1
|
Safran T, Nepon H, Chu CK, Winocour S, Murphy AM, Davison PG, Dionisopolos T, Vorstenbosch J. Current Concepts in Capsular Contracture: Pathophysiology, Prevention, and Management. Semin Plast Surg 2021; 35:189-197. [PMID: 34526867 DOI: 10.1055/s-0041-1731793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Over 400,000 women in the United States alone will have breast implant surgery each year. Although capsular contracture represents the most common complication of breast implant surgery, surgeons continue to debate the precise etiology. General agreement exists concerning the inflammatory origin of capsular fibrosis, but the inciting events triggering the inflammatory cascade appear to be multifactorial, making it difficult to predict why one patient may develop capsular contracture while another will not. Accordingly, researchers have explored many different surgical, biomaterial, and medical therapies to address these multiple factors in an attempt to prevent and treat capsular contracture. In the current paper, we aim to inform the reader on the most up-to-date understanding of the pathophysiology, prevention, and treatment of capsular contracture.
Collapse
Affiliation(s)
- Tyler Safran
- Division of Plastic Surgery, McGill University, Montreal, Quebec, Canada
| | - Hillary Nepon
- Division of Experimental Surgery, McGill University, Montreal, Quebec, Canada
| | - Carrie K Chu
- Department of Plastic Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Sebastian Winocour
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Amanda M Murphy
- Division of Plastic Surgery, McGill University, Montreal, Quebec, Canada
| | - Peter G Davison
- Division of Plastic Surgery, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
2
|
Tolksdorf J, Horch RE, Grüner JS, Schmid R, Kengelbach-Weigand A, Schubert DW, Werner S, Schneidereit D, Friedrich O, Ludolph I. Size matters-in vitro behaviour of human fibroblasts on textured silicone surfaces with different pore sizes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:23. [PMID: 32016560 PMCID: PMC6997250 DOI: 10.1007/s10856-020-6360-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/07/2020] [Indexed: 05/14/2023]
Abstract
Capsular contracture remains a challenge in plastic surgery and represents one of the most common postoperative complications following alloplastic breast reconstruction. The impact of the surface structure of silicone implants on the foreign body reaction and the behaviour of connective tissue-producing cells has already been discussed. The aim of this study was to investigate different pore sizes of silicone surfaces and their influence on human fibroblasts in an in vitro model. Four different textures (no, fine, medium and coarse texture) produced with the salt-loss technique, have been assessed in an in vitro model. Human fibroblasts were seeded onto silicone sheets and evaluated after 1, 4 and 7 days microscopically, with viability assay and gene expression analysis. Comparing the growth behaviour and adhesion of the fibroblasts on the four different textures, a dense cell layer, good adhesion and bridge-building ability of the cells could be observed for the fine and medium texture. Cell number and viability of the cells were increasing during the time course of experiments on every texture. TGFß1 was lowest expressed on the fine and medium texture indicating a trend for decreased fibrotic activity. For silicone surfaces produced with the salt-loss technique, we were able to show an antifibrotic effect of smaller sized pores. These findings underline the hypothesis of a key role of the implant surface and the pore size and pore structure in preventing capsular contracture.
Collapse
Affiliation(s)
- Julia Tolksdorf
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Jasmin S Grüner
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Rafael Schmid
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058, Erlangen, Germany
| | - Siegfried Werner
- Institute of Polymer Materials, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058, Erlangen, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 3, 91052, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 3, 91052, Erlangen, Germany
| | - Ingo Ludolph
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany.
| |
Collapse
|
4
|
Current Approaches Including Novel Nano/Microtechniques to Reduce Silicone Implant-Induced Contracture with Adverse Immune Responses. Int J Mol Sci 2018; 19:ijms19041171. [PMID: 29649133 PMCID: PMC5979366 DOI: 10.3390/ijms19041171] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 12/29/2022] Open
Abstract
Capsular contracture, which is the pathologic development of fibrous capsules around implants, is a major complication of reconstructive and aesthetic breast surgeries. Capsular contracture can cause implant failure with breast hardening, deformity, and severe pain. The exact mechanisms underlying this complication remain unclear. In addition, anaplastic large cell lymphoma is now widely recognized as a very rare disease associated with breast implants. Foreign body reactions are an inevitable common denominator of capsular contracture. A number of studies have focused on the associated immune responses and their regulation. The present article provides an overview of the currently available techniques, including novel nano/microtechniques, to reduce silicone implant-induced contracture and associated foreign body responses.
Collapse
|