76230, Mexico; (B.J.M.-B.); (J.B.-B.); (L.A.-C.)
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Juan Silva-Pereyra
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlanepantla, Estado de México MX 54090, Mexico;
| | - Lucero Albarrán-Cárdenas
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro QE 76230, Mexico; (B.J.M.-B.); (J.B.-B.); (L.A.-C.)
| | - Thalía Fernández
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro QE 76230, Mexico; (B.J.M.-B.); (J.B.-B.); (L.A.-C.)
- Correspondence:
| |
Collapse
|
14
|
Chiarenza GA. Quantitative EEG in Childhood Attention Deficit Hyperactivity Disorder and Learning Disabilities. Clin EEG Neurosci 2021; 52:144-155. [PMID: 33012168 DOI: 10.1177/1550059420962343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The clinical use of the quantitative EEG (QEEG) from the pioneering work of John has received a new impetus thanks to new neuroimaging techniques and the possibility of using a number of normative databases both of normal subjects and of subjects with definite pathologies. In this direction, the term personalized medicine is becoming more and more common, a medical procedure that separates patients into different groups based on their predicted response to the quantitative EEG. This has allowed the study of single subjects and to customize health care, with decisions and treatments tailored to each individual patient, as well as improvement of knowledge of the pathophysiological mechanisms of specific diseases. This review article will present the most recent evidence in the field of developmental neuropsychiatric disorders obtained from the application of quantitative EEG both in clinical group studies (attention deficit hyperactivity disorder, developmental dyslexia, oppositional defiant disorder) and in individual case studies not yet published.
Collapse
|
15
|
Valdes-Sosa PA, Galan-Garcia L, Bosch-Bayard J, Bringas-Vega ML, Aubert-Vazquez E, Rodriguez-Gil I, Das S, Madjar C, Virues-Alba T, Mohades Z, MacIntyre LC, Rogers C, Brown S, Valdes-Urrutia L, Evans AC, Valdes-Sosa MJ. The Cuban Human Brain Mapping Project, a young and middle age population-based EEG, MRI, and cognition dataset. Sci Data 2021; 8:45. [PMID: 33547313 PMCID: PMC7865011 DOI: 10.1038/s41597-021-00829-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022] Open
Abstract
The Cuban Human Brain Mapping Project (CHBMP) repository is an open multimodal neuroimaging and cognitive dataset from 282 young and middle age healthy participants (31.9 ± 9.3 years, age range 18–68 years). This dataset was acquired from 2004 to 2008 as a subset of a larger stratified random sample of 2,019 participants from La Lisa municipality in La Habana, Cuba. The exclusion criteria included the presence of disease or brain dysfunctions. Participant data that is being shared comprises i) high-density (64–120 channels) resting-state electroencephalograms (EEG), ii) magnetic resonance images (MRI), iii) psychological tests (MMSE, WAIS-III, computerized go-no go reaction time), as well as iv,) demographic information (age, gender, education, ethnicity, handedness, and weight). The EEG data contains recordings with at least 30 minutes in duration including the following conditions: eyes closed, eyes open, hyperventilation, and subsequent recovery. The MRI consists of anatomical T1 as well as diffusion-weighted (DWI) images acquired on a 1.5 Tesla system. The dataset presented here is hosted by Synapse.org and available at https://chbmp-open.loris.ca. Measurement(s) | functional brain measurement | Technology Type(s) | electroencephalography (EEG) • magnetic resonance imaging (MRI) • neuropsychological testing | Factor Type(s) | age of participants • gender of participants • handedness of participants • educational level of participants | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Location | Cuba |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.13277348
Collapse
Affiliation(s)
- Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Sciences and Technology of China, Chengdu, China. .,Cuban Neuroscience Center, La Habana, Cuba.
| | | | - Jorge Bosch-Bayard
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Sciences and Technology of China, Chengdu, China.,Cuban Neuroscience Center, La Habana, Cuba.,McGill Centre for Integrative Neurosciences MCIN. Ludmer Centre for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Maria L Bringas-Vega
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Sciences and Technology of China, Chengdu, China.,Cuban Neuroscience Center, La Habana, Cuba
| | | | | | - Samir Das
- McGill Centre for Integrative Neurosciences MCIN. Ludmer Centre for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Cecile Madjar
- McGill Centre for Integrative Neurosciences MCIN. Ludmer Centre for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Zia Mohades
- McGill Centre for Integrative Neurosciences MCIN. Ludmer Centre for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Leigh C MacIntyre
- McGill Centre for Integrative Neurosciences MCIN. Ludmer Centre for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Christine Rogers
- McGill Centre for Integrative Neurosciences MCIN. Ludmer Centre for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Shawn Brown
- McGill Centre for Integrative Neurosciences MCIN. Ludmer Centre for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Alan C Evans
- McGill Centre for Integrative Neurosciences MCIN. Ludmer Centre for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mitchell J Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Sciences and Technology of China, Chengdu, China.,Cuban Neuroscience Center, La Habana, Cuba
| |
Collapse
|
16
|
The steady-state visual evoked potential (SSVEP) reflects the activation of cortical object representations: evidence from semantic stimulus repetition. Exp Brain Res 2020; 239:545-555. [PMID: 33315126 PMCID: PMC7936959 DOI: 10.1007/s00221-020-05992-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
We applied high-density EEG to examine steady-state visual evoked potentials (SSVEPs) during a perceptual/semantic stimulus repetition design. SSVEPs are evoked oscillatory cortical responses at the same frequency as visual stimuli flickered at this frequency. In repetition designs, stimuli are presented twice with the repetition being task irrelevant. The cortical processing of the second stimulus is commonly characterized by decreased neuronal activity (repetition suppression). The behavioral consequences of stimulus repetition were examined in a companion reaction time pre-study using the same experimental design as the EEG study. During the first presentation of a stimulus, we confronted participants with drawings of familiar object images or object words, respectively. The second stimulus was either a repetition of the same object image (perceptual repetition; PR) or an image depicting the word presented during the first presentation (semantic repetition; SR)—all flickered at 15 Hz to elicit SSVEPs. The behavioral study revealed priming effects in both experimental conditions (PR and SR). In the EEG, PR was associated with repetition suppression of SSVEP amplitudes at left occipital and repetition enhancement at left temporal electrodes. In contrast, SR was associated with SSVEP suppression at left occipital and central electrodes originating in bilateral postcentral and occipital gyri, right middle frontal and right temporal gyrus. The conclusion of the presented study is twofold. First, SSVEP amplitudes do not only index perceptual aspects of incoming sensory information but also semantic aspects of cortical object representation. Second, our electrophysiological findings can be interpreted as neuronal underpinnings of perceptual and semantic priming.
Collapse
|
17
|
Working Memory in Children with Learning Disorders: An EEG Power Spectrum Analysis. Brain Sci 2020; 10:brainsci10110817. [PMID: 33158135 PMCID: PMC7694181 DOI: 10.3390/brainsci10110817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
Learning disorders (LDs) are diagnosed in children whose academic skills of reading, writing or mathematics are impaired and lagging according to their age, schooling and intelligence. Children with LDs experience substantial working memory (WM) deficits, even more pronounced if more than one of the academic skills is affected. We compared the task-related electroencephalogram (EEG) power spectral density of children with LDs (n = 23) with a control group of children with good academic achievement (n = 22), during the performance of a WM task. sLoreta was used to estimate the current distribution at the sources, and 18 brain regions of interest (ROIs) were chosen with an extended version of the eigenvector centrality mapping technique. In this way, we lessened some drawbacks of the traditional EEG at the sensor space by an analysis at the brain-sources level over data-driven selected ROIs. Results: The LD group showed fewer correct responses in the WM task, an overall slower EEG with more delta and theta activity, and less high-frequency gamma activity in posterior areas. We explain these EEG patterns in LD children as indices of an inefficient neural resource management related with a delay in neural maturation.
Collapse
|
18
|
Bosch-Bayard J, Aubert-Vazquez E, Brown ST, Rogers C, Kiar G, Glatard T, Scaria L, Galan-Garcia L, Bringas-Vega ML, Virues-Alba T, Taheri A, Das S, Madjar C, Mohaddes Z, MacIntyre L, Evans AC, Valdes-Sosa PA. A Quantitative EEG Toolbox for the MNI Neuroinformatics Ecosystem: Normative SPM of EEG Source Spectra. Front Neuroinform 2020; 14:33. [PMID: 32848689 PMCID: PMC7427620 DOI: 10.3389/fninf.2020.00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/26/2020] [Indexed: 01/20/2023] Open
Abstract
The Tomographic Quantitative Electroencephalography (qEEGt) toolbox is integrated with the Montreal Neurological Institute (MNI) Neuroinformatics Ecosystem as a docker into the Canadian Brain Imaging Research Platform (CBRAIN). qEEGt produces age-corrected normative Statistical Parametric Maps of EEG log source spectra testing compliance to a normative database. This toolbox was developed at the Cuban Neuroscience Center as part of the first wave of the Cuban Human Brain Mapping Project (CHBMP) and has been validated and used in different health systems for several decades. Incorporation into the MNI ecosystem now provides CBRAIN registered users access to its full functionality and is accompanied by a public release of the source code on GitHub and Zenodo repositories. Among other features are the calculation of EEG scalp spectra, and the estimation of their source spectra using the Variable Resolution Electrical Tomography (VARETA) source imaging. Crucially, this is completed by the evaluation of z spectra by means of the built-in age regression equations obtained from the CHBMP database (ages 5-87) to provide normative Statistical Parametric Mapping of EEG log source spectra. Different scalp and source visualization tools are also provided for evaluation of individual subjects prior to further post-processing. Openly releasing this software in the CBRAIN platform will facilitate the use of standardized qEEGt methods in different research and clinical settings. An updated precis of the methods is provided in Appendix I as a reference for the toolbox. qEEGt/CBRAIN is the first installment of instruments developed by the neuroinformatic platform of the Cuba-Canada-China (CCC) project.
Collapse
Affiliation(s)
- Jorge Bosch-Bayard
- The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China UESTC, Chengdu, China
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
- Cuban Neuroscience Centre, Havana, Cuba
| | | | - Shawn T. Brown
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Christine Rogers
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Gregory Kiar
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Tristan Glatard
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Lalet Scaria
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | | | - Maria L. Bringas-Vega
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
- Cuban Neuroscience Centre, Havana, Cuba
| | | | - Armin Taheri
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Samir Das
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Cecile Madjar
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Zia Mohaddes
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Leigh MacIntyre
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - CHBMP
- Cuban Neuroscience Centre, Havana, Cuba
| | - Alan C. Evans
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Pedro A. Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China UESTC, Chengdu, China
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
- Cuban Neuroscience Centre, Havana, Cuba
| |
Collapse
|
19
|
Radtke EL, Schöne B, Martens U, Gruber T. Electrophysiological correlates of gist perception: a steady-state visually evoked potentials study. Exp Brain Res 2020; 238:1399-1410. [PMID: 32363553 PMCID: PMC7286871 DOI: 10.1007/s00221-020-05819-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 01/23/2023]
Abstract
Gist perception refers to perceiving the substance or general meaning of a scene. To investigate its neuronal mechanisms, we used the steady-state visually evoked potential (SSVEP) method—an evoked oscillatory cortical response at the same frequency as a visual stimulus flickered at this frequency. Two neighboring stimuli were flickered at different frequencies f1 and f2, for example, a drawing of a sun on the left side of the screen flickering at 8.6 Hz and the drawing of a parasol on the right side of the screen flickering at 12 Hz. SSVEPs enabled us to separate the responses to the two distinct stimuli by extracting oscillatory brain responses at f1 and f2. Additionally, it allowed to investigate intermodulation frequencies, that is, the brain’s response at a linear combination of f1 and f2 (here at f1 + f2 = 20.6 Hz) as an indicator of processing shared aspects of the input, that is, gist perception (here: a beach scene). We recorded high-density EEG of 18 participants. Results revealed clear and separable neuronal oscillations at f1 and f2. Additionally, occipital electrodes showed increased amplitudes at the intermodulation frequency in related as compared to unrelated pairs. The increase in intermodulation frequency was associated with bilateral temporal and parietal lobe activation, probably reflecting the interaction of local object representations as a basis for activating the gist network. The study demonstrates that SSVEPs are an excellent method to unravel mechanisms underlying the processing within multi-stimulus displays in the context of gist perception.
Collapse
Affiliation(s)
- Elise L Radtke
- Institute of Psychology, Osnabrück University, Seminarstraße 20, 49074, Osnabrück, Germany.
| | - Benjamin Schöne
- Institute of Psychology, Osnabrück University, Seminarstraße 20, 49074, Osnabrück, Germany
| | - Ulla Martens
- DRK-Norddeutsches Epilepsiezentrum für Kinder und Jugendliche, Henry-Dunant-Str. 6-10, 24223, Schwentinental, Germany
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, Seminarstraße 20, 49074, Osnabrück, Germany
| |
Collapse
|
20
|
International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies. Clin Neurophysiol 2020; 131:285-307. [DOI: 10.1016/j.clinph.2019.06.234] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/17/2019] [Accepted: 06/02/2019] [Indexed: 01/22/2023]
|
21
|
Bringas Vega ML, Guo Y, Tang Q, Razzaq FA, Calzada Reyes A, Ren P, Paz Linares D, Galan Garcia L, Rabinowitz AG, Galler JR, Bosch-Bayard J, Valdes Sosa PA. An Age-Adjusted EEG Source Classifier Accurately Detects School-Aged Barbadian Children That Had Protein Energy Malnutrition in the First Year of Life. Front Neurosci 2019; 13:1222. [PMID: 31866804 PMCID: PMC6905178 DOI: 10.3389/fnins.2019.01222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/29/2019] [Indexed: 01/22/2023] Open
Abstract
We have identified an electroencephalographic (EEG) based statistical classifier that correctly distinguishes children with histories of Protein Energy Malnutrition (PEM) in the first year of life from healthy controls with 0.82% accuracy (area under the ROC curve). Our previous study achieved similar accuracy but was based on scalp quantitative EEG features that precluded anatomical interpretation. We have now employed BC-VARETA, a novel high-resolution EEG source imaging method with minimal leakage and maximal sparseness, which allowed us to identify a classifier in the source space. The EEGs were recorded in 1978 in a sample of 108 children who were 5-11 years old and were participants in the 45+ year longitudinal Barbados Nutrition Study. The PEM cohort experienced moderate-severe PEM limited to the first year of life and were age, handedness and gender-matched with healthy classmates who served as controls. In the current study, we utilized a machine learning approach based on the elastic net to create a stable sparse classifier. Interestingly, the classifier was driven predominantly by nutrition group differences in alpha activity in the lingual gyrus. This structure is part of the pathway associated with generating alpha rhythms that increase with normal maturation. Our findings indicate that the PEM group showed a significant decrease in alpha activity, suggestive of a delay in brain development. Childhood malnutrition is still a serious worldwide public health problem and its consequences are particularly severe when present during early life. Deficits during this critical period are permanent and predict impaired cognitive and behavioral functioning later in life. Our EEG source classifier may provide a functionally interpretable diagnostic technology to study the effects of early childhood malnutrition on the brain, and may have far-reaching applicability in low resource settings.
Collapse
Affiliation(s)
- Maria L. Bringas Vega
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neuroscience Center, Havana, Cuba
| | - Yanbo Guo
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Fuleah A. Razzaq
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Peng Ren
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Deirel Paz Linares
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neuroscience Center, Havana, Cuba
| | | | | | - Janina R. Galler
- Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Jorge Bosch-Bayard
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pedro A. Valdes Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neuroscience Center, Havana, Cuba
| |
Collapse
|
22
|
|
23
|
Clinical and Electrophysiological Differences between Subjects with Dysphonetic Dyslexia and Non-Specific Reading Delay. Brain Sci 2018; 8:brainsci8090172. [PMID: 30201924 PMCID: PMC6162778 DOI: 10.3390/brainsci8090172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022] Open
Abstract
Reading is essentially a two-channel function, requiring the integration of intact visual and auditory processes both peripheral and central. It is essential for normal reading that these component processes go forward automatically. Based on this model, Boder described three main subtypes of dyslexia: dysphonetic dyslexia (DD), dyseidetic, mixed and besides a fourth group defined non-specific reading delay (NSRD). The subtypes are identified by an algorithm that considers the reading quotient and the % of errors in the spelling test. Chiarenza and Bindelli have developed the Direct Test of Reading and Spelling (DTRS), a computerized, modified and validated version to the Italian language of the Boder test. The sample consisted of 169 subjects with DD and 36 children with NSRD. The diagnosis of dyslexia was made according to the DSM-V criteria. The DTRS was used to identify the dyslexia subtypes and the NSRD group. 2⁻5 min of artefact-free EEG (electroencephalogram), recorded at rest with eyes closed, according to 10⁻20 system were analyzed. Stability based Biomarkers identification methodology was applied to the DTRS and the quantitative EEG (QEEG). The reading quotients and the errors of the reading and spelling test were significantly different in the two groups. The DD group had significantly higher activity in delta and theta bands compared to NSRD group in the frontal, central and parietal areas bilaterally. The classification equation for the QEEG, both at the scalp and the sources levels, obtained an area under the robust Receiver Operating Curve (ROC) of 0.73. However, we obtained a discrimination equation for the DTRS items which did not participate in the Boder classification algorithm, with a specificity and sensitivity of 0.94 to discriminate DD from NSRD. These results demonstrate for the first time the existence of different neuropsychological and neurophysiological patterns between children with DD and children with NSRD. They may also provide clinicians and therapists warning signals deriving from the anamnesis and the results of the DTRS that should lead to an earlier diagnosis of reading delay, which is usually very late diagnosed and therefore, untreated until the secondary school level.
Collapse
|
24
|
Taboada-Crispi A, Bringas-Vega ML, Bosch-Bayard J, Galán-García L, Bryce C, Rabinowitz AG, Prichep LS, Isenhart R, Calzada-Reyes A, VIrues-Alba T, Guo Y, Galler JR, Valdés-Sosa PA. Quantitative EEG Tomography of Early Childhood Malnutrition. Front Neurosci 2018; 12:595. [PMID: 30233291 PMCID: PMC6127649 DOI: 10.3389/fnins.2018.00595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
The goal of this study is to identify the quantitative electroencephalographic (qEEG) signature of early childhood malnutrition [protein-energy malnutrition (PEM)]. To this end, archival digital EEG recordings of 108 participants in the Barbados Nutrition Study (BNS) were recovered and cleaned of artifacts (46 children who suffered an episode of PEM limited to the first year of life) and 62 healthy controls). The participants of the still ongoing BNS were initially enrolled in 1973, and EEGs for both groups were recorded in 1977-1978 (at 5-11 years). Scalp and source EEG Z-spectra (to correct for age effects) were obtained by comparison with the normative Cuban Human Brain Mapping database. Differences between both groups in the z spectra (for all electrode locations and frequency bins) were assessed by t-tests with thresholds corrected for multiple comparisons by permutation tests. Four clusters of differences were found: (a) increased theta activity (3.91-5.86 Hz) in electrodes T4, O2, Pz and in the sources of the supplementary motor area (SMA); b) decreased alpha1 (8.59-8.98 Hz) in Fronto-central electrodes and sources of widespread bilateral prefrontal are; (c) increased alpha2 (11.33-12.50 Hz) in Temporo-parietal electrodes as well as in sources in Central-parietal areas of the right hemisphere; and (d) increased beta (13.67-18.36 Hz), in T4, T5 and P4 electrodes and decreased in the sources of bilateral occipital-temporal areas. Multivariate Item Response Theory of EEGs scored visually by experts revealed a neurophysiological latent variable which indicated excessive paroxysmal and focal abnormality activity in the PEM group. A robust biomarker construction procedure based on elastic-net regressions and 1000-cross-validations was used to: (i) select stable variables and (ii) calculate the area under ROC curves (AUC). Thus, qEEG differentiate between the two nutrition groups (PEM vs Control) performing as well as visual inspection of the EEG scored by experts (AUC = 0.83). Since PEM is a global public health problem with lifelong neurodevelopmental consequences, our finding of consistent differences between PEM and controls, both in qualitative and quantitative EEG analysis, suggest that this technology may be a source of scalable and affordable biomarkers for assessing the long-term brain impact of early PEM.
Collapse
Affiliation(s)
- Alberto Taboada-Crispi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Informatics Research Center, Universidad Central Marta Abreu de las Villas, Santa Clara, Cuba
| | - Maria L. Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neuroscience Center, Havana, Cuba
| | - Jorge Bosch-Bayard
- Institute for Neurobiology, Universidad Nacional Autonoma de Mexico, Juriquilla, Mexico
| | | | | | | | - Leslie S. Prichep
- Department of Psychiatry, School of Medicine, New York University, New York, NY, United States
| | - Robert Isenhart
- Newport Brain Research Laboratory, Newport Beach, CA, United States
| | | | | | - Yanbo Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Janina R. Galler
- Barbados Nutrition Study, Bridgetown, Barbados
- Chester M. Pierce MD Division of Global Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Center on the Developing Child, Harvard University, Cambridge, MA, United States
| | - Pedro A. Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neuroscience Center, Havana, Cuba
| |
Collapse
|
25
|
Bekhtereva V, Pritschmann R, Keil A, Müller MM. The neural signature of extracting emotional content from rapid visual streams at multiple presentation rates: A cross-laboratory study. Psychophysiology 2018; 55:e13222. [DOI: 10.1111/psyp.13222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Ricarda Pritschmann
- Department of Health Education and Behavior; University of Florida; Gainsville Florida
| | - Andreas Keil
- Department of Psychology; University of Florida; Gainesville Florida
| | | |
Collapse
|
26
|
Chiarenza GA, Villa S, Galan L, Valdes-Sosa P, Bosch-Bayard J. Junior temperament character inventory together with quantitative EEG discriminate children with attention deficit hyperactivity disorder combined subtype from children with attention deficit hyperactivity disorder combined subtype plus oppositional defiant disorder. Int J Psychophysiol 2018; 130:9-20. [DOI: 10.1016/j.ijpsycho.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/28/2018] [Accepted: 05/18/2018] [Indexed: 11/26/2022]
|
27
|
Biscay RJ, Bosch-Bayard JF, Pascual-Marqui RD. Unmixing EEG Inverse Solutions Based on Brain Segmentation. Front Neurosci 2018; 12:325. [PMID: 29867334 PMCID: PMC5962819 DOI: 10.3389/fnins.2018.00325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/25/2018] [Indexed: 11/29/2022] Open
Abstract
Due to its low resolution, any EEG inverse solution provides a source estimate at each voxel that is a mixture of the true source values over all the voxels of the brain. This mixing effect usually causes notable distortion in estimates of source connectivity based on inverse solutions. To lessen this shortcoming, an unmixing approach is introduced for EEG inverse solutions based on piecewise approximation of the unknown source by means of a brain segmentation formed by specified Regions of Interests (ROIs). The approach is general and flexible enough to be applied to any inverse solution with any specified family of ROIs, including point, surface and 3D brain regions. Two of its variants are elaborated in detail: arbitrary piecewise constant sources over arbitrary regions and sources with piecewise constant intensity of known direction over cortex surface regions. Numerically, the approach requires just solving a system of linear equations. Bounds for the error of unmixed estimates are also given. Furthermore, insights on the advantages and of variants of this approach for connectivity analysis are discussed through a variety of designed simulated examples.
Collapse
Affiliation(s)
- Rolando J Biscay
- Probabilidad y Estadística, Centro de Investigación en Matemáticas, Guanajuato, Mexico
| | - Jorge F Bosch-Bayard
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Roberto D Pascual-Marqui
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| |
Collapse
|
28
|
Sosa PV. T66. Reinstating electrophysiology into global brain projects via CBRAIN and LORIS. Clin Neurophysiol 2018. [DOI: 10.1016/j.clinph.2018.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
29
|
Weise A, Schröger E, Horváth J. The detection of higher-order acoustic transitions is reflected in the N1 ERP. Psychophysiology 2018; 55:e13063. [DOI: 10.1111/psyp.13063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Annekathrin Weise
- Institut für Psychologie; Universität Leipzig; Leipzig Germany
- Paris-Lodron Universität Salzburg, Division of Physiological Psychology; Salzburg Austria
| | - Erich Schröger
- Institut für Psychologie; Universität Leipzig; Leipzig Germany
| | - János Horváth
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Institute of Cognitive Neuroscience and Psychology; Budapest Hungary
| |
Collapse
|
30
|
Integrating speech in time depends on temporal expectancies and attention. Cortex 2017; 93:28-40. [PMID: 28609683 DOI: 10.1016/j.cortex.2017.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/11/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
Abstract
Sensory information that unfolds in time, such as in speech perception, relies on efficient chunking mechanisms in order to yield optimally-sized units for further processing. Whether or not two successive acoustic events receive a one-unit or a two-unit interpretation seems to depend on the fit between their temporal extent and a stipulated temporal window of integration. However, there is ongoing debate on how flexible this temporal window of integration should be, especially for the processing of speech sounds. Furthermore, there is no direct evidence of whether attention may modulate the temporal constraints on the integration window. For this reason, we here examine how different word durations, which lead to different temporal separations of sound onsets, interact with attention. In an Electroencephalography (EEG) study, participants actively and passively listened to words where word-final consonants were occasionally omitted. Words had either a natural duration or were artificially prolonged in order to increase the separation of speech sound onsets. Omission responses to incomplete speech input, originating in left temporal cortex, decreased when the critical speech sound was separated from previous sounds by more than 250 msec, i.e., when the separation was larger than the stipulated temporal window of integration (125-150 msec). Attention, on the other hand, only increased omission responses for stimuli with natural durations. We complemented the event-related potential (ERP) analyses by a frequency-domain analysis on the stimulus presentation rate. Notably, the power of stimulation frequency showed the same duration and attention effects than the omission responses. We interpret these findings on the background of existing research on temporal integration windows and further suggest that our findings may be accounted for within the framework of predictive coding.
Collapse
|
31
|
Prichep LS, John ER, Tom ML. Localization of Deep White Matter Lymphoma Using VARETA: A Case Study. ACTA ACUST UNITED AC 2016; 32:62-6. [PMID: 11360722 DOI: 10.1177/155005940103200204] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methods have recently been proposed for localization of multiple brain sources of particular EEG frequencies recorded from the scalp, to identify their most probable neuroanatomical generators. This paper reports the accurate localization of a deep white matter lymphoma, using Variable Resolution Electromagnetic Tomography (VARETA). The accuracy of this localization was confirmed by MRI studies. The patient was referred for a quantitative EEG evaluation, two weeks following an automobile accident, with no known loss of consciousness. There was marked excess and asymmetry of frontal slow wave activity, with highly significant hypocoherence. Significant gradient shifts within the left hemisphere were also seen. Visual inspection of the EEG tracings revealed theta paroxysms in left dorsolateral and mesial frontal regions. The MRI revealed a large space-occupying lesion deep within the white matter of the left frontal lobe, with evidence of subependymal spread and significant surrounding vasogenic edema. Localization of the sources of the maximal QEEG abnormalities using VARETA was consistent with the lesion location seen in the MRI images. This case demonstrates that VARETA can achieve highly sensitive and accurate localization of sources of QEEG abnormalities which lie in the deepest brain regions.
Collapse
Affiliation(s)
- L S Prichep
- Brain Research Laboratories, Dept. Psychiatry, 550 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
32
|
Steady-state visually evoked potential correlates of human body perception. Exp Brain Res 2016; 234:3133-3143. [PMID: 27364143 DOI: 10.1007/s00221-016-4711-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.
Collapse
|
33
|
Carrette S, Boon P, Dekeyser C, Klooster DCW, Carrette E, Meurs A, Raedt R, Baeken C, Vanhove C, Aldenkamp AP, Vonck K. Repetitive transcranial magnetic stimulation for the treatment of refractory epilepsy. Expert Rev Neurother 2016; 16:1093-110. [DOI: 10.1080/14737175.2016.1197119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Chiarenza GA, Chabot R, Isenhart R, Montaldi L, Chiarenza MP, Torto MGL, Prichep LS. The quantified EEG characteristics of responders and non-responders to long-term treatment with atomoxetine in children with attention deficit hyperactivity disorders. Int J Psychophysiol 2016; 104:44-52. [PMID: 27108364 DOI: 10.1016/j.ijpsycho.2016.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of our study is to examine quantitative Electroencephalogram (QEEG) differences between ADHD patients that are responders and non-responders to long-term treatment with Atomoxetine at baseline and after 6 and 12months of treatment. Patients with attention deficit hyperactivity disorder (ADHD) received atomoxetine titrated, over 7days, from 0.5 to 1.2mg/kg/day. QEEG and Swanson, Nolan, and Pelham-IV Questionnaire (SNAP-IV) scores were recorded before treatment and after therapy. METHODS Twenty minutes of eyes closed resting EEG was recorded from 19 electrodes referenced to linked earlobes. Full frequency and narrow band spectra of two minutes of artifact-free EEG were computed as well as source localization using Variable Resolution Electrical Tomography (VARETA). Abnormalities were identified using Z-spectra relative to normative values. RESULTS Patients were classified as responders, non-responders and partial responders based upon the SNAP-IV findings. At baseline, the responders showed increased absolute power in alpha and delta in frontal and temporal regions, whereas, non-responders showed increased absolute power in all frequency bands that was widely distributed. With treatment responders' absolute power values moved toward normal values, whereas, non-responders remained at baseline values. CONCLUSIONS Patients with increased power in the alpha band with no evidence of alterations in the beta or theta range, might be responders to treatment with atomoxetine. Increased power in the beta band coupled with increased alpha seems to be related to non-responders and one should consider atomoxetine withdrawal, especially if there is persistence of increased alpha and beta accompanied by an increase of theta.
Collapse
Affiliation(s)
- Giuseppe Augusto Chiarenza
- Child and Adolescent Neuropsychiatry Dept., Rho Hospital, Milan, Italy; International Center Learning, Attention and Hyperactivity Disorders (CIDAAI), Milan, Italy.
| | - Robert Chabot
- Brain Research Laboratories, Dept. Psychiatry, New York University, NY, United States
| | - Robert Isenhart
- Brain Research Laboratories, Dept. Psychiatry, New York University, NY, United States
| | - Luciano Montaldi
- Child and Adolescent Neuropsychiatry Dept., Rho Hospital, Milan, Italy; International Center Learning, Attention and Hyperactivity Disorders (CIDAAI), Milan, Italy
| | - Marco Paolo Chiarenza
- International Center Learning, Attention and Hyperactivity Disorders (CIDAAI), Milan, Italy
| | - Maria Grazia Lo Torto
- Child and Adolescent Neuropsychiatry Dept., Rho Hospital, Milan, Italy; International Center Learning, Attention and Hyperactivity Disorders (CIDAAI), Milan, Italy
| | - Leslie S Prichep
- Brain Research Laboratories, Dept. Psychiatry, New York University, NY, United States
| |
Collapse
|
35
|
Malinowski P, Moore AW, Mead BR, Gruber T. Mindful Aging: The Effects of Regular Brief Mindfulness Practice on Electrophysiological Markers of Cognitive and Affective Processing in Older Adults. Mindfulness (N Y) 2015; 8:78-94. [PMID: 28163795 PMCID: PMC5241348 DOI: 10.1007/s12671-015-0482-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is growing interest in the potential benefits of mindfulness meditation practices in terms of counteracting some of the cognitive effects associated with aging. Pursuing this question, the aim of the present study was to investigate the influence of mindfulness training on executive control and emotion regulation in older adults, by means of studying behavioral and electrophysiological changes. Participants, 55 to 75 years of age, were randomly allocated to an 8-week mindful breath awareness training group or an active control group engaging in brain training exercises. Before and after the training period, participants completed an emotional-counting Stroop task, designed to measure attentional control and emotion regulation processes. Concurrently, their brain activity was measured by means of 64-channel electroencephalography. The results show that engaging in just over 10 min of mindfulness practice five times per week resulted in significant improvements in behavioral (response latency) and electrophysiological (N2 event-related potential) measures related to general task performance. Analyses of the underlying cortical sources (Variable Resolution Electromagnetic Tomography, VARETA) indicate that this N2-related effect is primarily associated with changes in the right angular gyrus and other areas of the dorsal attention network. However, the study did not find the expected specific improvements in executive control and emotion regulation, which may be due to the training instructions or the relative brevity of the intervention. Overall, the results indicate that engaging in mindfulness meditation training improves the maintenance of goal-directed visuospatial attention and may be a useful strategy for counteracting cognitive decline associated with aging.
Collapse
Affiliation(s)
- Peter Malinowski
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, L3 3AF UK
| | - Adam W. Moore
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, L3 3AF UK
| | - Bethan R. Mead
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| | - Thomas Gruber
- Institute for Psychology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
36
|
Bendixen A, Schwartze M, Kotz SA. Temporal dynamics of contingency extraction from tonal and verbal auditory sequences. BRAIN AND LANGUAGE 2015; 148:64-73. [PMID: 25512177 DOI: 10.1016/j.bandl.2014.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/12/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
Consecutive sound events are often to some degree predictive of each other. Here we investigated the brain's capacity to detect contingencies between consecutive sounds by means of electroencephalography (EEG) during passive listening. Contingencies were embedded either within tonal or verbal stimuli. Contingency extraction was measured indirectly via the elicitation of the mismatch negativity (MMN) component of the event-related potential (ERP) by contingency violations. MMN results indicate that structurally identical forms of predictability can be extracted from both tonal and verbal stimuli. We also found similar generators to underlie the processing of contingency violations across stimulus types, as well as similar performance in an active-listening follow-up test. However, the process of passive contingency extraction was considerably slower (twice as many rule exemplars were needed) for verbal than for tonal stimuli These results suggest caution in transferring findings on complex predictive regularity processing obtained with tonal stimuli directly to the speech domain.
Collapse
Affiliation(s)
- Alexandra Bendixen
- Auditory Psychophysiology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University of Oldenburg, D-26111 Oldenburg, Germany; Institute of Psychology, University of Leipzig, D-04103 Leipzig, Germany.
| | - Michael Schwartze
- School of Psychological Sciences, University of Manchester, M13 9PL Manchester, UK; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany.
| | - Sonja A Kotz
- School of Psychological Sciences, University of Manchester, M13 9PL Manchester, UK; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany.
| |
Collapse
|
37
|
Bekhtereva V, Müller MM. Affective facilitation of early visual cortex during rapid picture presentation at 6 and 15 Hz. Soc Cogn Affect Neurosci 2015; 10:1623-33. [PMID: 25971598 DOI: 10.1093/scan/nsv058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/07/2015] [Indexed: 11/14/2022] Open
Abstract
The steady-state visual evoked potential (SSVEP), a neurophysiological marker of attentional resource allocation with its generators in early visual cortex, exhibits enhanced amplitude for emotional compared to neutral complex pictures. Emotional cue extraction for complex images is linked to the N1-EPN complex with a peak latency of ∼140-160 ms. We tested whether neural facilitation in early visual cortex with affective pictures requires emotional cue extraction of individual images, even when a stream of images of the same valence category is presented. Images were shown at either 6 Hz (167 ms, allowing for extraction) or 15 Hz (67 ms per image, causing disruption of processing by the following image). Results showed SSVEP amplitude enhancement for emotional compared to neutral images at a presentation rate of 6 Hz but no differences at 15 Hz. This was not due to featural differences between the two valence categories. Results strongly suggest that individual images need to be displayed for sufficient time allowing for emotional cue extraction to drive affective neural modulation in early visual cortex.
Collapse
Affiliation(s)
| | - Matthias M Müller
- Institute of Psychology, University of Leipzig, 04109, Leipzig, Germany
| |
Collapse
|
38
|
Almeida Montes LG, Prado Alcántara H, Portillo Cedeño BA, Hernández García AO, Fuentes Rojas PE. Persistent decrease in alpha current density in fully remitted subjects with major depressive disorder treated with fluoxetine: A prospective electric tomography study. Int J Psychophysiol 2015; 96:191-200. [PMID: 25835548 DOI: 10.1016/j.ijpsycho.2015.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is recurrent, and its pathophysiology is not fully understood. Studies using electric tomography (ET) have identified abnormalities in the current density (CD) of MDD subjects in regions associated with the neurobiology of MDD, such as the anterior cingulate cortex (ACC) and medial orbitofrontal cortex (mOFC). However, little is known regarding the long-term CD changes in MDD subjects who respond to antidepressants. The aim of this study was to compare CD between healthy and MDD subjects who received 1-year open-label treatment with fluoxetine. Thirty-two-channel electroencephalograms (EEGs) were collected from 70 healthy controls and 74 MDD subjects at baseline (pre-treatment), 1 and 2weeks and 1, 2, 6, 9 and 12months. Variable-resolution ET (VARETA) was used to assess the CD between subject groups at each time point. The MDD group exhibited decreased alpha CD (αCD) in the occipital and parietal cortices, ACC, mOFC, thalamus and caudate nucleus at each time point. The αCD abnormalities persisted in the MDD subjects despite their achieving full remission. The low sub-alpha band was different between the healthy and MDD subjects. Differences in the amount of αCD between sexes and treatment outcomes were observed. Lack of a placebo arm and the loss of depressed patients to follow-up were significant limitations. The persistence of the decrease in αCD might suggest that the underlying pathophysiologic mechanisms of MDD are not corrected despite the asymptomatic state of MDD subjects, which could be significant in understanding the highly recurrent nature of MDD.
Collapse
Affiliation(s)
- Luis Guillermo Almeida Montes
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México.
| | - Hugo Prado Alcántara
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México
| | - Bertha Alicia Portillo Cedeño
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México
| | - Ana Olivia Hernández García
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México
| | - Patricia Elisa Fuentes Rojas
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México
| |
Collapse
|
39
|
Thatcher RW, North DM, Biver CJ. LORETA EEG phase reset of the default mode network. Front Hum Neurosci 2014; 8:529. [PMID: 25100976 PMCID: PMC4108033 DOI: 10.3389/fnhum.2014.00529] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022] Open
Abstract
Objectives: The purpose of this study was to explore phase reset of 3-dimensional current sources in Brodmann areas located in the human default mode network (DMN) using Low Resolution Electromagnetic Tomography (LORETA) of the human electroencephalogram (EEG). Methods: The EEG was recorded from 19 scalp locations from 70 healthy normal subjects ranging in age from 13 to 20 years. A time point by time point computation of LORETA current sources were computed for 14 Brodmann areas comprising the DMN in the delta frequency band. The Hilbert transform of the LORETA time series was used to compute the instantaneous phase differences between all pairs of Brodmann areas. Phase shift and lock durations were calculated based on the 1st and 2nd derivatives of the time series of phase differences. Results: Phase shift duration exhibited three discrete modes at approximately: (1) 25 ms, (2) 50 ms, and (3) 65 ms. Phase lock duration present primarily at: (1) 300–350 ms and (2) 350–450 ms. Phase shift and lock durations were inversely related and exhibited an exponential change with distance between Brodmann areas. Conclusions: The results are explained by local neural packing density of network hubs and an exponential decrease in connections with distance from a hub. The results are consistent with a discrete temporal model of brain function where anatomical hubs behave like a “shutter” that opens and closes at specific durations as nodes of a network giving rise to temporarily phase locked clusters of neurons for specific durations.
Collapse
Affiliation(s)
- Robert W Thatcher
- EEG and NeuroImaging Laboratory, Applied Neuroscience Research Institute Seminole, FL, USA
| | - Duane M North
- EEG and NeuroImaging Laboratory, Applied Neuroscience Research Institute Seminole, FL, USA
| | - Carl J Biver
- EEG and NeuroImaging Laboratory, Applied Neuroscience Research Institute Seminole, FL, USA
| |
Collapse
|
40
|
Simkin DR, Thatcher RW, Lubar J. Quantitative EEG and neurofeedback in children and adolescents: anxiety disorders, depressive disorders, comorbid addiction and attention-deficit/hyperactivity disorder, and brain injury. Child Adolesc Psychiatr Clin N Am 2014; 23:427-64. [PMID: 24975621 DOI: 10.1016/j.chc.2014.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article explores the science surrounding neurofeedback. Both surface neurofeedback (using 2-4 electrodes) and newer interventions, such as real-time z-score neurofeedback (electroencephalogram [EEG] biofeedback) and low-resolution electromagnetic tomography neurofeedback, are reviewed. The limited literature on neurofeedback research in children and adolescents is discussed regarding treatment of anxiety, mood, addiction (with comorbid attention-deficit/hyperactivity disorder), and traumatic brain injury. Future potential applications, the use of quantitative EEG for determining which patients will be responsive to medications, the role of randomized controlled studies in neurofeedback research, and sensible clinical guidelines are considered.
Collapse
Affiliation(s)
- Deborah R Simkin
- Committee on Integrative Medicine, American Academy of Child and Adolescent Psychiatry, Attention, Memory and Cognition Center, 4641 Gulfstarr Drive, Suite 106, Destin, FL 32541, USA; Department of Psychiatry, Emory University Medical School, Atlanta, Georgia.
| | - Robert W Thatcher
- Neuroimaging Laboratory, Applied Neuroscience Research Institute, 7985 113th Street, Suite 210, Seminole, FL 33772, USA
| | - Joel Lubar
- University of Tennessee, Knoxville, TN, USA; Southeastern Neurofeedback Institute, Inc, 111 North Pompano Beach Boulevard, Suite 1214, Pompano Beach, FL 33062, USA; International Society for Neurofeedback and Research
| |
Collapse
|
41
|
Weise A, Grimm S, Trujillo-Barreto NJ, Schröger E. Timing matters: the processing of pitch relations. Front Hum Neurosci 2014; 8:387. [PMID: 24966823 PMCID: PMC4052740 DOI: 10.3389/fnhum.2014.00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/15/2014] [Indexed: 11/13/2022] Open
Abstract
The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms), impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g., pitch of second tone of a pair higher than pitch of first tone, while absolute pitch values varied across pairs). We measured the mismatch negativity (MMN; the brain's error signal to auditory regularity violations) to second tones that rarely violated the pitch relation (e.g., pitch of second tone lower). A Short condition in which tone duration (90 ms) and stimulus onset asynchrony between the tones of a pair were short (110 ms) was compared to two conditions, where this onset asynchrony was long (510 ms). In the Long Gap condition, the tone durations were identical to Short (90 ms), but the silent interval was prolonged by 400 ms. In Long Tone, the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms). Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing.
Collapse
Affiliation(s)
- Annekathrin Weise
- Kognitive einschließlich Biologische Psychologie, Institut für Psychologie, Universität Leipzig Leipzig, Germany
| | - Sabine Grimm
- Kognitive einschließlich Biologische Psychologie, Institut für Psychologie, Universität Leipzig Leipzig, Germany ; Institute for Brain, Cognition and Behaviour (IR3C), University of Barcelona Barcelona, Spain ; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona Barcelona, Spain
| | | | - Erich Schröger
- Kognitive einschließlich Biologische Psychologie, Institut für Psychologie, Universität Leipzig Leipzig, Germany
| |
Collapse
|
42
|
Bendixen A, Scharinger M, Strauß A, Obleser J. Prediction in the service of comprehension: modulated early brain responses to omitted speech segments. Cortex 2014; 53:9-26. [PMID: 24561233 DOI: 10.1016/j.cortex.2014.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/13/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Speech signals are often compromised by disruptions originating from external (e.g., masking noise) or internal (e.g., inaccurate articulation) sources. Speech comprehension thus entails detecting and replacing missing information based on predictive and restorative neural mechanisms. The present study targets predictive mechanisms by investigating the influence of a speech segment's predictability on early, modality-specific electrophysiological responses to this segment's omission. Predictability was manipulated in simple physical terms in a single-word framework (Experiment 1) or in more complex semantic terms in a sentence framework (Experiment 2). In both experiments, final consonants of the German words Lachs ([laks], salmon) or Latz ([lats], bib) were occasionally omitted, resulting in the syllable La ([la], no semantic meaning), while brain responses were measured with multi-channel electroencephalography (EEG). In both experiments, the occasional presentation of the fragment La elicited a larger omission response when the final speech segment had been predictable. The omission response occurred ∼125-165 msec after the expected onset of the final segment and showed characteristics of the omission mismatch negativity (MMN), with generators in auditory cortical areas. Suggestive of a general auditory predictive mechanism at work, this main observation was robust against varying source of predictive information or attentional allocation, differing between the two experiments. Source localization further suggested the omission response enhancement by predictability to emerge from left superior temporal gyrus and left angular gyrus in both experiments, with additional experiment-specific contributions. These results are consistent with the existence of predictive coding mechanisms in the central auditory system, and suggestive of the general predictive properties of the auditory system to support spoken word recognition.
Collapse
Affiliation(s)
- Alexandra Bendixen
- Institute of Psychology, University of Leipzig, Leipzig, Germany; Auditory Psychophysiology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.
| | - Mathias Scharinger
- Max Planck Research Group "Auditory Cognition", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Antje Strauß
- Max Planck Research Group "Auditory Cognition", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jonas Obleser
- Max Planck Research Group "Auditory Cognition", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
43
|
Quirin M, Gruber T, Kuhl J, Düsing R. Is love right? Prefrontal resting brain asymmetry is related to the affiliation motive. Front Hum Neurosci 2013; 7:902. [PMID: 24416007 PMCID: PMC3874478 DOI: 10.3389/fnhum.2013.00902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/10/2013] [Indexed: 11/13/2022] Open
Abstract
Previous research on relationships between affective-motivational traits and hemispheric asymmetries in resting frontal alpha band power as measured by electroencephalography (EEG) focused on individual differences in motivational direction (approach vs. withdrawal) or behavioral activation. The present study investigated resting frontal alpha asymmetries in 72 participants as a function of individual differences in the implicit affiliation motive as measured with the operant motive test (OMT) and explored the brain source thereof. Decreased relative right frontal activity as indexed by increased alpha band power was related to low levels of the implicit affiliation motive. No relationships were found for explicit personality measures. Intracranial current density distributions of alpha based on Variable Resolution Electromagnetic Tomography (VARETA) source estimations suggests that the source of cortical alpha distribution is located within the right ventromedial prefrontal cortex (PFC). The present results are discussed with respect to differential roles of the two hemispheres in social motivation.
Collapse
Affiliation(s)
- Markus Quirin
- *Correspondence: Markus Quirin, Institut für Psychologie, University of Osnabrueck, Room No 15/302, Seminarstraße 20, 49074 Osnabrueck, Germany e-mail:
| | | | | | | |
Collapse
|
44
|
Saupe K, Widmann A, Trujillo-Barreto NJ, Schröger E. Sensorial suppression of self-generated sounds and its dependence on attention. Int J Psychophysiol 2013; 90:300-10. [DOI: 10.1016/j.ijpsycho.2013.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/25/2022]
|
45
|
Tavano A, Widmann A, Bendixen A, Trujillo-Barreto N, Schröger E. Temporal regularity facilitates higher-order sensory predictions in fast auditory sequences. Eur J Neurosci 2013; 39:308-18. [DOI: 10.1111/ejn.12404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 09/18/2013] [Accepted: 10/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandro Tavano
- Institute of Psychology; University of Leipzig; 04109 Leipzig Germany
| | - Andreas Widmann
- Institute of Psychology; University of Leipzig; 04109 Leipzig Germany
| | - Alexandra Bendixen
- Institute of Psychology; University of Leipzig; 04109 Leipzig Germany
- Department of Psychology; Cluster of Excellence ‘Hearing4all’; European Medical School; Carl von Ossietzky University of Oldenburg; 26129 Oldenburg Germany
| | | | - Erich Schröger
- Institute of Psychology; University of Leipzig; 04109 Leipzig Germany
| |
Collapse
|
46
|
O’Shea RP, Kornmeier J, Roeber U. Predicting visual consciousness electrophysiologically from intermittent binocular rivalry. PLoS One 2013; 8:e76134. [PMID: 24124536 PMCID: PMC3790688 DOI: 10.1371/journal.pone.0076134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 08/26/2013] [Indexed: 11/18/2022] Open
Abstract
PURPOSE We sought brain activity that predicts visual consciousness. METHODS We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. RESULTS We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. CONCLUSION We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness.
Collapse
Affiliation(s)
- Robert P. O’Shea
- Institute for Psychology, University of Leipzig, Leipzig, Germany
- Discipline of Psychology, School of Health and Human Sciences, Southern Cross University, Coffs Harbour, Australia
- Department of Psychology, University of Otago, Dunedin, New Zealand
- Cognitive Neuroscience Research Cluster, School of Health and Human Sciences, Southern Cross University, Coffs Harbour, Australia
| | - Jürgen Kornmeier
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Department of Ophthalmology, University Eye Hospital, Freiburg, Germany
| | - Urte Roeber
- Institute for Psychology, University of Leipzig, Leipzig, Germany
- Discipline of Psychology, School of Health and Human Sciences, Southern Cross University, Coffs Harbour, Australia
- Biomedical Sciences, School of Medical Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
47
|
Hearing silences: human auditory processing relies on preactivation of sound-specific brain activity patterns. J Neurosci 2013; 33:8633-9. [PMID: 23678108 DOI: 10.1523/jneurosci.5821-12.2013] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The remarkable capabilities displayed by humans in making sense of an overwhelming amount of sensory information cannot be explained easily if perception is viewed as a passive process. Current theoretical and computational models assume that to achieve meaningful and coherent perception, the human brain must anticipate upcoming stimulation. But how are upcoming stimuli predicted in the brain? We unmasked the neural representation of a prediction by omitting the predicted sensory input. Electrophysiological brain signals showed that when a clear prediction can be formulated, the brain activates a template of its response to the predicted stimulus before it arrives to our senses.
Collapse
|
48
|
Alper K, Shah J, Howard B, Roy John E, Prichep LS. Childhood abuse and EEG source localization in crack cocaine dependence. Psychiatry Res 2013; 213:63-70. [PMID: 23693089 DOI: 10.1016/j.pscychresns.2013.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 11/29/2012] [Accepted: 01/23/2013] [Indexed: 10/26/2022]
Abstract
Fourteen subjects with histories of sexual and/or physical abuse in childhood and 13 matched control subjects were selected from a consecutive series of clients in residential treatment for crack cocaine dependence. Standardized low-resolution electromagnetic brain tomography (sLORETA) was used to estimate the source generators of the EEG in a cortical mask with voxel z-scores referenced to normative data at frequency intervals of 039 Hz, with nonparametric permutation to correct by randomization for the number of comparisons and the intercorrelations and variance of distribution of voxel values. Subjects with histories of abuse in childhood had significantly greater EEG power than controls in the theta frequency range (3.51-7.41 Hz), with greatest differences in the 3.90-Hz band distributed mainly in the parahippocampal, fusiform, lingual, posterior cingulate, and insular gyri. The groups did not differ significantly with regard to delta (1.56-3.12 Hz), alpha (7.81-12.48 Hz), beta (12.87-19.89 Hz), and gamma (20.28-35.10 Hz) frequency power. In excess, theta EEG power, a bandwidth of transactions among hippocampus and amygdala and paralimbic and visual association cortex, may be a correlate of childhood exposure to abuse.
Collapse
Affiliation(s)
- Kenneth Alper
- Brain Research Laboratories, Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
49
|
Sanmiguel I, Saupe K, Schröger E. I know what is missing here: electrophysiological prediction error signals elicited by omissions of predicted "what" but not "when". Front Hum Neurosci 2013; 7:407. [PMID: 23908618 PMCID: PMC3725431 DOI: 10.3389/fnhum.2013.00407] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/10/2013] [Indexed: 11/13/2022] Open
Abstract
In the present study we investigated the neural code of sensory predictions. Grounded on a variety of empirical findings, we set out from the proposal that sensory predictions are coded via the top-down modulation of the sensory units whose response properties match the specific characteristics of the predicted stimulus (Albright, 2012; Arnal and Giraud, 2012). From this proposal, we derive the hypothesis that when the specific physical characteristics of the predicted stimulus cannot be advanced, the sensory system should not be able to formulate such predictions, as it would lack the means to represent them. In different conditions, participant's self-paced button presses predicted either only the precise time when a random sound would be presented (random sound condition) or both the timing and the identity of the sound (single sound condition). To isolate prediction-related activity, we inspected the event-related potential (ERP) elicited by rare omissions of the sounds following the button press (see SanMiguel et al., 2013). As expected, in the single sound condition, omissions elicited a complex response in the ERP, reflecting the presence of sound prediction and the violation of this prediction. In contrast, in the random sound condition, sound omissions were not followed by any significant responses in the ERP. These results confirmed our hypothesis, and provide support to current proposals advocating that sensory systems rely on the top-down modulation of stimulus-specific sensory representations as the neural code for prediction. In light of these findings, we discuss the significance of the omission ERP as an electrophysiological marker of predictive processing and we address the paradox that no indicators of violations of temporal prediction alone were found in the present paradigm.
Collapse
Affiliation(s)
- Iria Sanmiguel
- BioCog, Institute for Psychology, University of Leipzig Leipzig, Germany
| | | | | |
Collapse
|
50
|
Bekhtereva V, Sander C, Forschack N, Olbrich S, Hegerl U, Müller MM. Effects of EEG-vigilance regulation patterns on early perceptual processes in human visual cortex. Clin Neurophysiol 2013; 125:98-107. [PMID: 23871178 DOI: 10.1016/j.clinph.2013.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/28/2013] [Accepted: 06/21/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate influences of EEG-vigilance regulation patterns on perceptual processing during sustained visual attention in early visual areas. METHODS We compared a subject group with stable vigilance regulation to a group with unstable EEG-vigilance regulation. A rapid serial visual presentation stream (RSVP) elicited a 7.5 Hz steady state visual evoked potential (SSVEP), a continuous sinusoidal brain response as a measure of attentional resource allocation during sustained attention in early visual cortex. Subjects performed a target discrimination task. 150 trials were divided into two parts (75 trials each, trial duration: 11 s). RESULTS A significant interaction vigilance group by experimental part provided significantly greater SSVEP amplitudes for the unstable group in the second compared to the first part of the experiment. Both groups showed training effects with increased hit rates and d'-values in the second part of the experiment. CONCLUSIONS The unexpected finding of SSVEP amplitude increase for the unstable group might be due to competitive interactions for neural resources between the alpha response and SSVEPs. SIGNIFICANCE Individual patterns of EEG-vigilance regulation have a moderate impact on early sensory processing during sustained visual attention that is not paralleled in task performance.
Collapse
Affiliation(s)
| | | | | | | | - Ulrich Hegerl
- Department of Psychiatry, University of Leipzig, Germany
| | | |
Collapse
|