1
|
Lu Z, Wang H, Gu J, Gao F. Association between abnormal brain oscillations and cognitive performance in patients with bipolar disorder; Molecular mechanisms and clinical evidence. Synapse 2022; 76:e22247. [PMID: 35849784 DOI: 10.1002/syn.22247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Brain oscillations have gained great attention in neuroscience during recent decades as functional building blocks of cognitive-sensory processes. Research has shown that oscillations in "alpha," "beta," "gamma," "delta," and "theta" frequency windows are highly modified in brain pathology, including in patients with cognitive impairment like bipolar disorder (BD). The study of changes in brain oscillations can provide fundamental knowledge for exploring neurophysiological biomarkers in cognitive impairment. The present article reviews findings from the role and molecular basis of abnormal neural oscillation and synchronization in the symptoms of patients with BD. An overview of the results clearly demonstrates that, in cognitive-sensory processes, resting and evoked/event-related electroencephalogram (EEG) spectra in the delta, theta, alpha, beta, and gamma bands are abnormally changed in patients with BD showing psychotic features. Abnormal oscillations have been found to be associated with several neural dysfunctions and abnormalities contributing to BD, including abnormal GABAergic neurotransmission signaling, hippocampal cell discharge, abnormal hippocampal neurogenesis, impaired cadherin and synaptic contact-based cell adhesion processes, extended lateral ventricles, decreased prefrontal cortical gray matter, and decreased hippocampal volume. Mechanistically, impairment in calcium voltage-gated channel subunit alpha1 I, neurotrophic tyrosine receptor kinase proteins, genes involved in brain neurogenesis and synaptogenesis like WNT3 and ACTG2, genes involved in the cell adhesion process like CDH12 and DISC1, and gamma-aminobutyric acid (GABA) signaling have been reported as the main molecular contributors to the abnormalities in resting-state low-frequency oscillations in BD patients. Findings also showed the association of impaired synaptic connections and disrupted membrane potential with abnormal beta/gamma oscillatory activity in patients with BD. Of note, the synaptic GABA neurotransmitter has been found to be a fundamental requirement for the occurrence of long-distance synchronous gamma oscillations necessary for coordinating the activity of neural networks between various brain regions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Huixiao Wang
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Jiajie Gu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Feng Gao
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| |
Collapse
|
2
|
Atagun MI, Drukker M, Hall MH, Altun IK, Tatli SZ, Guloksuz S, van Os J, van Amelsvoort T. Meta-analysis of auditory P50 sensory gating in schizophrenia and bipolar disorder. Psychiatry Res Neuroimaging 2020; 300:111078. [PMID: 32361172 DOI: 10.1016/j.pscychresns.2020.111078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 11/15/2022]
Abstract
The ability of the brain to reduce the amount of trivial or redundant sensory inputs is called gating function. Dysfunction of sensory gating may lead to cognitive fragmentation and poor real-world functioning. The auditory dual-click paradigm is a pertinent neurophysiological measure of sensory gating function. This meta-analysis aimed to examine the subcomponents of abnormal P50 waveforms in bipolar disorder and schizophrenia to assess P50 sensory gating deficits and examine effects of diagnoses, illness states (first-episode psychosis vs. schizophrenia, remission vs. episodes in bipolar disorder), and treatment status (medication-free vs. medicated). Literature search of PubMed between Jan 1st 1980 and March 31st 2019 identified 2091 records for schizophrenia, 362 for bipolar disorder. 115 studies in schizophrenia (4932 patients), 16 in bipolar disorder (975 patients) and 10 in first-degree relatives (848 subjects) met the inclusion criteria. P50 sensory gating ratio (S2/S1) and S1-S2 difference were significantly altered in schizophrenia, bipolar disorder and their first-degree relatives. First-episode psychosis did not differ from schizophrenia, however episodes altered P50 sensory gating in bipolar disorder. Medications improve P50 sensory gating alterations in schizophrenia significantly and at trend level in bipolar disorder. Future studies should examine longitudinal course of P50 sensory gating in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Murat Ilhan Atagun
- Department of Psychiatry, Ankara Yildirim Beyazit University Medical School, Universities Region, Ihsan Dogramaci Boulevard. No: 6, Bilkent, Cankaya, Ankara Turkey.
| | - Marjan Drukker
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands
| | - Mei Hua Hall
- Psychosis Neurobiology Laboratory, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | - Ilkay Keles Altun
- Department of Psychiatry, Bursa Higher Education Training and Education Hospital, Bursa, Turkey
| | | | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands; King's Health Partners Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, United Kingdom; Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands
| |
Collapse
|
3
|
Painold A, Faber PL, Reininghaus EZ, Mörkl S, Holl AK, Achermann P, Saletu B, Saletu-Zyhlarz G, Anderer P, Dalkner N, Birner A, Bengesser S, Kapfhammer HP, Milz P. Reduced Brain Electric Activity and Functional Connectivity in Bipolar Euthymia: An sLORETA Source Localization Study. Clin EEG Neurosci 2020; 51:155-166. [PMID: 31845595 DOI: 10.1177/1550059419893472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bipolar disorder (BD) is a chronic illness with a relapsing and remitting time course. Relapses are manic or depressive in nature and intermitted by euthymic states. During euthymic states, patients lack the criteria for a manic or depressive diagnosis, but still suffer from impaired cognitive functioning as indicated by difficulties in executive and language-related processing. The present study investigated whether these deficits are reflected by altered intracortical activity in or functional connectivity between brain regions involved in these processes such as the prefrontal and the temporal cortices. Vigilance-controlled resting state EEG of 13 euthymic BD patients and 13 healthy age- and sex-matched controls was analyzed. Head-surface EEG was recomputed into intracortical current density values in 8 frequency bands using standardized low-resolution electromagnetic tomography. Intracortical current densities were averaged in 19 evenly distributed regions of interest (ROIs). Lagged coherences were computed between each pair of ROIs. Source activity and coherence measures between patients and controls were compared (paired t tests). Reductions in temporal cortex activity and in large-scale functional connectivity in patients compared to controls were observed. Activity reductions affected all 8 EEG frequency bands. Functional connectivity reductions affected the delta, theta, alpha-2, beta-2, and gamma band and involved but were not limited to prefrontal and temporal ROIs. The findings show reduced activation of the temporal cortex and reduced coordination between many brain regions in BD euthymia. These activation and connectivity changes may disturb the continuous frontotemporal information flow required for executive and language-related processing, which is impaired in euthymic BD patients.
Collapse
Affiliation(s)
- Annamaria Painold
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Pascal L Faber
- Department of Psychiatry, Psychotherapy and Psychosomatics, The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Sabrina Mörkl
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Anna K Holl
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Peter Achermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| | - Bernd Saletu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gerda Saletu-Zyhlarz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Peter Anderer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Armin Birner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Patricia Milz
- Department of Psychiatry, Psychotherapy and Psychosomatics, The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| |
Collapse
|
4
|
Michelini G, Kitsune V, Vainieri I, Hosang GM, Brandeis D, Asherson P, Kuntsi J. Shared and Disorder-Specific Event-Related Brain Oscillatory Markers of Attentional Dysfunction in ADHD and Bipolar Disorder. Brain Topogr 2018; 31:672-689. [PMID: 29417321 PMCID: PMC5999167 DOI: 10.1007/s10548-018-0625-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/25/2018] [Indexed: 12/28/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) often present with overlapping symptoms and cognitive impairments, such as increased fluctuations in attentional performance measured by increased reaction-time variability (RTV). We previously provided initial evidence of shared and distinct event-related potential (ERP) impairments in ADHD and BD in a direct electrophysiological comparison, but no study to date has compared neural mechanisms underlying attentional impairments with finer-grained brain oscillatory markers. Here, we aimed to compare the neural underpinnings of impaired attentional processes in ADHD and BD, by examining event-related brain oscillations during a reaction-time task under slow-unrewarded baseline and fast-incentive conditions. We measured cognitive performance, ERPs and brain-oscillatory modulations of power and phase variability in 20 women with ADHD, 20 women with BD (currently euthymic) and 20 control women. Compared to controls, both ADHD and BD groups showed increased RTV in the baseline condition and increased RTV, theta phase variability and lower contingent negative variation in the fast-incentive condition. Unlike controls, neither clinical group showed an improvement from the slow-unrewarded baseline to the fast-incentive condition in attentional P3 amplitude or alpha power suppression. Most impairments did not differ between the disorders, as only an adjustment in beta suppression between conditions (lower in the ADHD group) distinguished between the clinical groups. These findings suggest shared impairments in women with ADHD and BD in cognitive and neural variability, preparatory activity and inability to adjust attention allocation and activation. These overlapping impairments may represent shared neurobiological mechanisms of attentional dysfunction in ADHD and BD, and potentially underlie common symptoms in both disorders.
Collapse
Affiliation(s)
- Giorgia Michelini
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Viryanaga Kitsune
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Isabella Vainieri
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Georgina M Hosang
- Centre for Psychiatry, Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Philip Asherson
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Jonna Kuntsi
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
5
|
Abstract
Electroencephalography (EEG) studies in patients with bipolar disorder have revealed lower amplitudes in brain oscillations. The aim of this review is to describe lithium-induced EEG changes in bipolar disorder and to discuss potential underlying factors. A literature survey about lithium-induced EEG changes in bipolar disorder was performed. Lithium consistently enhances magnitudes of brain oscillations in slow frequencies (delta and theta) in both resting-state EEG studies as well as event-related oscillations studies. Enhancement of magnitudes of beta oscillations is specific to event-related oscillations. Correlation between serum lithium levels and brain oscillations has been reported. Lithium-induced changes in brain oscillations might correspond to lithium-induced alterations in neurotransmitters, signaling cascades, plasticity, brain structure, or biophysical properties of lithium. Therefore, lithium-induced changes in brain oscillations could be promising biomarkers to assess the molecular mechanisms leading to variability in efficacy. Since the variability of lithium response in bipolar disorder is due to the genetic differences in the mechanisms involving lithium, it would be highly promising to assess the lithium-induced EEG changes as biomarkers in genetic studies.
Collapse
Affiliation(s)
- Murat İlhan Atagün
- Department of Psychiatry, Yıldırım Beyazıt University Medical School, Cankaya, Ankara, Turkey
| |
Collapse
|