1
|
Dolatabadi MK, Kamali M, Shayegh F. Adaptive Dynamic Surface Control of Epileptor Model Based on Nonlinear Luenberger State Observer. Int J Neural Syst 2025; 35:2550022. [PMID: 40170423 DOI: 10.1142/s0129065725500224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Epilepsy is a prevalent neurological disorder characterized by recurrent seizures, which are sudden bursts of electrical activity in the brain. The Epileptor model is a computational model specifically created to replicate the complex dynamics of epileptic seizures. The parameters of the Epileptor model can be adjusted to simulate activities associated with some seizure classes seen in patients. Due to the closeness of this model to nonlinear systems with nonstrict feedback form and the existence of uncertainties in the model, an adaptive dynamic surface controller is chosen for control of the system. Considering that the states in the Epileptor model are not measurable and the only measurable output is the Local Field Potentials signal, a nonlinear Luenberger state observer is developed to estimate the system states. It is the first time that the Luenberger state observer is used for the Epileptor model. In this approach, Radial Basis Neural Networks are utilized to estimate the system's nonlinear dynamics. The stability of our proposed controller along with the observer is proved, and the performance is shown using simulation. Simulation results show that by using the suggested method, the output and states of the, system track their reference, value with an acceptable error.
Collapse
Affiliation(s)
- Mahdi Kamali Dolatabadi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marzieh Kamali
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farzaneh Shayegh
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
2
|
Zhang Y, Feng H, Wang S, Lv H, Xiao T, Wang Z, Zhao Y. Tiny Convolutional Neural Network with Supervised Contrastive Learning for Epileptic Seizure Prediction. Int J Neural Syst 2025:2550034. [PMID: 40289787 DOI: 10.1142/s0129065725500340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Automatic seizure prediction based on ElectroEncephaloGraphy (EEG) ensures the safety of patients with epilepsy and mitigates anxiety. In recent years, significant progress has been made in this field. However, the predictive performance of existing methods encounters a bottleneck that is difficult to overcome. Moreover, there are certain limitations such as significant differences in prediction efficacy among patients or intricate model structures. Given these considerations, Siamese Network (SiaNet) and Triplet Network (TriNet) are proposed based on tiny convolutional neural network and supervised contrastive learning. Short-Time Fourier Transform (STFT) is first applied to the pre-processed data. Then data tuples are constructed and fed into the networks for training. Both networks try to minimize the interval between samples of the same class while maximize the interval between samples of different classes. The two networks consist of multiple branches with shared weights, which can learn from each other via contrastive learning. Promising results are obtained on the CHB-MIT and Siena datasets, with a total of 35 patients. Meanwhile, both models have only 19.351K parameters.
Collapse
Affiliation(s)
- Yongfeng Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Hailing Feng
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Shuai Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Hongbin Lv
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Tiantian Xiao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Ziwei Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Yanna Zhao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
3
|
Toliopoulos T, Gounaris A, Laskaris N. Unsupervised detection of sub-sequence anomalies in epilepsy EEG. Comput Biol Med 2025; 192:110168. [PMID: 40279973 DOI: 10.1016/j.compbiomed.2025.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
Seizures in electroencephalogram (EEG) data constitute a special case of sub-sequence anomalies in multivariate data with numerous challenges. These challenges include the irregular patterns exhibited even by the same individual, making seizures difficult to detect. The common approach seizure detection relies on supervised models trained specifically for individual patients. However, unsupervised anomaly detection techniques, despite their potential advantages - such as out-of-the-box usability, easy generalization to diverse individuals, and suitability for online applications - have not been explored as extensively as supervised models. This paper aims to address this gap by investigating the effectiveness of state-of-the-art unsupervised detectors for sub-sequence anomalies in EEG data. We present concrete evidence that unsupervised detectors can yield results on par with supervised models in detecting seizure sequences in EEG recordings. Extensive experiments demonstrate that unsupervised detectors can achieve up to 99.38% sensitivity (compared to up to 100% sensitivity in supervised models) without requiring hyper-parameter fine-tuning. Furthermore, the effectiveness and efficiency of different types of unsupervised algorithms are compared using a diverse set of metrics to ensure a fair and comprehensive evaluation. This paper aims to address this gap by investigating the effectiveness of state-of-the-art unsupervised detectors for sub-sequence anomalies in EEG data. We present concrete evidence that unsupervised detectors can yield results on par with supervised models in detecting seizure sequences in EEG recordings. Extensive experiments demonstrate that unsupervised detectors can achieve up to 99.38% sensitivity (compared to up to 100% sensitivity in supervised models) without requiring hyper-parameter fine-tuning. Furthermore, the effectiveness and efficiency of different types of unsupervised algorithms are compared using a diverse set of metrics to ensure a fair and comprehensive evaluation.
Collapse
Affiliation(s)
| | | | - Nikos Laskaris
- Department of Informatics, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
4
|
Wang J, Li H, Li C, Lu W, Cui H, Zhong X, Ren S, Shang Z, Zhou W. Efficient Seizure Detection by Complementary Integration of Convolutional Neural Network and Vision Transformer. Int J Neural Syst 2025:2550023. [PMID: 40159955 DOI: 10.1142/s0129065725500236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Epilepsy, as a prevalent neurological disorder, is characterized by its high incidence, sudden onset, and recurrent nature. The development of an accurate and real-time automatic seizure detection system is crucial for assisting clinicians in making precise diagnoses and providing timely treatment for epilepsy. However, conventional automatic seizure detection methods often face limitations in simultaneously capturing both local features and long-range correlations inherent in EEG signals, which constrains the accuracy of these existing detection systems. To address this challenge, we propose a novel end-to-end seizure detection framework, named CNN-ViT, which complementarily integrates a Convolutional Neural Network (CNN) for capturing local inductive bias of EEG and Vision Transformer (ViT) for further mining their long-range dependency. Initially, raw electroencephalogram (EEG) signals are filtered and segmented and then sent into the CNN-ViT model to learn their local and global feature representations and identify the seizure patterns. Meanwhile, we adopt a global max-pooling strategy to reduce the scale of the CNN-ViT model and make it focus on the most discriminative features. Given the occurrence of diverse artifacts in long-term EEG recordings, we further employ post-processing techniques to improve the seizure detection performance. The proposed CNN-ViT model, when evaluated using the publicly accessible CHB-MIT EEG dataset, reveals its outstanding performance with a sensitivity of 99.34% at a segment-based level and 99.70% at an event-based level. On the SH-SDU dataset we collected, our method yielded a segment-based sensitivity of 99.86%, specificity of 94.33%, and accuracy of 94.40%, along with an event-based sensitivity of 100%. The total processing time for 1[Formula: see text]h EEG data was only 3.07[Formula: see text]s. These exceptional results demonstrate the potential of our method as a reference for clinical real-time seizure detection applications.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
| | - Haotian Li
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
| | - Chuanyu Li
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
| | - Weisen Lu
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
| | - Haozhou Cui
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
| | - Xiangwen Zhong
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
| | - Shuhao Ren
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
| | - Zhida Shang
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Weidong Zhou
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
5
|
Cavaleri M, Zandron C. Exploring the Versatility of Spiking Neural Networks: Applications Across Diverse Scenarios. Int J Neural Syst 2025; 35:2550007. [PMID: 39710848 DOI: 10.1142/s0129065725500078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In the last few decades, Artificial Neural Networks have become more and more important, evolving into a powerful tool to implement learning algorithms. Spiking neural networks represent the third generation of Artificial Neural Networks; they have earned growing significance due to their remarkable achievements in pattern recognition, finding extensive utility across diverse domains such as e.g. diagnostic medicine. Usually, Spiking Neural Networks are slightly less accurate than other Artificial Neural Networks, but they require a reduced amount of energy to perform calculations; this amount of energy further reduces in a very significant manner if they are implemented on hardware specifically designed for them, like neuromorphic hardware. In this work, we focus on exploring the versatility of Spiking Neural Networks and their potential applications across a range of scenarios by exploiting their adaptability and dynamic processing capabilities, which make them suitable for various tasks. A first rough network is designed based on the dataset's general attributes; the network is then refined through an extensive grid search algorithm to identify the optimal values for hyperparameters. This dual-step process ensures that the Spiking Neural Network can be tailored to diverse and potentially very different situations in a direct and intuitive manner. We test this by considering three different scenarios: epileptic seizure detection, both considering binary and multi-classification tasks, as well as wine classification. The proposed methodology turned out to be highly effective in binary class scenarios: the Spiking Neural Networks models achieved significantly lower energy consumption compared to Artificial Neural Networks while approaching nearly 100% accuracy. In the case of multi-class classification, the model achieved an accuracy of approximately 90%, thus indicating that it can still be further improved.
Collapse
Affiliation(s)
- Matteo Cavaleri
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Viale Sarca 336/14 Milano 20126, Italy
| | - Claudio Zandron
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Viale Sarca 336/14 Milano 20126, Italy
| |
Collapse
|
6
|
Cao X, Zheng S, Zhang J, Chen W, Du G. A hybrid CNN-Bi-LSTM model with feature fusion for accurate epilepsy seizure detection. BMC Med Inform Decis Mak 2025; 25:6. [PMID: 39762881 PMCID: PMC11706039 DOI: 10.1186/s12911-024-02845-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The diagnosis and treatment of epilepsy continue to face numerous challenges, highlighting the urgent need for the development of rapid, accurate, and non-invasive methods for seizure detection. In recent years, advancements in the analysis of electroencephalogram (EEG) signals have garnered widespread attention, particularly in the area of seizure recognition. METHODS A novel hybrid deep learning approach that combines feature fusion for efficient seizure detection is proposed in this study. First, the Discrete Wavelet Transform (DWT) is applied to perform a five-level decomposition of the raw EEG signals, from which time-frequency and nonlinear features are extracted from the decomposed sub-bands. To eliminate redundant features, Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is employed to select the most distinctive features for fusion. Finally, seizure states are classified using Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-Bi-LSTM). RESULTS The method was rigorously validated on the Bonn and New Delhi datasets. In the binary classification tasks, both the D-E group (Bonn dataset) and the Interictal-Ictal group (New Delhi dataset) achieved 100% accuracy, 100% sensitivity, 100% specificity, 100% precision, and 100% F1-score. In the three-class classification task A-D-E on the Bonn dataset, the model performed excellently, achieving 96.19% accuracy, 95.08% sensitivity, 97.34% specificity, 97.49% precision, and 96.18% F1-score. In addition, the proposed method was further validated on the larger and more clinically relevant CHB-MIT dataset, achieving average metrics of 98.43% accuracy, 97.84% sensitivity, 99.21% specificity, 99.14% precision, and an F1 score of 98.39%. Compared to existing literature, our method outperformed several recent studies in similar classification tasks, underscoring the effectiveness and advancement of the approach presented in this research. CONCLUSION The findings indicate that the proposed method demonstrates a high level of effectiveness in detecting seizures, which is a crucial aspect of managing epilepsy. By improving the accuracy of seizure detection, this method has the potential to significantly enhance the process of diagnosing and treating individuals affected by epilepsy. This advancement could lead to more tailored treatment plans, timely interventions, and ultimately, better quality of life for patients.
Collapse
Affiliation(s)
- Xiaoshuai Cao
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Shaojie Zheng
- College of Information Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jincan Zhang
- College of Information Engineering, Henan University of Science and Technology, Luoyang, China
| | - Wenna Chen
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| | - Ganqin Du
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
7
|
Cui H, Zhong X, Li H, Li C, Dong X, Ji D, He L, Zhou W. A Lightweight Convolutional Neural Network-Reformer Model for Efficient Epileptic Seizure Detection. Int J Neural Syst 2024; 34:2450065. [PMID: 39347621 DOI: 10.1142/s0129065724500655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
A real-time and reliable automatic detection system for epileptic seizures holds significant value in assisting physicians with rapid diagnosis and treatment of epilepsy. Aiming to address this issue, a novel lightweight model called Convolutional Neural Network-Reformer (CNN-Reformer) is proposed for seizure detection on long-term EEG. The CNN-Reformer consists of two main parts: the Data Reshaping (DR) module and the Efficient Attention and Concentration (EAC) module. This framework reduces network parameters while retaining effective feature extraction of multi-channel EEGs, thereby improving model computational efficiency and real-time performance. Initially, the raw EEG signals undergo Discrete Wavelet Transform (DWT) for signal filtering, and then fed into the DR module for data compression and reshaping while preserving local features. Subsequently, these local features are sent to the EAC module to extract global features and perform categorization. Post-processing involving sliding window averaging, thresholding, and collar techniques is further deployed to reduce the false detection rate (FDR) and improve detection performance. On the CHB-MIT scalp EEG dataset, our method achieves an average sensitivity of 97.57%, accuracy of 98.09%, and specificity of 98.11% at segment-based level, and a sensitivity of 96.81%, along with FDR of 0.27/h, and latency of 17.81 s at the event-based level. On the SH-SDU dataset we collected, our method yielded segment-based sensitivity of 94.51%, specificity of 92.83%, and accuracy of 92.81%, along with event-based sensitivity of 94.11%. The average testing time for 1[Formula: see text]h of multi-channel EEG signals is 1.92[Formula: see text]s. The excellent results and fast computational speed of the CNN-Reformer model demonstrate its potential for efficient seizure detection.
Collapse
Affiliation(s)
- Haozhou Cui
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Xiangwen Zhong
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Haotian Li
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Chuanyu Li
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Xingchen Dong
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Dezan Ji
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Landi He
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Weidong Zhou
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
8
|
Hu W, Wang J, Li F, Ge D, Wang Y, Jia Q, Yuan S. A Modified Transformer Network for Seizure Detection Using EEG Signals. Int J Neural Syst 2024:2550003. [PMID: 39560448 DOI: 10.1142/s0129065725500030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Seizures have a serious impact on the physical function and daily life of epileptic patients. The automated detection of seizures can assist clinicians in taking preventive measures for patients during the diagnosis process. The combination of deep learning (DL) model with convolutional neural network (CNN) and transformer network can effectively extract both local and global features, resulting in improved seizure detection performance. In this study, an enhanced transformer network named Inresformer is proposed for seizure detection, which is combined with Inception and Residual network extracting different scale features of electroencephalography (EEG) signals to enrich the feature representation. In addition, the improved transformer network replaces the existing Feedforward layers with two half-step Feedforward layers to enhance the nonlinear representation of the model. The proposed architecture utilizes discrete wavelet transform (DWT) to decompose the original EEG signals, and the three sub-bands are selected for signal reconstruction. Then, the Co-MixUp method is adopted to solve the problem of data imbalance, and the processed signals are sent to the Inresformer network for seizure information capture and recognition. Finally, discriminant fusion is performed on the results of three-scale EEG sub-signals to achieve final seizure recognition. The proposed network achieves the best accuracy of 100% on Bonn dataset and the average accuracy of 98.03%, sensitivity of 95.65%, and specificity of 98.57% on the long-term CHB-MIT dataset. Compared to the existing DL networks, the proposed method holds significant potential for clinical research and diagnosis applications with competitive performance.
Collapse
Affiliation(s)
- Wenrong Hu
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Juan Wang
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Feng Li
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Daohui Ge
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Yuxia Wang
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Qingwei Jia
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Shasha Yuan
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| |
Collapse
|
9
|
Liu Y, Jiang Y, Liu J, Li J, Liu M, Nie W, Yuan Q. Efficient EEG Feature Learning Model Combining Random Convolutional Kernel with Wavelet Scattering for Seizure Detection. Int J Neural Syst 2024; 34:2450060. [PMID: 39252680 DOI: 10.1142/s0129065724500606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Automatic seizure detection has significant value in epilepsy diagnosis and treatment. Although a variety of deep learning models have been proposed to automatically learn electroencephalography (EEG) features for seizure detection, the generalization performance and computational burden of such deep models remain the bottleneck of practical application. In this study, a novel lightweight model based on random convolutional kernel transform (ROCKET) is developed for EEG feature learning for seizure detection. Specifically, random convolutional kernels are embedded into the structure of a wavelet scattering network instead of original wavelet transform convolutions. Then the significant EEG features are selected from the scattering coefficients and convolutional outputs by analysis of variance (ANOVA) and minimum redundancy-maximum relevance (MRMR) methods. This model not only preserves the merits of the fast-training process from ROCKET, but also provides insight into seizure detection by retaining only the helpful channels. The extreme gradient boosting (XGboost) classifier was combined with this EEG feature learning model to build a comprehensive seizure detection system that achieved promising epoch-based results, with over 90% of both sensitivity and specificity on the scalp and intracranial EEG databases. The experimental comparisons showed that the proposed method outperformed other state-of-the-art methods for cross-patient and patient-specific seizure detection.
Collapse
Affiliation(s)
- Yasheng Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Yonghui Jiang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Jie Liu
- Department of Pediatric Intensive Care Unit, Shandong Provincial Maternal and Child Health Care Hospital, Affiliated to Qingdao University, Jinan 250014, P. R. China
| | - Jie Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Mingze Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Weiwei Nie
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University, Jinan 250014, P. R. China
| | - Qi Yuan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
10
|
Wang J, Sun M, Huang W. Unsupervised EEG-Based Seizure Anomaly Detection with Denoising Diffusion Probabilistic Models. Int J Neural Syst 2024; 34:2450047. [PMID: 38864575 DOI: 10.1142/s0129065724500473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
While many seizure detection methods have demonstrated great accuracy, their training necessitates a substantial volume of labeled data. To address this issue, we propose a novel method for unsupervised seizure anomaly detection called SAnoDDPM, which uses denoising diffusion probabilistic models (DDPM). We designed a novel pipeline that uses a variable lower bound on Markov chains to identify potential values that are unlikely to occur in anomalous data. The model is first trained on normal data, then anomalous data is input to the trained model. The model resamples the anomalous data and converts it to normal data. Finally, the presence of seizures can be determined by comparing the before and after data. Moreover, the input 2D spectrograms are encoded into vector-quantized representations, which enables powerful and efficient DDPM while maintaining its quality. Experimental comparisons on the publicly available datasets, CHB-MIT and TUH, show that our method delivers better results, significantly reduces inference time, and is suitable for deployment in a clinical environments. As far as we are aware, this is the first DDPM-based method for seizure anomaly detection. This novel approach significantly contributes to the progression of seizure detection algorithms, thereby augmenting their practicality in clinical settings.
Collapse
Affiliation(s)
- Jiale Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan, P. R. China
| | - Mengxue Sun
- School of Information Science and Engineering, Shandong Normal University, Jinan, P. R. China
| | - Wenhui Huang
- School of Information Science and Engineering, Shandong Normal University, Jinan, P. R. China
| |
Collapse
|
11
|
Ji D, He L, Dong X, Li H, Zhong X, Liu G, Zhou W. Epileptic Seizure Prediction Using Spatiotemporal Feature Fusion on EEG. Int J Neural Syst 2024; 34:2450041. [PMID: 38770650 DOI: 10.1142/s0129065724500412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Electroencephalography (EEG) plays a crucial role in epilepsy analysis, and epileptic seizure prediction has significant value for clinical treatment of epilepsy. Currently, prediction methods using Convolutional Neural Network (CNN) primarily focus on local features of EEG, making it challenging to simultaneously capture the spatial and temporal features from multi-channel EEGs to identify the preictal state effectively. In order to extract inherent spatial relationships among multi-channel EEGs while obtaining their temporal correlations, this study proposed an end-to-end model for the prediction of epileptic seizures by incorporating Graph Attention Network (GAT) and Temporal Convolutional Network (TCN). Low-pass filtered EEG signals were fed into the GAT module for EEG spatial feature extraction, and followed by TCN to capture temporal features, allowing the end-to-end model to acquire the spatiotemporal correlations of multi-channel EEGs. The system was evaluated on the publicly available CHB-MIT database, yielding segment-based accuracy of 98.71%, specificity of 98.35%, sensitivity of 99.07%, and F1-score of 98.71%, respectively. Event-based sensitivity of 97.03% and False Positive Rate (FPR) of 0.03/h was also achieved. Experimental results demonstrated this system can achieve superior performance for seizure prediction by leveraging the fusion of EEG spatiotemporal features without the need of feature engineering.
Collapse
Affiliation(s)
- Dezan Ji
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Landi He
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Xingchen Dong
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Haotian Li
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Xiangwen Zhong
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Guoyang Liu
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Weidong Zhou
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
12
|
Wang Y, Yuan S, Liu JX, Hu W, Jia Q, Xu F. Combining EEG Features and Convolutional Autoencoder for Neonatal Seizure Detection. Int J Neural Syst 2024; 34:2450040. [PMID: 38753012 DOI: 10.1142/s0129065724500400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Neonatal epilepsy is a common emergency phenomenon in neonatal intensive care units (NICUs), which requires timely attention, early identification, and treatment. Traditional detection methods mostly use supervised learning with enormous labeled data. Hence, this study offers a semi-supervised hybrid architecture for detecting seizures, which combines the extracted electroencephalogram (EEG) feature dataset and convolutional autoencoder, called Fd-CAE. First, various features in the time domain and entropy domain are extracted to characterize the EEG signal, which helps distinguish epileptic seizures subsequently. Then, the unlabeled EEG features are fed into the convolutional autoencoder (CAE) for training, which effectively represents EEG features by optimizing the loss between the input and output features. This unsupervised feature learning process can better combine and optimize EEG features from unlabeled data. After that, the pre-trained encoder part of the model is used for further feature learning of labeled data to obtain its low-dimensional feature representation and achieve classification. This model is performed on the neonatal EEG dataset collected at the University of Helsinki Hospital, which has a high discriminative ability to detect seizures, with an accuracy of 92.34%, precision of 93.61%, recall rate of 98.74%, and F1-score of 95.77%, respectively. The results show that unsupervised learning by CAE is beneficial to the characterization of EEG signals, and the proposed Fd-CAE method significantly improves classification performance.
Collapse
Affiliation(s)
- Yuxia Wang
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Shasha Yuan
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Wenrong Hu
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Qingwei Jia
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Fangzhou Xu
- School of Electronic and Information Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
13
|
Lv H, Zhang Y, Xiao T, Wang Z, Wang S, Feng H, Zhao X, Zhao Y. Seizure Detection Based on Lightweight Inverted Residual Attention Network. Int J Neural Syst 2024; 34:2450042. [PMID: 38818805 DOI: 10.1142/s0129065724500424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Timely and accurately seizure detection is of great importance for the diagnosis and treatment of epilepsy patients. Existing seizure detection models are often complex and time-consuming, highlighting the urgent need for lightweight seizure detection. Additionally, existing methods often neglect the key characteristic channels and spatial regions of electroencephalography (EEG) signals. To solve these issues, we propose a lightweight EEG-based seizure detection model named lightweight inverted residual attention network (LRAN). Specifically, we employ a four-stage inverted residual mobile block (iRMB) to effectively extract the hierarchical features from EEG. The convolutional block attention module (CBAM) is introduced to make the model focus on important feature channels and spatial information, thereby enhancing the discrimination of the learned features. Finally, convolution operations are used to capture local information and spatial relationships between features. We conduct intra-subject and inter-subject experiments on a publicly available dataset. Intra-subject experiments obtain 99.25% accuracy in segment-based detection and 0.36/h false detection rate (FDR) in event-based detection, respectively. Inter-subject experiments obtain 84.32% accuracy. Both sets of experiments maintain high classification accuracy with a low number of parameters, where the multiply accumulate operations (MACs) are 25.86[Formula: see text]M and the number of parameters is 0.57[Formula: see text]M.
Collapse
Affiliation(s)
- Hongbin Lv
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Yongfeng Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Tiantian Xiao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Ziwei Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Shuai Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Hailing Feng
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Xianxun Zhao
- Department of Automotive Engineering, Heze Engineering Technician College, Heze 274000, P. R. China
| | - Yanna Zhao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
14
|
Nie J, Shu H, Wu F. An epilepsy classification based on FFT and fully convolutional neural network nested LSTM. Front Neurosci 2024; 18:1436619. [PMID: 39139499 PMCID: PMC11319253 DOI: 10.3389/fnins.2024.1436619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Background and objective Epilepsy, which is associated with neuronal damage and functional decline, typically presents patients with numerous challenges in their daily lives. An early diagnosis plays a crucial role in managing the condition and alleviating the patients' suffering. Electroencephalogram (EEG)-based approaches are commonly employed for diagnosing epilepsy due to their effectiveness and non-invasiveness. In this study, a classification method is proposed that use fast Fourier Transform (FFT) extraction in conjunction with convolutional neural networks (CNN) and long short-term memory (LSTM) models. Methods Most methods use traditional frameworks to classify epilepsy, we propose a new approach to this problem by extracting features from the source data and then feeding them into a network for training and recognition. It preprocesses the source data into training and validation data and then uses CNN and LSTM to classify the style of the data. Results Upon analyzing a public test dataset, the top-performing features in the fully CNN nested LSTM model for epilepsy classification are FFT features among three types of features. Notably, all conducted experiments yielded high accuracy rates, with values exceeding 96% for accuracy, 93% for sensitivity, and 96% for specificity. These results are further benchmarked against current methodologies, showcasing consistent and robust performance across all trials. Our approach consistently achieves an accuracy rate surpassing 97.00%, with values ranging from 97.95 to 99.83% in individual experiments. Particularly noteworthy is the superior accuracy of our method in the AB versus (vs.) CDE comparison, registering at 99.06%. Conclusion Our method exhibits precise classification abilities distinguishing between epileptic and non-epileptic individuals, irrespective of whether the participant's eyes are closed or open. Furthermore, our technique shows remarkable performance in effectively categorizing epilepsy type, distinguishing between epileptic ictal and interictal states versus non-epileptic conditions. An inherent advantage of our automated classification approach is its capability to disregard EEG data acquired during states of eye closure or eye-opening. Such innovation holds promise for real-world applications, potentially aiding medical professionals in diagnosing epilepsy more efficiently.
Collapse
Affiliation(s)
| | - Huazhong Shu
- Laboratory of Image Science and Technology, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, China
| | | |
Collapse
|
15
|
Dong C, Sun D. Spatial-Temporal Dynamic Hypergraph Information Bottleneck for Brain Network Classification. Int J Neural Syst 2024:2450053. [PMID: 39017038 DOI: 10.1142/s0129065724500539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Recently, Graph Neural Networks (GNNs) have gained widespread application in automatic brain network classification tasks, owing to their ability to directly capture crucial information in non-Euclidean structures. However, two primary challenges persist in this domain. First, within the realm of clinical neuro-medicine, signals from cerebral regions are inevitably contaminated with noise stemming from physiological or external factors. The construction of brain networks heavily relies on set thresholds and feature information within brain regions, making it susceptible to the incorporation of such noises into the brain topology. Additionally, the static nature of the artificially constructed brain network's adjacent structure restricts real-time changes in brain topology. Second, mainstream GNN-based approaches tend to focus solely on capturing information interactions of nearest neighbor nodes, overlooking high-order topology features. In response to these challenges, we propose an adaptive unsupervised Spatial-Temporal Dynamic Hypergraph Information Bottleneck (ST-DHIB) framework for dynamically optimizing brain networks. Specifically, adopting an information theory perspective, Graph Information Bottleneck (GIB) is employed for purifying graph structure, and dynamically updating the processed input brain signals. From a graph theory standpoint, we utilize the designed Hypergraph Neural Network (HGNN) and Bi-LSTM to capture higher-order spatial-temporal context associations among brain channels. Comprehensive patient-specific and cross-patient experiments have been conducted on two available datasets. The results demonstrate the advancement and generalization of the proposed framework.
Collapse
Affiliation(s)
- Changxu Dong
- School of Artificial Intelligence, Anhui University, Hefei 230601, P. R. China
| | - Dengdi Sun
- School of Artificial Intelligence, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
16
|
Wu M, Peng H, Liu Z, Wang J. Seizure Detection of EEG Signals Based on Multi-Channel Long- and Short-Term Memory-Like Spiking Neural Model. Int J Neural Syst 2024:2450051. [PMID: 39004932 DOI: 10.1142/s0129065724500515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Seizure is a common neurological disorder that usually manifests itself in recurring seizure, and these seizures can have a serious impact on a person's life and health. Therefore, early detection and diagnosis of seizure is crucial. In order to improve the efficiency of early detection and diagnosis of seizure, this paper proposes a new seizure detection method, which is based on discrete wavelet transform (DWT) and multi-channel long- and short-term memory-like spiking neural P (LSTM-SNP) model. First, the signal is decomposed into 5 levels by using DWT transform to obtain the features of the components at different frequencies, and a series of time-frequency features in wavelet coefficients are extracted. Then, these different features are used to train a multi-channel LSTM-SNP model and perform seizure detection. The proposed method achieves a high seizure detection accuracy on the CHB-MIT dataset: 98.25% accuracy, 98.22% specificity and 97.59% sensitivity. This indicates that the proposed epilepsy detection method can show competitive detection performance.
Collapse
Affiliation(s)
- Min Wu
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Hong Peng
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Zhicai Liu
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Jun Wang
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
17
|
Gill TS, Zaidi SSH, Shirazi MA. Attention-based deep convolutional neural network for classification of generalized and focal epileptic seizures. Epilepsy Behav 2024; 155:109732. [PMID: 38636140 DOI: 10.1016/j.yebeh.2024.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
Epilepsy affects over 50 million people globally. Electroencephalography is critical for epilepsy diagnosis, but manual seizure classification is time-consuming and requires extensive expertise. This paper presents an automated multi-class seizure classification model using EEG signals from the Temple University Hospital Seizure Corpus ver. 1.5.2. 11 features including time-based correlation, time-based eigenvalues, power spectral density, frequency-based correlation, frequency-based eigenvalues, sample entropy, spectral entropy, logarithmic sum, standard deviation, absolute mean, and ratio of Daubechies D4 wavelet transformed coefficients were extracted from 10-second sliding windows across channels. The model combines multi-head self-attention mechanism with a deep convolutional neural network (CNN) to classify seven subtypes of generalized and focal epileptic seizures. The model achieved 0.921 weighted accuracy and 0.902 weighted F1 score in classifying focal onset non-motor, generalized onset non-motor, simple partial, complex partial, absence, tonic, and tonic-clonic seizures. In comparison, a CNN model without multi-head attention achieved 0.767 weighted accuracy. Ablation studies were conducted to validate the importance of transformer encoders and attention. The promising classification results demonstrate the potential of deep learning for handling EEG complexity and improving epilepsy diagnosis. This seizure classification model could enable timely interventions when translated into clinical practice.
Collapse
Affiliation(s)
- Taimur Shahzad Gill
- Department of Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Syed Sajjad Haider Zaidi
- Department of Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Muhammad Ayaz Shirazi
- Department of Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| |
Collapse
|
18
|
Dong X, Wen Y, Ji D, Yuan S, Liu Z, Shang W, Zhou W. Epileptic Seizure Detection with an End-to-End Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model. Int J Neural Syst 2024; 34:2450012. [PMID: 38230571 DOI: 10.1142/s0129065724500126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Automatic seizure detection plays a key role in assisting clinicians for rapid diagnosis and treatment of epilepsy. In view of the parallelism of temporal convolutional network (TCN) and the capability of bidirectional long short-term memory (BiLSTM) in mining the long-range dependency of multi-channel time-series, we propose an automatic seizure detection method with a novel end-to-end TCN-BiLSTM model in this work. First, raw EEG is filtered with a 0.5-45 Hz band-pass filter, and the filtered data are input into the proposed TCN-BiLSTM network for feature extraction and classification. Post-processing process including moving average filtering, thresholding and collar technique is then employed to further improve the detection performance. The method was evaluated on two EEG database. On the CHB-MIT scalp EEG database, our method achieved a segment-based sensitivity of 94.31%, specificity of 97.13%, and accuracy of 97.09%. Meanwhile, an event-based sensitivity of 96.48% and an average false detection rate (FDR) of 0.38/h were obtained. On the SH-SDU database we collected, the segment-based sensitivity of 94.99%, specificity of 93.25%, and accuracy of 93.27% were achieved. In addition, an event-based sensitivity of 99.35% and a false detection rate of 0.54/h were yielded. The total detection time consumed for 1[Formula: see text]h EEG data was 5.65[Formula: see text]s. These results demonstrate the superiority and promising potential of the proposed method in real-time monitoring of epileptic seizures.
Collapse
Affiliation(s)
- Xingchen Dong
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Yiming Wen
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Dezan Ji
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Shasha Yuan
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Zhen Liu
- Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Wei Shang
- Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Weidong Zhou
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
19
|
Çetin E, Bilgin S, Bilgin G. A novel wearable ERP-based BCI approach to explicate hunger necessity. Neurosci Lett 2024; 818:137573. [PMID: 38036086 DOI: 10.1016/j.neulet.2023.137573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
This study aimed to design a Brain-Computer Interface system to detect people's hunger status. EEG signals were recorded in various scenarios to create a database. We extracted the time-domain and frequency-domain features from these signals and applied them to the inputs of various Machine Learning algorithms. We compared the classification performances and reached the best-performing algorithm. The highest success score of 97.62% was achieved using the Multilayer Perceptron Neural Network algorithm in Event-Related Potential analysis.
Collapse
Affiliation(s)
- Egehan Çetin
- Distance Education Application and Research Center, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Süleyman Bilgin
- Department of Electrical & Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey.
| | - Gürkan Bilgin
- Department of Electrical & Electronics Engineering, Faculty of Engineering and Architecture, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| |
Collapse
|
20
|
Yousif MAA, Ozturk M. Deep Learning-Based Classification of Epileptic Electroencephalography Signals Using a Concentrated Time-Frequency Approach. Int J Neural Syst 2023; 33:2350064. [PMID: 37830300 DOI: 10.1142/s0129065723500648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
ConceFT (concentration of frequency and time) is a new time-frequency (TF) analysis method which combines multitaper technique and synchrosqueezing transform (SST). This combination produces highly concentrated TF representations with approximately perfect time and frequency resolutions. In this paper, it is aimed to show the TF representation performance and robustness of ConceFT by using it for the classification of the epileptic electroencephalography (EEG) signals. Therefore, a signal classification algorithm which uses TF images obtained with ConceFT to feed the transfer learning structure has been presented. Epilepsy is a common neurological disorder that millions of people suffer worldwide. Daily lives of the patients are quite difficult because of the unpredictable time of seizures. EEG signals monitoring the electrical activity of the brain can be used to detect approaching seizures and make possible to warn the patient before the attack. GoogLeNet which is a well-known deep learning model has been preferred to classify TF images. Classification performance is directly related to the TF representation accuracy of the ConceFT. The proposed method has been tested for various classification scenarios and obtained accuracies between 95.83% and 99.58% for two and three-class classification scenarios. High results show that ConceFT is a successful and promising TF analysis method for non-stationary biomedical signals.
Collapse
Affiliation(s)
- Mosab A A Yousif
- Department of Biomedical Engineering, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Electronics Engineering, University of Gezira, Wad-Madani, Sudan
| | - Mahmut Ozturk
- Department of Electrical and Electronics Engineering, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
21
|
Wang Z, Hou S, Xiao T, Zhang Y, Lv H, Li J, Zhao S, Zhao Y. Lightweight Seizure Detection Based on Multi-Scale Channel Attention. Int J Neural Syst 2023; 33:2350061. [PMID: 37845193 DOI: 10.1142/s0129065723500612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Epilepsy is one kind of neurological disease characterized by recurring seizures. Recurrent seizures can cause ongoing negative mental and cognitive damage to the patient. Therefore, timely diagnosis and treatment of epilepsy are crucial for patients. Manual electroencephalography (EEG) signals analysis is time and energy consuming, making automatic detection using EEG signals particularly important. Many deep learning algorithms have thus been proposed to detect seizures. These methods rely on expensive and bulky hardware, which makes them unsuitable for deployment on devices with limited resources due to their high demands on computer resources. In this paper, we propose a novel lightweight neural network for seizure detection using pure convolutions, which is composed of inverted residual structure and multi-scale channel attention mechanism. Compared with other methods, our approach significantly reduces the computational complexity, making it possible to deploy on low-cost portable devices for seizures detection. We conduct experiments on the CHB-MIT dataset and achieves 98.7% accuracy, 98.3% sensitivity and 99.1% specificity with 2.68[Formula: see text]M multiply-accumulate operations (MACs) and only 88[Formula: see text]K parameters.
Collapse
Affiliation(s)
- Ziwei Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Sujuan Hou
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Tiantian Xiao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Yongfeng Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Hongbin Lv
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Jiacheng Li
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Shanshan Zhao
- Department of Hematology, Heze Hospital of Traditional Chinese Medicine, Heze 274000, P. R. China
| | - Yanna Zhao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
22
|
Zhang Y, Xiao T, Wang Z, Lv H, Wang S, Feng H, Zhao S, Zhao Y. Hybrid Network for Patient-Specific Seizure Prediction from EEG Data. Int J Neural Syst 2023; 33:2350056. [PMID: 37899653 DOI: 10.1142/s0129065723500569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Seizure prediction can improve the quality of life for patients with drug-resistant epilepsy. With the rapid development of deep learning, lots of seizure prediction methods have been proposed. However, seizure prediction based on single convolution models is limited by the inherent defects of convolution itself. Convolution pays attention to the local features while underestimates the global features. The long-term dependence of the electroencephalogram (EEG) data cannot be captured. In view of these defects, a hybrid model called STCNN based on Swin transformer (ST) and 2D convolutional neural network (2DCNN) is proposed. Time-frequency features extracted by short-term Fourier transform (STFT) are taken as the input of STCNN. ST blocks are used in STCNN to capture the global information and long-term dependencies of EEGs. Meanwhile, the 2DCNN blocks are adopted to capture the local information and short-term dependent features. The combination of the two blocks can fully exploit the seizure-related information thus improve the prediction performance. Comprehensive experiments are performed on the CHB-MIT scalp EEG dataset. The average seizure prediction sensitivity, the area under the ROC curve (AUC) and the false positive rate (FPR) are 92.94%, 95.56% and 0.073, respectively.
Collapse
Affiliation(s)
- Yongfeng Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Tiantian Xiao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Ziwei Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Hongbin Lv
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Shuai Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Hailing Feng
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Shanshan Zhao
- Department of Hematology, Heze Hospital of Traditional Chinese Medicine, Heze 274000, P. R. China
| | - Yanna Zhao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
23
|
Eyvazpour R, Navi FFT, Shakeri E, Nikzad B, Heysieattalab S. Machine learning-based classifying of risk-takers and risk-aversive individuals using resting-state EEG data: A pilot feasibility study. Brain Behav 2023; 13:e3139. [PMID: 37366037 PMCID: PMC10498077 DOI: 10.1002/brb3.3139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Decision-making is vital in interpersonal interactions and a country's economic and political conditions. People, especially managers, have to make decisions in different risky situations. There has been a growing interest in identifying managers' personality traits (i.e., risk-taking or risk-averse) in recent years. Although there are findings of signal decision-making and brain activity, the implementation of an intelligent brain-based technique to predict risk-averse and risk-taking managers is still in doubt. METHODS This study proposes an electroencephalogram (EEG)-based intelligent system to distinguish risk-taking managers from risk-averse ones by recording the EEG signals from 30 managers. In particular, wavelet transform, a time-frequency domain analysis method, was used on resting-state EEG data to extract statistical features. Then, a two-step statistical wrapper algorithm was used to select the appropriate features. The support vector machine classifier, a supervised learning method, was used to classify two groups of managers using chosen features. RESULTS Intersubject predictive performance could classify two groups of managers with 74.42% accuracy, 76.16% sensitivity, 72.32% specificity, and 75% F1-measure, indicating that machine learning (ML) models can distinguish between risk-taking and risk-averse managers using the features extracted from the alpha frequency band in 10 s analysis window size. CONCLUSIONS The findings of this study demonstrate the potential of using intelligent (ML-based) systems in distinguish between risk-taking and risk-averse managers using biological signals.
Collapse
Affiliation(s)
- Reza Eyvazpour
- Department of Biomedical Engineering, School of Electrical EngineeringIran University of Science and Technology (IUST)TehranIran
| | | | - Elmira Shakeri
- Department of Business Management, Faculty of Management and AccountingAllameh Tabataba'i UniversityTehranIran
| | - Behzad Nikzad
- Department of Cognitive NeuroscienceUniversity of TabrizTabrizIran
- Neurobioscince DivisionResearch Center of Bioscience and Biotechnology, University of TabrizTabrizIran
| | | |
Collapse
|
24
|
Einizade A, Nasiri S, Mozafari M, Sardouie SH, Clifford GD. Explainable automated seizure detection using attentive deep multi-view networks. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Wang J, Ge X, Shi Y, Sun M, Gong Q, Wang H, Huang W. Dual-Modal Information Bottleneck Network for Seizure Detection. Int J Neural Syst 2023; 33:2250061. [PMID: 36599663 DOI: 10.1142/s0129065722500617] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In recent years, deep learning has shown very competitive performance in seizure detection. However, most of the currently used methods either convert electroencephalogram (EEG) signals into spectral images and employ 2D-CNNs, or split the one-dimensional (1D) features of EEG signals into many segments and employ 1D-CNNs. Moreover, these investigations are further constrained by the absence of consideration for temporal links between time series segments or spectrogram images. Therefore, we propose a Dual-Modal Information Bottleneck (Dual-modal IB) network for EEG seizure detection. The network extracts EEG features from both time series and spectrogram dimensions, allowing information from different modalities to pass through the Dual-modal IB, requiring the model to gather and condense the most pertinent information in each modality and only share what is necessary. Specifically, we make full use of the information shared between the two modality representations to obtain key information for seizure detection and to remove irrelevant feature between the two modalities. In addition, to explore the intrinsic temporal dependencies, we further introduce a bidirectional long-short-term memory (BiLSTM) for Dual-modal IB model, which is used to model the temporal relationships between the information after each modality is extracted by convolutional neural network (CNN). For CHB-MIT dataset, the proposed framework can achieve an average segment-based sensitivity of 97.42%, specificity of 99.32%, accuracy of 98.29%, and an average event-based sensitivity of 96.02%, false detection rate (FDR) of 0.70/h. We release our code at https://github.com/LLLL1021/Dual-modal-IB.
Collapse
Affiliation(s)
- Jiale Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Yunfeng Shi
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Mengxue Sun
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Qingtao Gong
- Ulsan Ship and Ocean College, Ludong University, Yantai 264025, P. R. China
| | - Haipeng Wang
- Institute of Information Fusion, Naval, Aviation University, Yantai 264001, P. R. China
| | - Wenhui Huang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
26
|
N.J. S, M.S.P. S, S. TG. EEG-based classification of normal and seizure types using relaxed local neighbour difference pattern and artificial neural network. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Modeling the efficacy of different anti-angiogenic drugs on treatment of solid tumors using 3D computational modeling and machine learning. Comput Biol Med 2022; 146:105511. [DOI: 10.1016/j.compbiomed.2022.105511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022]
|
28
|
Wang Z, Mengoni P. Seizure classification with selected frequency bands and EEG montages: a Natural Language Processing approach. Brain Inform 2022; 9:11. [PMID: 35622175 PMCID: PMC9142724 DOI: 10.1186/s40708-022-00159-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/17/2022] [Indexed: 11/10/2022] Open
Abstract
Individualized treatment is crucial for epileptic patients with different types of seizures. The differences among patients impact the drug choice as well as the surgery procedure. With the advance in machine learning, automatic seizure detection can ease the manual time-consuming and labor-intensive procedure for diagnose seizure in the clinical setting. In this paper, we present an electroencephalography (EEG) frequency bands (sub-bands) and montages selection (sub-zones) method for classifier training that exploits Natural Language Processing from individual patients' clinical report. The proposed approach is targeting for individualized treatment. We integrated the prior knowledge from patient's reports into the classifier-building process, mimicking the authentic thinking process of experienced neurologist's when diagnosing seizure using EEG. The keywords from clinical documents are mapped to the EEG data in terms of frequency bands and scalp EEG electrodes. The data of experiments are from the Temple University Hospital EEG seizure corpus, and the dataset is divided based on each group of patients with same seizure type and same recording electrode references. The classifier includes Random Forest, Support Vector Machine and Multi-Layer Perceptron. The classification performance indicates that competitive results can be achieve with a small portion of EEG the data. Using the sub-zones selection for Generalized Seizures (GNSZ) on all three electrodes, data are reduced by nearly 50% while the performance metrics remain at the same level with the whole frequency and zones. Moreover, when selecting by sub-zones and sub-bands together for GNSZ with Linked Ears reference, the data range reduced to 0.3% of whole range, and the performance deviates less than 3% from the results with whole range of data. Results show that using proposed approach may lead to more efficient implementations of the seizure classifier to be executed on power-efficient devices for long lasting real-time seizures detection.
Collapse
Affiliation(s)
- Ziwei Wang
- Institute of Interdisciplinary Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR China
| | - Paolo Mengoni
- Department of Journalism, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR China
| |
Collapse
|
29
|
Lian J, Xu F. Spatial Enhanced Pattern Through Graph Convolutional Neural Network for Epileptic EEG Identification. Int J Neural Syst 2022; 32:2250033. [DOI: 10.1142/s0129065722500332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Yu Z, Albera L, Jeannes RLB, Kachenoura A, Karfoul A, Yang C, Shu H. Epileptic Seizure Prediction Using Deep Neural Networks via Transfer Learning and Multi-Feature Fusion. Int J Neural Syst 2022; 32:2250032. [DOI: 10.1142/s0129065722500320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Zhou J, Liu L, Leng Y, Yang Y, Gao B, Jiang Z, Nie W, Yuan Q. Both Cross-Patient and Patient-Specific Seizure Detection Based on Self-Organizing Fuzzy Logic. Int J Neural Syst 2022; 32:2250017. [DOI: 10.1142/s0129065722500174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Automatic epilepsy detection is of great significance for the diagnosis and treatment of patients. Most detection methods are based on patient-specific models and have achieved good results. However, in practice, new patients do not have their own previous EEG data and therefore cannot be initially diagnosed. If the EEG data of other patients can be used to achieve cross-patient detection, and cross-patient and patient-specific experiments can be combined at the same time, this method will be more widely used. In this work, an EEG classification model based on a self-organizing fuzzy logic (SOF) classifier is proposed for both cross-patient and patient-specific seizure detection. After preprocessing, the features of the original EEG signal are extracted and sent to the SOF classifier. This classification model is free from predefined parameters or a prior assumption regarding the EEG data generation model and only stores the key meta-parameters in memory. Therefore, it is very suitable for large-scale EEG signals in cross-patient detection. Selecting different granularity and classification distance in two different experiments after post-processing will achieve the best results. Experiments were conducted using a long-term continuous scalp EEG database and the [Formula: see text]-mean of cross-patient and patient-specific detection reached 83.35% and 92.04%, respectively. A comparison with other methods shows that there is greater performance and generalizability with this method.
Collapse
Affiliation(s)
- Jiazheng Zhou
- Shandong Province Key Laboratory of Medical, Physics and Image Processing Technology, School of Physics and Electronics, Shandong, Normal University, Jinan 250358, P. R. China
| | - Li Liu
- Shandong Province Key Laboratory of Medical, Physics and Image Processing Technology, School of Physics and Electronics, Shandong, Normal University, Jinan 250358, P. R. China
| | - Yan Leng
- Shandong Province Key Laboratory of Medical, Physics and Image Processing Technology, School of Physics and Electronics, Shandong, Normal University, Jinan 250358, P. R. China
| | - Yuying Yang
- Shandong Province Key Laboratory of Medical, Physics and Image Processing Technology, School of Physics and Electronics, Shandong, Normal University, Jinan 250358, P. R. China
| | - Bin Gao
- Shandong Province Key Laboratory of Medical, Physics and Image Processing Technology, School of Physics and Electronics, Shandong, Normal University, Jinan 250358, P. R. China
| | - Zonghong Jiang
- College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Weiwei Nie
- The First Affiliated Hospital of Shandong, First Medical University, Jinan 250014, P. R. China
| | - Qi Yuan
- Shandong Province Key Laboratory of Medical, Physics and Image Processing Technology, School of Physics and Electronics, Shandong, Normal University, Jinan 250358, P. R. China
| |
Collapse
|
32
|
Cheng C, Zhou Y, You B, Liu Y, Fei G, Yang L, Dai Y. Multiview Feature Fusion Representation for Interictal Epileptiform Spikes Detection. Int J Neural Syst 2022; 32:2250014. [PMID: 35272587 DOI: 10.1142/s0129065722500149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interictal epileptiform spikes (IES) of scalp electroencephalogram (EEG) signals have a strong relation with the epileptogenic region. Since IES are highly unlikely to be detected in scalp EEG signals, the primary diagnosis depends heavily on the visual evaluation of IES. However, visual inspection of EEG signals, the standard IES detection procedure is time-consuming, highly subjective, and error-prone. Furthermore, the highly complex, nonlinear, and nonstationary characteristics of EEG signals lead to the incomplete representation of EEG signals in existing computer-aided methods and consequently unsatisfactory detection performance. Therefore, a novel multiview feature fusion representation (MVFFR) method was developed and combined with a robustness classifier to detect EEG signals with/without IES. MVFFR comprises two steps: First, temporal, frequency, temporal-frequency, spatial, and nonlinear domain features are transformed by the IES to express the latent information effectively. Second, the unsupervised infinite feature-selection method determines the most distinct feature fusion representations. Experimental results using a balanced dataset of six patients showed that MVFFR achieved the optimal detection performance (accuracy: 89.27%, sensitivity: 89.01%, specificity: 89.54%, and precision: 89.82%) compared with other feature ranking methods, and the MVFFR-related method were complementary and indispensable. Additionally, in an independent test, MVFFR maintained excellent generalization capacity with a false detection rate per minute of 0.15 on the unbalanced dataset of one patient.
Collapse
Affiliation(s)
- Chenchen Cheng
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.,Heilongjiang Provincial Key Laboratory, of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Yuanfeng Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 200000, P. R. China
| | - Bo You
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China.,Heilongjiang Provincial Key Laboratory, of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin 150080, P. R. China.,School of Automation, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Yan Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.,Jinan Guoke Medical Engineering Technology Development Co., Ltd, Jinan 250000, P. R. China
| | - Gao Fei
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University Jinan, P. R. China
| | - Liling Yang
- Department of Neurology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan 250021, P. R. China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.,Jinan Guoke Medical Engineering Technology Development Co., Ltd, Jinan 250000, P. R. China
| |
Collapse
|
33
|
Wang X, Zhang G, Wang Y, Yang L, Liang Z, Cong F. One-Dimensional Convolutional Neural Networks Combined with Channel Selection Strategy for Seizure Prediction Using Long-Term Intracranial EEG. Int J Neural Syst 2021; 32:2150048. [PMID: 34635034 DOI: 10.1142/s0129065721500489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Seizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous studies generally used the iEEG signals of all channels to predict seizures, ignoring the consideration of channel selection. In this study, a method of one-dimensional convolutional neural networks (1D-CNN) combined with channel selection strategy was proposed for seizure prediction. First, we used 30-s sliding windows to segment the raw iEEG signals. Then, the 30-s iEEG segments, which were in three channel forms (single channel, channels only from seizure onset or free zone and all channels from seizure onset and free zones), were used as the inputs of 1D-CNN for classification, and the patient-specific model was trained. Finally, the channel form with the best classification was selected for each patient. The proposed method was evaluated on the Freiburg Hospital iEEG dataset. In the situation of seizure occurrence period (SOP) of 30[Formula: see text]min and seizure prediction horizon (SPH) of 5[Formula: see text]min, 98.60[Formula: see text] accuracy, 98.85[Formula: see text] sensitivity and 0.01/h false prediction rate (FPR) were achieved. In the situation of SOP of 60[Formula: see text]min and SPH of 5[Formula: see text]min, 98.32[Formula: see text] accuracy, 98.48[Formula: see text] sensitivity and 0.01/h FPR were attained. Compared with the many existing methods using the same iEEG dataset, our method showed a better performance.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Faculty of Information Technology, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Guanghui Zhang
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Faculty of Information Technology, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Ying Wang
- Department of Neurology and Psychiatry, First Affiliated Hospital, DaLian Medical University, Dalian, P. R. China
| | - Lin Yang
- Department of Neurology and Psychiatry, First Affiliated Hospital, DaLian Medical University, Dalian, P. R. China
| | - Zhanhua Liang
- Department of Neurology and Psychiatry, First Affiliated Hospital, DaLian Medical University, Dalian, P. R. China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Faculty of Information Technology, University of Jyväskylä, Jyväskylä 40014, Finland.,School of Artificial Intelligence, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Key Laboratory of Integrated Circuit and Biomedical Electronic System, Liaoning Province Dalian University of Technology, Dalian, P. R. China
| |
Collapse
|
34
|
Chen X, Zheng Y, Dong C, Song S. Multi-Dimensional Enhanced Seizure Prediction Framework Based on Graph Convolutional Network. Front Neuroinform 2021; 15:605729. [PMID: 34489667 PMCID: PMC8417243 DOI: 10.3389/fninf.2021.605729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
In terms of seizure prediction, how to fully mine relational data information among multiple channels of epileptic EEG? This is a scientific research subject worthy of further exploration. Recently, we propose a multi-dimensional enhanced seizure prediction framework, which mainly includes information reconstruction space, graph state encoder, and space-time predictor. It takes multi-channel spatial relationship as breakthrough point. At the same time, it reconstructs data unit from frequency band level, updates graph coding representation, and explores space-time relationship. Through experiments on CHB-MIT dataset, sensitivity of the model reaches 98.61%, which proves effectiveness of the proposed model.
Collapse
Affiliation(s)
- Xin Chen
- School of Information Science and Engineering at Shandong Normal University, Jinan, China.,School of Computer Science and Engineering at Southeast University, Nanjing, China
| | - Yuanjie Zheng
- School of Information Science and Engineering at Shandong Normal University, Jinan, China.,Key Lab of Intelligent Computing and Information Security in Universities of Shandong, Shandong Normal University, Jinan, China.,Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Shandong Normal University, Jinan, China.,Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Changxu Dong
- School of Information Science and Engineering at Shandong Normal University, Jinan, China
| | - Sutao Song
- School of Information Science and Engineering at Shandong Normal University, Jinan, China.,Key Lab of Intelligent Computing and Information Security in Universities of Shandong, Shandong Normal University, Jinan, China.,Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Shandong Normal University, Jinan, China.,Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
35
|
Kashyap K, Siddiqi MI. Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents. Mol Divers 2021; 25:1517-1539. [PMID: 34282519 DOI: 10.1007/s11030-021-10274-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
Neurological disorders affect various aspects of life. Finding drugs for the central nervous system is a very challenging and complex task due to the involvement of the blood-brain barrier, P-glycoprotein, and the drug's high attrition rates. The availability of big data present in online databases and resources has enabled the emergence of artificial intelligence techniques including machine learning to analyze, process the data, and predict the unknown data with high efficiency. The use of these modern techniques has revolutionized the whole drug development paradigm, with an unprecedented acceleration in the central nervous system drug discovery programs. Also, the new deep learning architectures proposed in many recent works have given a better understanding of how artificial intelligence can tackle big complex problems that arose due to central nervous system disorders. Therefore, the present review provides comprehensive and up-to-date information on machine learning/artificial intelligence-triggered effort in the brain care domain. In addition, a brief overview is presented on machine learning algorithms and their uses in structure-based drug design, ligand-based drug design, ADMET prediction, de novo drug design, and drug repurposing. Lastly, we conclude by discussing the major challenges and limitations posed and how they can be tackled in the future by using these modern machine learning/artificial intelligence approaches.
Collapse
Affiliation(s)
- Kushagra Kashyap
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute (CSIR-CDRI) Campus, Lucknow, India.,Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Mohammad Imran Siddiqi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute (CSIR-CDRI) Campus, Lucknow, India. .,Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
36
|
Ozdemir MA, Cura OK, Akan A. Epileptic EEG Classification by Using Time-Frequency Images for Deep Learning. Int J Neural Syst 2021; 31:2150026. [PMID: 34039254 DOI: 10.1142/s012906572150026x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epilepsy is one of the most common brain disorders worldwide. The most frequently used clinical tool to detect epileptic events and monitor epilepsy patients is the EEG recordings. There have been proposed many computer-aided diagnosis systems using EEG signals for the detection and prediction of seizures. In this study, a novel method based on Fourier-based Synchrosqueezing Transform (SST), which is a high-resolution time-frequency (TF) representation, and Convolutional Neural Network (CNN) is proposed to detect and predict seizure segments. SST is based on the reassignment of signal components in the TF plane which provides highly localized TF energy distributions. Epileptic seizures cause sudden energy discharges which are well represented in the TF plane by using the SST method. The proposed SST-based CNN method is evaluated using the IKCU dataset we collected, and the publicly available CHB-MIT dataset. Experimental results demonstrate that the proposed approach yields high average segment-based seizure detection precision and accuracy rates for both datasets (IKCU: 98.99% PRE and 99.06% ACC; CHB-MIT: 99.81% PRE and 99.63% ACC). Additionally, SST-based CNN approach provides significantly higher segment-based seizure prediction performance with 98.54% PRE and 97.92% ACC than similar approaches presented in the literature using the CHB-MIT dataset.
Collapse
Affiliation(s)
- Mehmet Akif Ozdemir
- Department of Biomedical Engineering, Izmir Katip Celebi University, Cigli 35620, Izmir, Turkey
| | - Ozlem Karabiber Cura
- Department of Biomedical Engineering, Izmir Katip Celebi University, Cigli 35620, Izmir, Turkey
| | - Aydin Akan
- Department of Electrical and Electronics Eng., Izmir University of Economics, Balcova 35330, Izmir, Turkey
| |
Collapse
|
37
|
Zhao Y, Zhang G, Dong C, Yuan Q, Xu F, Zheng Y. Graph Attention Network with Focal Loss for Seizure Detection on Electroencephalography Signals. Int J Neural Syst 2021; 31:2150027. [PMID: 34003084 DOI: 10.1142/s0129065721500271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Automatic seizure detection from electroencephalogram (EEG) plays a vital role in accelerating epilepsy diagnosis. Previous researches on seizure detection mainly focused on extracting time-domain and frequency-domain features from single electrodes, while paying little attention to the positional correlations between different EEG channels of the same subject. Moreover, data imbalance is common in seizure detection scenarios where the duration of nonseizure periods is much longer than the duration of seizures. To cope with the two challenges, a novel seizure detection method based on graph attention network (GAT) is presented. The approach acts on graph-structured data and takes the raw EEG data as input. The positional relationship between different EEG signals is exploited by GAT. The loss function of the GAT model is redefined using the focal loss to tackle data imbalance problem. Experiments are conducted on the CHB-MIT dataset. The accuracy, sensitivity and specificity of the proposed method are 98.89[Formula: see text], 97.10[Formula: see text] and 99.63[Formula: see text], respectively.
Collapse
Affiliation(s)
- Yanna Zhao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Gaobo Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Changxu Dong
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Qi Yuan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Fangzhou Xu
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Key Lab of Intelligent Computing and Information Security in Universities of Shandong, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
38
|
Peng P, Xie L, Wei H. A Deep Fourier Neural Network for Seizure Prediction Using Convolutional Neural Network and Ratios of Spectral Power. Int J Neural Syst 2021; 31:2150022. [PMID: 33970057 DOI: 10.1142/s0129065721500222] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional methods usually adopt handcrafted features and manual parameter setting. The over-reliance on the expertise of specialists may lead to weak exploitation of features and low popularization of clinical application. This paper proposes a novel parameterless patient-specific method based on Fourier Neural Network (FNN), where the Fourier transform and backpropagation learning are synthesized to make the predictor more efficient and practical. The employment of FNN is the first attempt in the field of seizure prediction due to its automatic extraction of immanent spectra in epileptic signals. Despite the self-adaptive superiority of FNN, we introduce Convolutional Neural Network (CNN) to further improve its search capability in high-dimensional feature spaces. The study also develops a multi-layer module to estimate spectral power ratios of raw recordings, which optimizes the prediction by enhancing feature diversity. Based on these modules, this paper proposes a two-channel deep neural network: Fourier Ratio Convolutional Neural Network (FRCNN). To demonstrate the reliability of the model, we explain the mathematical meaning of hidden-layer neurons in FRCNN theoretically. This approach is evaluated on both intracranial and scalp EEG datasets. It shows that the predictor achieved a sensitivity of 91.2% and a false prediction rate (FPR) of 0.06[Formula: see text]h[Formula: see text] across intracranial subjects and a sensitivity of 85.4% and an FPR of 0.14[Formula: see text]h[Formula: see text] over scalp subjects. The results indicate that FRCNN enables the convenience of epilepsy treatments while preserving a high degree of precision. In the end, a detailed comparison with the previous methods demonstrates that FRCNN has achieved higher performance and generalization ability.
Collapse
Affiliation(s)
- Peizhen Peng
- Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, P. R. China
| | - Liping Xie
- Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, P. R. China
| | - Haikun Wei
- Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
39
|
Hao J, Cui Y, Niu B, Yu L, Lin Y, Xia Y, Yao D, Guo D. Roles of Very Fast Ripple (500-1000 Hz) in the Hippocampal Network During Status Epilepticus. Int J Neural Syst 2021; 31:2150002. [PMID: 33357153 DOI: 10.1142/s0129065721500027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Very fast ripples (VFRs, 500-1000 Hz) are considered more specific than high-frequency oscillations (80-500 Hz) as biomarkers of epileptogenic zones. Although VFRs are frequent abnormal phenomena in epileptic seizures, their functional roles remain unclear. Here, we detected the VFRs in the hippocampal network and tracked their roles during status epilepticus (SE) in rats with pilocarpine-induced temporal lobe epilepsy (TLE). All regions in the hippocampal network exhibited VFRs in the baseline, preictal, ictal and postictal states, with the ictal state containing the most VFRs. Moreover, strong phase-locking couplings existed between VFRs and slow oscillations (1-12 Hz) in the ictal and postictal states for all regions. Further investigation indicated that during VFRs, the build-up of slow oscillations in the ictal state began from the temporal lobe and then spread through the whole hippocampal network via two different pathways, which might be associated with the underlying propagation of epileptiform discharges in the hippocampal network. Overall, we provide a functional description of the emergence of VFRs in the hippocampal network during SE, and we also establish that VFRs may be the physiological representation of the pathological alterations in hippocampal network activity during SE in TLE.
Collapse
Affiliation(s)
- Jianmin Hao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic, Science and Technology of China, Chengdu Sichuan 611731, P. R. China
| | - Yan Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic, Science and Technology of China, Chengdu Sichuan 611731, P. R. China
| | - Bochao Niu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic, Science and Technology of China, Chengdu Sichuan 611731, P. R. China
| | - Liang Yu
- Department of Neurology, Sichuan Academy of Medical, Sciences and Sichuan Provincial People's Hospital, Chengdu Sichuan, P. R. China
| | - Yuhang Lin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic, Science and Technology of China, Chengdu Sichuan 611731, P. R. China
| | - Yang Xia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic, Science and Technology of China, Chengdu Sichuan 611731, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic, Science and Technology of China, Chengdu Sichuan 611731, P. R. China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic, Science and Technology of China, Chengdu Sichuan 611731, P. R. China
| |
Collapse
|
40
|
Peng G, Nourani M, Harvey J, Dave H. Personalized EEG Feature Selection for Low-Complexity Seizure Monitoring. Int J Neural Syst 2021; 31:2150018. [PMID: 33752579 DOI: 10.1142/s0129065721500180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Approximately, one third of patients with epilepsy are refractory to medical therapy and thus can be at high risk of injuries and sudden unexpected death. A low-complexity electroencephalography (EEG)-based seizure monitoring algorithm is critically important for daily use, especially for wearable monitoring platforms. This paper presents a personalized EEG feature selection approach, which is the key to achieve a reliable seizure monitoring with a low computational cost. We advocate a two-step, personalized feature selection strategy to enhance monitoring performances for each patient. In the first step, linear discriminant analysis (LDA) is applied to find a few seizure-indicative channels. Then in the second step, least absolute shrinkage and selection operator (LASSO) method is employed to select a discriminative subset of both frequency and time domain features (spectral powers and entropy). A personalization strategy is further customized to find the best settings (number of channels and features) that yield the highest classification scores for each subject. Experimental results of analyzing 23 subjects in CHB-MIT database are quite promising. We have achieved an average F-1 score of 88% with excellent sensitivity and specificity using not more than 7 features extracted from at most 3 channels.
Collapse
Affiliation(s)
- Genchang Peng
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson 75080, USA
| | - Mehrdad Nourani
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson 75080, USA
| | - Jay Harvey
- Department of Neurology and Neurotherapeutic, The University of Texas Southwestern Medical Center, Dallas 75230, USA
| | - Hina Dave
- Department of Neurology and Neurotherapeutic, The University of Texas Southwestern Medical Center, Dallas 75230, USA
| |
Collapse
|
41
|
Ma D, Yuan S, Shang J, Liu J, Dai L, Kong X, Xu F. The Automatic Detection of Seizure Based on Tensor Distance And Bayesian Linear Discriminant Analysis. Int J Neural Syst 2021; 31:2150006. [PMID: 33522459 DOI: 10.1142/s0129065721500064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electroencephalogram (EEG) plays an important role in recording brain activity to diagnose epilepsy. However, it is not only laborious, but also not very cost effective for medical experts to manually identify the features on EEG. Therefore, automatic seizure detection in accordance with the EEG recordings is significant for the diagnosis and treatment of epilepsy. Here, a new method for detecting seizures using tensor distance (TD) is proposed. First, the time-frequency characteristics of EEG signals are obtained by wavelet transformation, and the tensor representation of EEG signals is then obtained. Tucker decomposition is used to obtain the principal components of the EEG tensor. After, the distances between different categories of EEG tensors are calculated as the EEG features. Finally, the TD features are classified through the Bayesian Linear Discriminant Analysis (Bayesian LDA) classifier. The performance of this method is measured by the sensitivity, specificity, and recognition accuracy. Results indicate 95.12% sensitivity, 97.60% specificity, 97.60% recognition accuracy, and a false detection rate of 0.76 per hour in the invasive EEG dataset, which included 566.57[Formula: see text]h of EEG recording data from 21 patients. Taken together, the results show that TD has a good detection effect for seizure classification and that this method has high computational speed and great potential for real-time diagnosis.
Collapse
Affiliation(s)
- Delu Ma
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, P. R. China
| | - Shasha Yuan
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, P. R. China
| | - Junliang Shang
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, P. R. China
| | - Jinxing Liu
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, P. R. China
| | - Lingyun Dai
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, P. R. China
| | - Xiangzhen Kong
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, P. R. China
| | - Fangzhou Xu
- Department of Physics, School of Electronic and Information Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, P. R. China
| |
Collapse
|
42
|
Rodrigues AM, Silva DB, Miranda MF, Braga da Silva SC, Canton Santos LE, Scorza FA, Scorza CA, Moret MA, Guimarães de Almeida AC. The Effect of Low Magnesium Concentration on Ictal Discharges In A Non-Synaptic Model. Int J Neural Syst 2020; 31:2050070. [PMID: 33357154 DOI: 10.1142/s0129065720500707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Magnesium (Mg[Formula: see text] is an essential mineral for several cellular functions. The concentration of this ion below the physiological concentration induces recurrent neuronal discharges both in slices of the hippocampus and in neuronal cultures. These epileptiform discharges are initially sensitive to the application of [Formula: see text]-methyl-D-aspartate (NMDA) receptor antagonists, but these antagonists may lose their effectiveness with prolonged exposure to low [Mg[Formula: see text]], when extracellular Ca[Formula: see text] reduction occurs, typical of ictal periods, indicating the absence of synaptic connections. The study herein presented aimed at investigating the effect of reducing the [Mg[Formula: see text]] during the induction of Nonsynaptic Epileptiform Activities (NSEA). As an experimental protocol, NSEA were induced in rat hippocampal dentate gyrus (DG), using a bath solution containing high-K[Formula: see text] and zero-added-Ca[Formula: see text]. Additionally, computer simulations were performed using a mathematical model that represents electrochemical characteristics of the tissue of the DG granular layer. The experimental results show that the reduction of [Mg[Formula: see text]] causes an increase in the duration of the ictal period and a reduction in the interictal period, intensifying epileptiform discharges. The computer simulations suggest that the reduction of the Mg[Formula: see text] level intensifies the epileptiform discharges by a joint effect of reducing the surface charge screening and reducing the activity of the Na/K pump.
Collapse
Affiliation(s)
- Antônio Márcio Rodrigues
- Laboratório de Neurociência, Experimental e Computacional, Departamento de Engenharia de, Biossistemas Universidade Federal de São João del-Rei, Pr. Dom Helvécio, 74, 36.301-160 São João del-Rei, MG, Brazil
| | - Delmo Benedito Silva
- Laboratório de Neurociência, Experimental e Computacional, Departamento de Engenharia de, Biossistemas Universidade Federal de São João del-Rei, Pr. Dom Helvécio, 74, 36.301-160 São João del-Rei, MG, Brazil
| | - Maísa Ferreira Miranda
- Laboratório de Neurociência, Experimental e Computacional, Departamento de Engenharia de, Biossistemas Universidade Federal de São João del-Rei, Pr. Dom Helvécio, 74, 36.301-160 São João del-Rei, MG, Brazil
| | - Silvia Cristina Braga da Silva
- Laboratório de Neurociência, Experimental e Computacional, Departamento de Engenharia de, Biossistemas Universidade Federal de São João del-Rei, Pr. Dom Helvécio, 74, 36.301-160 São João del-Rei, MG, Brazil
| | - Luiz Eduardo Canton Santos
- Laboratório de Neurociência, Experimental e Computacional, Departamento de Engenharia de, Biossistemas Universidade Federal de São João del-Rei, Pr. Dom Helvécio, 74, 36.301-160 São João del-Rei, MG, Brazil
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carla Alessandra Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo A Moret
- UNEB - Rua Silveira Martins, 2555, Cabula 41150-000 Salvador, Bahia, Brazil
| | - Antônio-Carlos Guimarães de Almeida
- Laboratório de Neurociência, Experimental e Computacional, Departamento de Engenharia de, Biossistemas Universidade Federal de São João del-Rei, Pr. Dom Helvécio, 74, 36.301-160 São João del-Rei, MG, Brazil
| |
Collapse
|
43
|
Zhang Y, Yang R, Zhou W. Roughness-Length-Based Characteristic Analysis of Intracranial EEG and Epileptic Seizure Prediction. Int J Neural Syst 2020; 30:2050072. [DOI: 10.1142/s0129065720500720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To identify precursors of epileptic seizures, an EEG characteristic analysis is carried out based on a roughness-length method, where fractal dimensions and intercept values are extracted to measure the structure complexity and the amplitude roughness of EEG signals in different phases. Using the significant changes of the fractal dimension and intercept in the preictal phase with respect to those in the interictal phase, a patient-specific seizure prediction algorithm is then proposed by combining with a gradient boosting classifier. The probabilistic outputs of the trained gradient boosting classifier are further processed by threshold comparison and rule-based judgment to distinguish preictal EEG from interictal EEG and to generate seizure alerts. The prediction algorithm was evaluated on 20 patients’ intracranial EEG recordings from the Freiburg EEG database, which contains the preictal periods of 65 seizures and 499[Formula: see text]h interictal EEG. Setting the seizure prediction horizon as 2[Formula: see text]min, averaged sensitivity values of 90.42% and 91.67% with averaged false prediction rates of 0.12/h and 0.10/h were achieved for seizure occurrence periods of 30 and 50[Formula: see text]min, respectively. These results demonstrate the ability of fractal dimension and intercept metrics in predicting the occurrence of seizures.
Collapse
Affiliation(s)
- Yanli Zhang
- School of Information and Electronic Engineering, Shandong Technology and Business University, 191 Binhai Middle Road, Yantai 264005, P. R. China
| | - Rendi Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, P. R. China
| | - Weidong Zhou
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
44
|
Jiang S, Pei H, Huang Y, Chen Y, Liu L, Li J, He H, Yao D, Luo C. Dynamic Temporospatial Patterns of Functional Connectivity and Alterations in Idiopathic Generalized Epilepsy. Int J Neural Syst 2020; 30:2050065. [PMID: 33161788 DOI: 10.1142/s0129065720500653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dynamic profile of brain function has received much attention in recent years and is also a focus in the study of epilepsy. The present study aims to integrate the dynamics of temporal and spatial characteristics to provide comprehensive and novel understanding of epileptic dynamics. Resting state fMRI data were collected from eighty-three patients with idiopathic generalized epilepsy (IGE) and 87 healthy controls (HC). Specifically, we explored the temporal and spatial variation of functional connectivity density (tvFCD and svFCD) in the whole brain. Using a sliding-window approach, for a given region, the standard variation of the FCD series was calculated as the tvFCD and the variation of voxel-wise spatial distribution was calculated as the svFCD. We found primary, high-level, and sub-cortical networks demonstrated distinct tvFCD and svFCD patterns in HC. In general, the high-level networks showed the highest variation, the subcortical and primary networks showed moderate variation, and the limbic system showed the lowest variation. Relative to HC, the patients with IGE showed weaken temporal and enhanced spatial variation in the default mode network and weaken temporospatial variation in the subcortical network. Besides, enhanced temporospatial variation in sensorimotor and high-level networks was also observed in patients. The hyper-synchronization of specific brain networks was inferred to be associated with the phenomenon responsible for the intrinsic propensity of generation and propagation of epileptic activities. The disrupted dynamic characteristics of sensorimotor and high-level networks might potentially contribute to the driven motion and cognition phenotypes in patients. In all, presently provided evidence from the temporospatial variation of functional interaction shed light on the dynamics underlying neuropathological profiles of epilepsy.
Collapse
Affiliation(s)
- Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Yang Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Yan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Linli Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Jianfu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu P. R. China
| |
Collapse
|
45
|
Ouyang CS, Yang RC, Wu RC, Chiang CT, Lin LC. Determination of Antiepileptic Drugs Withdrawal Through EEG Hjorth Parameter Analysis. Int J Neural Syst 2020; 30:2050036. [PMID: 32812470 DOI: 10.1142/s0129065720500367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The decision to continue or to stop antiepileptic drug (AED) treatment in patients with prolonged seizure remission is a critical issue. Previous studies have used certain risk factors or electroencephalogram (EEG) findings to predict seizure recurrence after the withdrawal of AEDs. However, validated biomarkers to guide the withdrawal of AEDs are lacking. In this study, we used quantitative EEG analysis to establish a method for predicting seizure recurrence after the withdrawal of AEDs. A total of 34 patients with epilepsy were divided into two groups, 17 patients in the recurrence group and the other 17 patients in the nonrecurrence group. All patients were seizure free for at least two years. Before AED withdrawal, an EEG was performed for each patient that showed no epileptiform discharges. These EEG recordings were classified using Hjorth parameter-based EEG features. We found that the Hjorth complexity values were higher in patients in the recurrence group than in the nonrecurrence group. The extreme gradient boosting classification method achieved the highest performance in terms of accuracy, area under the curve, sensitivity, and specificity (84.76%, 88.77%, 89.67%, and 80.47%, respectively). Our proposed method is a promising tool to help physicians determine AED withdrawal for seizure-free patients.
Collapse
Affiliation(s)
- Chen-Sen Ouyang
- Department of Information Engineering, I-Shou University, No. 1, Section 1, Syuecheng Road, Dashu District, Kaohsiung 84001, Taiwan
| | - Rei-Cheng Yang
- Departments of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Rong-Ching Wu
- Department of Electrical Engineering, I-Shou University, No. 1, Section 1, Syuecheng Road, Dashu District, Kaohsiung 84001, Taiwan
| | - Ching-Tai Chiang
- Department of Computer and Communication, National Pingtung University, No. 51, Minsheng Road, Pingtung 900392, Taiwan
| | - Lung-Chang Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Departments of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
46
|
Thomas J, Jin J, Thangavel P, Bagheri E, Yuvaraj R, Dauwels J, Rathakrishnan R, Halford JJ, Cash SS, Westover B. Automated Detection of Interictal Epileptiform Discharges from Scalp Electroencephalograms by Convolutional Neural Networks. Int J Neural Syst 2020; 30:2050030. [PMID: 32812468 DOI: 10.1142/s0129065720500306] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Visual evaluation of electroencephalogram (EEG) for Interictal Epileptiform Discharges (IEDs) as distinctive biomarkers of epilepsy has various limitations, including time-consuming reviews, steep learning curves, interobserver variability, and the need for specialized experts. The development of an automated IED detector is necessary to provide a faster and reliable diagnosis of epilepsy. In this paper, we propose an automated IED detector based on Convolutional Neural Networks (CNNs). We have evaluated the proposed IED detector on a sizable database of 554 scalp EEG recordings (84 epileptic patients and 461 nonepileptic subjects) recorded at Massachusetts General Hospital (MGH), Boston. The proposed CNN IED detector has achieved superior performance in comparison with conventional methods with a mean cross-validation area under the precision-recall curve (AUPRC) of 0.838[Formula: see text]±[Formula: see text]0.040 and false detection rate of 0.2[Formula: see text]±[Formula: see text]0.11 per minute for a sensitivity of 80%. We demonstrated the proposed system to be noninferior to 30 neurologists on a dataset from the Medical University of South Carolina (MUSC). Further, we clinically validated the system at National University Hospital (NUH), Singapore, with an agreement accuracy of 81.41% with a clinical expert. Moreover, the proposed system can be applied to EEG recordings with any arbitrary number of channels.
Collapse
Affiliation(s)
- John Thomas
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Jin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Prasanth Thangavel
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Elham Bagheri
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Rajamanickam Yuvaraj
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Justin Dauwels
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Rahul Rathakrishnan
- Division of Neurology, National University Hospital, Singapore 119074, Singapore
| | - Jonathan J Halford
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Lian J, Shi Y, Zhang Y, Jia W, Fan X, Zheng Y. Revealing False Positive Features in Epileptic EEG Identification. Int J Neural Syst 2020; 30:2050017. [DOI: 10.1142/s0129065720500173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Feature selection plays a vital role in the detection and discrimination of epileptic seizures in electroencephalogram (EEG) signals. The state-of-the-art EEG classification techniques commonly entail the extraction of the multiple features that would be fed into classifiers. For some techniques, the feature selection strategies have been used to reduce the dimensionality of the entire feature space. However, most of these approaches focus on the performance of classifiers while neglecting the association between the feature and the EEG activity itself. To enhance the inner relationship between the feature subset and the epileptic EEG task with a promising classification accuracy, we propose a machine learning-based pipeline using a novel feature selection algorithm built upon a knockoff filter. First, a number of temporal, spectral, and spatial features are extracted from the raw EEG signals. Second, the proposed feature selection algorithm is exploited to obtain the optimal subgroup of features. Afterwards, three classifiers including [Formula: see text]-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) are used. The experimental results on the Bonn dataset demonstrate that the proposed approach outperforms the state-of-the-art techniques, with accuracy as high as 99.93% for normal and interictal EEG discrimination and 98.95% for interictal and ictal EEG classification. Meanwhile, it has achieved satisfactory sensitivity (95.67% in average), specificity (98.83% in average), and accuracy (98.89% in average) over the Freiburg dataset.
Collapse
Affiliation(s)
- Jian Lian
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
- Department of Electrical Engineering and Information Technology, Shandong University of Science and Technology, Jinan 250031, P. R. China
| | - Yunfeng Shi
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Yan Zhang
- Department of Electrical Engineering and Information Technology, Shandong University of Science and Technology, Jinan 250031, P. R. China
| | - Weikuan Jia
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Xiaojun Fan
- Antai College of Economics and Management, Shanghai Jiaotong University, Shanghai 200240, P. R. China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Key Lab of Intelligent Computing and Information Security in Universities of Shandong, Institute of Life Sciences, Shandong Provincial Key Laboratory for Distributed Computer Software and Novel Technologies, and Key Lab of Intelligent Information Processing, Jinan 250358, P. R. China
| |
Collapse
|
48
|
Li Y, Yu Z, Chen Y, Yang C, Li Y, Allen Li X, Li B. Automatic Seizure Detection using Fully Convolutional Nested LSTM. Int J Neural Syst 2020; 30:2050019. [DOI: 10.1142/s0129065720500197] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The automatic seizure detection system can effectively help doctors to monitor and diagnose epilepsy thus reducing their workload. Many outstanding studies have given good results in the two-class seizure detection problems, but most of them are based on hand-wrought feature extraction. This study proposes an end-to-end automatic seizure detection system based on deep learning, which does not require heavy preprocessing on the EEG data or feature engineering. The fully convolutional network with three convolution blocks is first used to learn the expressive seizure characteristics from EEG data. Then these robust EEG features pertinent to seizures are presented as an input to the Nested Long Short-Term Memory (NLSTM) model to explore the inherent temporal dependencies in EEG signals. Lastly, the high-level features obtained from the NLSTM model are fed into the softmax layer to output predicted labels. The proposed method yields an accuracy range of 98.44–100% in 10 different experiments based on the Bonn University database. A larger EEG database is then used to evaluate the performance of the proposed method in real-life situations. The average sensitivity of 97.47%, specificity of 96.17%, and false detection rate of 0.487 per hour are yielded. For CHB–MIT Scalp EEG database, the proposed model also achieves a segment-level sensitivity of 94.07% with a false detection rate of 0.66 per hour. The excellent results obtained on three different EEG databases demonstrate that the proposed method has good robustness and generalization power under ideal and real-life conditions.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Zuyi Yu
- School of Information Science and Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yang Chen
- Laboratory of Image Science and Technology, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Chunfeng Yang
- Laboratory of Image Science and Technology, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Yue Li
- School of Clinical Medicine, Dali University, Dali, Yunnan 671000, P. R. China
| | - X. Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baosheng Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| |
Collapse
|
49
|
Comparison of empirical mode decomposition and coarse-grained procedure for detecting pre-ictal and ictal condition in electroencephalography signal. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Rahman S, Sharma T, Mahmud M. Improving Alcoholism Diagnosis: Comparing Instance-Based Classifiers Against Neural Networks for Classifying EEG Signal. Brain Inform 2020. [DOI: 10.1007/978-3-030-59277-6_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|