1
|
Miraglia F, Vecchio F, Alù F, Orticoni A, Judica E, Cotelli M, Rossini PM. Brain sources' activity in resting state before a visuo-motor task. J Neural Eng 2021; 18. [PMID: 33601343 DOI: 10.1088/1741-2552/abe7ba] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/18/2021] [Indexed: 11/12/2022]
Abstract
Objective In modern neuroscience, the underlying mechanisms of the elaboration and reaction to different kinds of stimuli of the brain hemispheres remain still very challenging to understand, together with the possibility to anticipate certain behaviors to improve the performance. Approach The purpose of the present study was to investigate the brain rhythms characteristics of EEG recordings and in particular, their interhemispheric differences in resting state condition before a visuo-motor task in a population of healthy adults. During the task, subjects were asked to react to a sequence of visual cues as quick as possible. The reaction times (RTs) to the task were measured, collected and correlated with the EEG signals recorded in a resting state condition immediately preceding the task. The EEG data were analyzed in the space of cortical sources of EEG rhythms by the computation of the Global Spectra Power Density (GSPD) in the left and in the right hemisphere, and of an index of brain Laterality L. Main results The results showed a negative correlation between the RTs and the GSPD in the central areas in the left and in the right hemisphere in both eyes open and eyes closed conditions. A close to significant and negative correlation was found in the parietal areas. Furthermore, RTs negatively correlated with L in the central areas in eyes closed condition. The results showed a negative correlation between the RTs and the GSPD in the central areas in the left and in the right hemisphere in both eyes open and eyes closed conditions. Significance The correlations between the brain activity before a task and the RTs to the task can represent an interesting tool for exploring the brain state characterization for the upcoming tasks performance.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, Roma, 00166, ITALY
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, Roma, Lazio, 00166, ITALY
| | - Francesca Alù
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, Roma, Lazio, 00166, ITALY
| | - Alessandro Orticoni
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, Roma, Lazio, 00166, ITALY
| | - Elda Judica
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico SpA, Via Giuseppe Dezza, 48, Milano, Lombardia, 20144, ITALY
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, Brescia, Lombardia, 25125, ITALY
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, Roma, Lazio, 00166, ITALY
| |
Collapse
|
2
|
Falsaperla R, Vitaliti G, Marino SD, Praticò AD, Mailo J, Spatuzza M, Cilio MR, Foti R, Ruggieri M. Graph theory in paediatric epilepsy: A systematic review. DIALOGUES IN CLINICAL NEUROSCIENCE 2021; 23:3-13. [PMID: 35860177 PMCID: PMC9286734 DOI: 10.1080/19585969.2022.2043128] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graph theoretical studies have been designed to investigate network topologies during life. Network science and graph theory methods may contribute to a better understanding of brain function, both normal and abnormal, throughout developmental stages. The degree to which childhood epilepsies exert a significant effect on brain network organisation and cognition remains unclear. The hypothesis suggests that the formation of abnormal networks associated with epileptogenesis early in life causes a disruption in normal brain network development and cognition, reflecting abnormalities in later life. Neurological diseases with onset during critical stages of brain maturation, including childhood epilepsy, may threaten this orderly neurodevelopmental process. According to the hypothesis that the formation of abnormal networks associated with epileptogenesis in early life causes a disruption in normal brain network development, it is then mandatory to perform a proper examination of children with new-onset epilepsy early in the disease course and a deep study of their brain network organisation over time. In regards, graph theoretical analysis could add more information. In order to facilitate further development of graph theory in childhood, we performed a systematic review to describe its application in functional dynamic connectivity using electroencephalographic (EEG) analysis, focussing on paediatric epilepsy.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit, San Marco Hospital, University Hospital Policlinico “G. Rodolico-San Marco", Catania, Italy
- Unit of Pediatrics and Pediatric Emergency, University Hospital Policlinico “G. Rodolico-San Marco", Catania, Italy
| | - Giovanna Vitaliti
- Department of Medical Sciences, Unit of Pediatrics, University of Ferrara, Ferrara, Italy
| | - Simona Domenica Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital Policlinico “G. Rodolico-San Marco", Catania, Italy
| | - Andrea Domenico Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Janette Mailo
- Division of Pediatric Neurology, University of Alberta, Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Michela Spatuzza
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Maria Roberta Cilio
- Institute for Experimental and Clinical Research, Catholic University of Leuven, Brussels, Belgium
| | - Rosario Foti
- Department Chief of Rheumatology Unit, San Marco Hospital, University Hospital Policlinico “G. Rodolico-San Marco", Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Abstract
The view that chronic heart failure was exclusively a disease of the heart dominated the cardiovascular literature until relatively recently. However, over the last 40 years it has increasingly come to be seen as a multisystem disease. Aside from changes in the sympathetic and parasympathetic nervous systems and the renin-angiotensin-aldosterone system, adaptations to the lungs, muscles and gastrointestinal tract have been clearly documented. It is clear that the brain and CNS are also affected in patients with heart failure, although this is often under recognized. The purpose of this review is to summarize the changes in the structure and biochemical function of the CNS in patients with chronic heart failure and to discuss their potential importance.
Collapse
Affiliation(s)
- Mark Dayer
- Department of Cardiology, Musgrove Park Hospital, Taunton, TA1 5DA, UK
| | - David H MacIver
- Department of Cardiology, Musgrove Park Hospital, Taunton, TA1 5DA, UK.,Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Stuart D Rosen
- Ealing & Royal Brompton Hospitals, Uxbridge Rd, Southall, UB1 3HW, UK.,Imperial College London, South Kensington, London, SW7 2BU, UK
| |
Collapse
|
4
|
Vecchio F, Tomino C, Miraglia F, Iodice F, Erra C, Di Iorio R, Judica E, Alù F, Fini M, Rossini PM. Cortical connectivity from EEG data in acute stroke: A study via graph theory as a potential biomarker for functional recovery. Int J Psychophysiol 2019; 146:133-138. [PMID: 31648028 DOI: 10.1016/j.ijpsycho.2019.09.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/02/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Cerebral post-stroke plasticity has been repeatedly investigated via functional neuroimaging techniques mainly based on blood flow/metabolism. However, little is known on predictive value of topological properties of widely distributed neural networks immediately following stroke on rehabilitation outcome and post-stroke recovery measured by early functional outcome. The utility of EEG network parameters (i.e. small world organization) analysis as a potential rough and simple biomarker for stroke outcome has been little explored and needs more validation. A total of 139 consecutive patients within a post-stroke acute stage underwent EEG recording. A group of 110 age paired healthy subjects constituted the control group. All patients were clinically evaluated with 3 scales for stroke: NIHSS, Barthel and ARAT. As a first result, NIHSS, Barthel and ARAT correlated with Small World index as provided by the proportional increment/decrement of low (delta) and viceversa of high (beta2 and gamma) EEG frequency bands. Furthermore, in line with the aim of the present study, we found a strong correlation between NIHSS at follow up and gamma Small World index in the acute post-stroke period, giving SW index a significant weight of recovery prediction. This study aimed to investigate possible correlations between functional abnormalities of brain networks, measured by small world characteristics detected in resting state EEG source investigation, and early post-stroke clinical outcome in order to find a possible predictive index of functional recovery to address and/or correct the rehabilitation program.
Collapse
Affiliation(s)
- Fabrizio Vecchio
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy.
| | - Carlo Tomino
- Direzione Scientifica, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Francesco Iodice
- Università Cattolica del Sacro Cuore, Istituto di Neurologia, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Carmen Erra
- Università Cattolica del Sacro Cuore, Istituto di Neurologia, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | | | - Elda Judica
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milano, Italy
| | - Francesca Alù
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Massimo Fini
- Direzione Scientifica, IRCCS San Raffaele Pisana, Rome, Italy
| | | |
Collapse
|
5
|
Rossini P, Di Iorio R, Bentivoglio M, Bertini G, Ferreri F, Gerloff C, Ilmoniemi R, Miraglia F, Nitsche M, Pestilli F, Rosanova M, Shirota Y, Tesoriero C, Ugawa Y, Vecchio F, Ziemann U, Hallett M. Methods for analysis of brain connectivity: An IFCN-sponsored review. Clin Neurophysiol 2019; 130:1833-1858. [DOI: 10.1016/j.clinph.2019.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/08/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
|
6
|
Vecchio F, Caliandro P, Reale G, Miraglia F, Piludu F, Masi G, Iacovelli C, Simbolotti C, Padua L, Leone E, Alù F, Colosimo C, Rossini PM. Acute cerebellar stroke and middle cerebral artery stroke exert distinctive modifications on functional cortical connectivity: A comparative study via EEG graph theory. Clin Neurophysiol 2019; 130:997-1007. [PMID: 31005052 DOI: 10.1016/j.clinph.2019.03.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE We tested whether acute cerebellar stroke may determine changes in brain network architecture as defined by cortical sources of EEG rhythms. METHODS Graph parameters of 41 consecutive stroke patients (<5 days from the event) were studied using eLORETA EEG sources. Network rearrangements of stroke patients were investigated in delta, alpha 2, beta 2 and gamma bands in comparison with healthy subjects. RESULTS The delta network remodeling was similar in cerebellar and middle cerebral artery strokes, with a reduction of small-worldness. Beta 2 and gamma small-worldness, in the right hemisphere of patients with cerebellar stroke, increase respect to healthy subjects, while alpha 2 small-worldness increases only among patients with a middle cerebral artery stroke. CONCLUSIONS The network remodeling characteristics are independent on the size of the ischemic lesion. In the early post-acute stages cerebellar stroke differs from the middle cerebral artery one because it does not cause alpha 2 network remodeling while it determines a high frequency network reorganization in beta 2 and gamma bands with an increase of small-worldness characteristics. SIGNIFICANCE These findings demonstrate changes in the balance of local segregation and global integration induced by cerebellar acute stroke in high EEG frequency bands. They need to be integrated with appropriate follow-up to explore whether further network changes are attained during post-stroke outcome stabilization.
Collapse
Affiliation(s)
- Fabrizio Vecchio
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Pietro Caliandro
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Reale
- Institute of Neurology, Area of Neuroscience, Catholic University of The Sacred Heart, Rome, Italy
| | | | - Francesca Piludu
- Department of radiologic sciences, Catholic University, Fondazione Policlincio Universitario A. Gemelli, Rome, Italy
| | - Gianvito Masi
- Institute of Neurology, Area of Neuroscience, Catholic University of The Sacred Heart, Rome, Italy
| | | | - Chiara Simbolotti
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Padua
- Unità operativa di neuroriabilitazione ad alta intensità, Fondazione Policlinico Universitario A. Gemelli. IRCCS, Roma
| | - Edoardo Leone
- Department of radiologic sciences, Catholic University, Fondazione Policlincio Universitario A. Gemelli, Rome, Italy
| | - Francesca Alù
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Cesare Colosimo
- Department of radiologic sciences, Catholic University, Fondazione Policlincio Universitario A. Gemelli, Rome, Italy
| | - Paolo Maria Rossini
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Neurology, Area of Neuroscience, Catholic University of The Sacred Heart, Rome, Italy
| |
Collapse
|
7
|
Vecchio F, Miraglia F, Gorgoni M, Ferrara M, Iberite F, Bramanti P, De Gennaro L, Rossini PM. Cortical connectivity modulation during sleep onset: A study via graph theory on EEG data. Hum Brain Mapp 2017; 38:5456-5464. [PMID: 28744955 PMCID: PMC6866973 DOI: 10.1002/hbm.23736] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/12/2017] [Accepted: 07/11/2017] [Indexed: 02/05/2023] Open
Abstract
Sleep onset is characterized by a specific and orchestrated pattern of frequency and topographical EEG changes. Conventional power analyses of electroencephalographic (EEG) and computational assessments of network dynamics have described an earlier synchronization of the centrofrontal areas rhythms and a spread of synchronizing signals from associative prefrontal to posterior areas. Here, we assess how "small world" characteristics of the brain networks, as reflected in the EEG rhythms, are modified in the wakefulness-sleep transition comparing the pre- and post-sleep onset epochs. The results show that sleep onset is characterized by a less ordered brain network (as reflected by the higher value of small world) in the sigma band for the frontal lobes indicating stronger connectivity, and a more ordered brain network in the low frequency delta and theta bands indicating disconnection on the remaining brain areas. Our results depict the timing and topography of the specific mechanisms for the maintenance of functional connectivity of frontal brain regions at the sleep onset, also providing a possible explanation for the prevalence of the frontal-to-posterior information flow directionality previously observed after sleep onset. Hum Brain Mapp 38:5456-5464, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Francesca Miraglia
- Brain Connectivity LaboratoryIRCCS San Raffaele PisanaRomeItaly
- Institute of NeurologyDept. Geriatrics, Neuroscience & Orthopedics, Catholic University, A. Gemelli FoundationRomeItaly
| | | | - Michele Ferrara
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaCoppitoL'AquilaItaly
| | | | | | - Luigi De Gennaro
- Brain Connectivity LaboratoryIRCCS San Raffaele PisanaRomeItaly
- Department of Psychology“Sapienza” University of RomeRomeItaly
| | - Paolo Maria Rossini
- Brain Connectivity LaboratoryIRCCS San Raffaele PisanaRomeItaly
- Institute of NeurologyDept. Geriatrics, Neuroscience & Orthopedics, Catholic University, A. Gemelli FoundationRomeItaly
| |
Collapse
|
8
|
Vecchio F, Miraglia F, Maria Rossini P. Connectome: Graph theory application in functional brain network architecture. Clin Neurophysiol Pract 2017; 2:206-213. [PMID: 30214997 PMCID: PMC6123924 DOI: 10.1016/j.cnp.2017.09.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/28/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022] Open
Abstract
Network science and graph theory applications can help in understanding how human cognitive functions are linked to neuronal network structure. The present review focuses on pivotal recent studies regarding graph theory application on functional dynamic connectivity investigated by electroencephalographic (EEG) analysis. Graph analysis applications represent an interesting probe to analyze the distinctive features of real life by focusing on functional connectivity networks. Application of graph theory to patient data might provide more insight into the pathophysiological processes underlying brain disconnection. Graph theory might aid in monitoring the impact of eventual pharmacological and rehabilitative treatments.
Network science and graph theory applications have recently spread widely to help in understanding how human cognitive functions are linked to neuronal network structure, thus providing a conceptual frame that can help in reducing the analytical brain complexity and underlining how network topology can be used to characterize and model vulnerability and resilience to brain disease and dysfunction. The present review focuses on few pivotal recent studies of our research team regarding graph theory application in functional dynamic connectivity investigated by electroencephalographic (EEG) analysis. The article is divided into two parts. The first describes the methodological approach to EEG functional connectivity data analysis. In the second part, network studies of physiological aging and neurological disorders are explored, with a particular focus on epilepsy and neurodegenerative dementias, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Fabrizio Vecchio
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Francesca Miraglia
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy.,Institute of Neurology, Dept. Geriatrics, Neuroscience & Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy.,Institute of Neurology, Dept. Geriatrics, Neuroscience & Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| |
Collapse
|
9
|
Vecchio F. The importance of the family heritage in epilepsy. Eur J Neurol 2016; 23:1694-1695. [DOI: 10.1111/ene.13109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 11/29/2022]
Affiliation(s)
- F. Vecchio
- Brain Connectivity Laboratory; IRCCS San Raffaele Pisana; Rome Italy
| |
Collapse
|
10
|
Vecchio F, Miraglia F, Piludu F, Granata G, Romanello R, Caulo M, Onofrj V, Bramanti P, Colosimo C, Rossini PM. “Small World” architecture in brain connectivity and hippocampal volume in Alzheimer’s disease: a study via graph theory from EEG data. Brain Imaging Behav 2016; 11:473-485. [DOI: 10.1007/s11682-016-9528-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Oddo CM, Raspopovic S, Artoni F, Mazzoni A, Spigler G, Petrini F, Giambattistelli F, Vecchio F, Miraglia F, Zollo L, Di Pino G, Camboni D, Carrozza MC, Guglielmelli E, Rossini PM, Faraguna U, Micera S. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. eLife 2016; 5:e09148. [PMID: 26952132 PMCID: PMC4798967 DOI: 10.7554/elife.09148] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/28/2016] [Indexed: 01/02/2023] Open
Abstract
Restoration of touch after hand amputation is a desirable feature of ideal prostheses. Here, we show that texture discrimination can be artificially provided in human subjects by implementing a neuromorphic real-time mechano-neuro-transduction (MNT), which emulates to some extent the firing dynamics of SA1 cutaneous afferents. The MNT process was used to modulate the temporal pattern of electrical spikes delivered to the human median nerve via percutaneous microstimulation in four intact subjects and via implanted intrafascicular stimulation in one transradial amputee. Both approaches allowed the subjects to reliably discriminate spatial coarseness of surfaces as confirmed also by a hybrid neural model of the median nerve. Moreover, MNT-evoked EEG activity showed physiologically plausible responses that were superimposable in time and topography to the ones elicited by a natural mechanical tactile stimulation. These findings can open up novel opportunities for sensory restoration in the next generation of neuro-prosthetic hands. DOI:http://dx.doi.org/10.7554/eLife.09148.001 Our hands provide us with a wide variety of information about our surroundings, enabling us to detect pain, temperature and pressure. Our sense of touch also allows us to interact with objects by feeling their texture and solidity. However, completely reproducing a sense of touch in artificial or prosthetic hands has proven challenging. While commercial prostheses can mimic the range of movements of natural limbs, even the latest experimental prostheses have only a limited ability to ‘feel’ the objects being manipulated. Oddo, Raspopovic et al. have now brought this ability a step closer by exploiting an artificial fingertip and appropriate neural interfaces through which different textures can be identified. The initial experiments were performed in four healthy volunteers with intact limbs. Oddo, Raspopovic et al. connected the artificial fingertip to the volunteers via an electrode inserted into a nerve in the arm. When moved over a rough surface, sensors in the fingertip produced patterns of electrical pulses that stimulated the nerve, causing the volunteers to feel like they were touching the surface. The volunteers were even able to tell the difference between the different surface textures the artificial fingertip moved across. The temporary electrodes used in this group of volunteers are unsuitable for use with prosthetic limbs because they can easily be knocked out of position. Therefore, in a further experiment involving a volunteer who had undergone an arm amputation a number of years previously, Oddo, Raspopovic et al. tested an implanted electrode array that could, in principle, remain in place long-term. This volunteer could also identify the different textures the artificial fingertip touched, with a slightly higher degree of accuracy than the previous group of intact volunteers. Further studies are now required to explore the potential of this approach in larger groups of volunteers. DOI:http://dx.doi.org/10.7554/eLife.09148.002
Collapse
Affiliation(s)
| | - Stanisa Raspopovic
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Fiorenzo Artoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giacomo Spigler
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Francesco Petrini
- Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Laboratory of Biomedical Robotics & Biomicrosystems, Università Campus Bio-Medico di Roma, Roma, Italy.,Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Roma, Italy
| | | | - Fabrizio Vecchio
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Roma, Italy
| | | | - Loredana Zollo
- Laboratory of Biomedical Robotics & Biomicrosystems, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Giovanni Di Pino
- Laboratory of Biomedical Robotics & Biomicrosystems, Università Campus Bio-Medico di Roma, Roma, Italy.,Institute of Neurology, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Domenico Camboni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Eugenio Guglielmelli
- Laboratory of Biomedical Robotics & Biomicrosystems, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Roma, Italy.,Institute of Neurology, Catholic University of The Sacred Heart, Roma, Italy
| | - Ugo Faraguna
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy.,Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Miraglia F, Vecchio F, Bramanti P, Rossini PM. EEG characteristics in “eyes-open” versus “eyes-closed” conditions: Small-world network architecture in healthy aging and age-related brain degeneration. Clin Neurophysiol 2016; 127:1261-1268. [DOI: 10.1016/j.clinph.2015.07.040] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
|