1
|
Krompaß K, Mutschler M, Grunz JP, Thurner A, Bley TA, Voelker W, Kickuth R. Real-time dosimetry in interventional radiology - comparing the occupational radiation exposure in fluoroscopy-guided lower extremity and abdominal procedures. Eur Radiol 2025:10.1007/s00330-025-11566-5. [PMID: 40221939 DOI: 10.1007/s00330-025-11566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/15/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE Radiation safety concerns have spurred the development of real-time dosimetry systems. This study investigated the occupational dose exposure of interventional radiologists during lower extremity and abdominal procedures. MATERIALS AND METHODS Real-time dosimetry was performed during 102 consecutive interventions (51 lower extremity, 51 abdominal). Radiation protection measures included protective glasses (lead equivalent 0.5 mm), thyroid shielding (0.5 mm), vests (0.35 mm), aprons (0.25 mm), as well as movable acrylic and table shields (both 0.5 mm) during all procedures. Dosimeters were attached to the interventionalist's glasses on the side of the x-ray tube, to the back of the supporting hand, and under the vest. Using standardized values over time to account for exposure time differences between interventions, dose-area products and the dose equivalent HP(10) were recorded in all three positions. RESULTS Lower extremity angiographies were associated with a substantially lower median dose-area product (5.3 vs. 51.4 Gy × cm2) and exposure time (462 vs. 762 s) than abdominal interventions (both p < 0.001). For lower extremity procedures, HP(10) per minute recorded by the hand, cranium/eye lens, and body trunk dosimeters was 2.45, 0.01, and < 0.01 µSv/min, respectively. Markedly higher dose equivalents were documented for the hand (7.54 µSv/min), cranium/eye lens (0.26 µSv/min), and body trunk (0.04 µSv/min) during abdominal interventions (all p < 0.001). CONCLUSION Real-time dosimetry confirmed sufficient radiation protection with the application of dedicated safety measures, even in dose-intensive abdominal procedures. Interventionalists' supporting hands are subjected to the highest radiation exposure, followed by the cranium/eye lens and the body trunk. KEY POINTS Question Active dosimetry facilitates real-time assessment of radiation exposure in different measurement sites, but a multi-dosimeter setup has not been explored for interventional radiology so far. Findings Occupational radiation exposure is considerably higher in abdominal than in lower extremity procedures. Interventionalists' supporting hands receive the highest dose equivalents regardless of procedure type. Clinical relevance Dose monitoring in real time is key to understanding the radiation burden of different anatomical features during image-guided interventions. Especially in dose-intensive abdominal procedures, protective measures are essential to minimize the occupational radiation exposure of the interventionalist.
Collapse
Affiliation(s)
- Kristina Krompaß
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
| | - Mareike Mutschler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Annette Thurner
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Wolfram Voelker
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Ralph Kickuth
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Chaplin K. NCRP Claims Six Studies Support LNT But They Show No-Effect to At Least 100 mGy. Dose Response 2025; 23:15593258251329682. [PMID: 40297666 PMCID: PMC12033839 DOI: 10.1177/15593258251329682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/25/2024] [Indexed: 04/30/2025] Open
Abstract
NCRP Commentary-27 reaffirmed Linear No Threshold (LNT) as the basis for radiation protection and listed six studies with "strong support" for LNT. This paper looks critically at these six studies and shows that they do not support LNT in the dose range of 0-100 mGy. These studies typically admit to no increase in cancer risk at significant dose levels. More importantly this paper shows that these studies assume LNT from the outset, underestimate uncertainty, ignore confounding factors, have biased control groups, and underestimate dose.
Collapse
Affiliation(s)
- K. Chaplin
- Canadian Nuclear Laboratories - Retired, Chalk River, ON, Canada
| |
Collapse
|
3
|
Kunz AS, Weick S, Grunz JP, Toussaint A, Razinskas G, Richter A, Wegener S, Wittig-Sauerwein A, Bley TA, Huflage H. Patient Shielding in Ultra-High-Resolution Cone-Beam CT of the Upper Extremity with a Twin Robotic X-Ray System. Diagnostics (Basel) 2025; 15:596. [PMID: 40075843 PMCID: PMC11898918 DOI: 10.3390/diagnostics15050596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Gantry-free cone-beam CT (CBCT) allows for ultra-high-resolution (UHR) upper extremity imaging in a comfortable tableside position. The aim of this study was to assess the organ-specific radiation burden and the effect of dedicated lead shielding in the UHR-CBCT of the wrist and elbow. Methods: A modified Alderson-Rando phantom was scanned with the tableside UHR-CBCT mode of a twin robotic X-ray system employing identical scan parameters for wrist and elbow imaging. An ion chamber was used in conjunction with an electrometer to obtain representative organ dose measurements for the eye lens, thyroid gland, breast tissue, and abdomen. All measurements were performed with and without lead shielding. Results: Irrespective of the examined upper extremity joint, the highest absorbed dose among the assessed organs was determined for the eye lens (wrist imaging: 0.10 ± 0.01 mGy, elbow imaging: 0.12 ± 0.01 mGy). The most effective organ dose reduction by means of shielding in wrist CBCT was achieved for the thyroid gland (-17%). In elbow CBCT, the abdomen (-48%) and the ipsilateral breast (-39%) benefited particularly from shield protection. Conclusions: Although shielding was more effective in elbow than wrist scans, the overall impact in terms of absolute dose reduction was marginal.
Collapse
Affiliation(s)
- Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Stefan Weick
- Department of Radiation Therapy and Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Department of Radiology, University of Wisconsin—Madison, 600 Highland Ave, Madison, WI 53792, USA
| | - Andre Toussaint
- Department of Radiation Therapy and Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Gary Razinskas
- Department of Radiation Therapy and Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Anne Richter
- Department of Radiation Therapy and Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Sonja Wegener
- Department of Radiation Therapy and Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Andrea Wittig-Sauerwein
- Department of Radiation Therapy and Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| |
Collapse
|
4
|
Betz JW, Lightstone DF, Oakley PA, Haas JW, Moustafa IM, Harrison DE. Reliability of the Biomechanical Assessment of the Sagittal Lumbar Spine and Pelvis on Radiographs Used in Clinical Practice: A Systematic Review of the Literature. J Clin Med 2024; 13:4650. [PMID: 39200793 PMCID: PMC11355792 DOI: 10.3390/jcm13164650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Biomechanical analysis of the sagittal alignment of the lumbar spine and pelvis on radiographs is common in clinical practices including chiropractic, physical therapy, scoliosis-related thoraco-lumbo-sacral orthosis (TLSO) management, orthopedics, and neurosurgery. Of specific interest is the assessment of pelvic morphology and the relationship between angle of pelvic incidence, sacral slope, and lumbar lordosis to pain, disability, and clinical treatment of spine conditions. The current state of the literature on the reliability of common methods quantifying these parameters on radiographs is limited. Methods: The objective of this systematic review is to identify and review the available studies on the reliability of different methods of biomechanical analysis of sagittal lumbo-pelvic parameters used in clinical practice. Our review followed the recommendations of the preferred reporting items for systematic reviews and meta-analyses (PRISMA). The design of this systematic review was registered with PROSPERO (CRD42023379873). Results: The search strategy yielded a total of 2387 articles. A total of 1539 articles were screened after deduplication and exclusion by automation tools, leaving 473 full-text articles that were retrieved. After exclusion, 64 articles met the inclusion criteria. The preponderance of the evidence showed good to excellent reliability for biomechanical assessment of sagittal lumbo-pelvic spine alignment. Conclusions: The results of this systematic review of the literature show that sagittal radiographic analysis of spinal biomechanics and alignment of the human lumbo-pelvic spine is a reliable tool for aiding diagnosis and management in clinical settings.
Collapse
Affiliation(s)
| | | | - Paul A. Oakley
- Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Jason W. Haas
- Chiropractic Biophysics NonProfit, Inc., Eagle, ID 83616, USA;
| | - Ibrahim M. Moustafa
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Neuromusculoskeletal Rehabilitation Research Group, RIMHS—Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | |
Collapse
|
5
|
Iavicoli I, Fontana L, Santocono C, Guarino D, Laudiero M, Calabrese EJ. The challenges of defining hormesis in epidemiological studies: The case of radiation hormesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166030. [PMID: 37544458 DOI: 10.1016/j.scitotenv.2023.166030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In the current radiation protection system, preventive measures and occupational exposure limits for controlling occupational exposure to ionizing radiation are based on the linear no-threshold extrapolation model. However, currently an increasing body of evidence indicates that this paradigm predicts very poorly biological responses in the low-dose exposure region. In addition, several in vitro and in vivo studies demonstrated the presence of hormetic dose response curves correlated to ionizing radiation low exposure. In this regard, it is noteworthy that also the findings of different epidemiological studies, conducted in different categories of occupationally exposed workers (e.g., healthcare, nuclear industrial and aircrew workers), observed lower rates of mortality and/or morbidity from cancer and/or other diseases in exposed workers than in unexposed ones or in the general population, then suggesting the possible occurrence of hormesis. Nevertheless, these results should be considered with caution since the identification of hormetic response in epidemiological studies is rather challenging because of a number of major limitations. In this regard, some of the most remarkable shortcomings found in epidemiological studies performed in workers exposed to ionizing radiation are represented by lack or inadequate definition of exposure doses, use of surrogates of exposure, narrow dose ranges, lack of proper control groups and poor evaluation of confounding factors. Therefore, considering the valuable role and contribution that epidemiological studies might provide to the complex risk assessment and management process, there is a clear and urgent need to overcome the aforementioned limits in order to achieve an adequate, useful and more real-life risk assessment that should also include the key concept of hormesis. Thus, in the present conceptual article we also discuss and provide possible approaches to improve the capacity of epidemiological studies to identify/define the hormetic response and consequently improve the complex process of risk assessment of ionizing radiation at low exposure doses.
Collapse
Affiliation(s)
- Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Luca Fontana
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Carolina Santocono
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Davide Guarino
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Laudiero
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Garg M, Karami V, Moazen J, Kwee T, Bhalla AS, Shahbazi-Gahrouei D, Shao YHJ. Radiation Exposure and Lifetime Attributable Risk of Cancer Incidence and Mortality from Low- and Standard-Dose CT Chest: Implications for COVID-19 Pneumonia Subjects. Diagnostics (Basel) 2022; 12:3043. [PMID: 36553050 PMCID: PMC9777015 DOI: 10.3390/diagnostics12123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Since the novel coronavirus disease 2019 (COVID-19) outbreak, there has been an unprecedented increase in the acquisition of chest computed tomography (CT) scans. Nearly 616 million people have been infected by COVID-19 worldwide to date, of whom many were subjected to CT scanning. CT exposes the patients to hazardous ionizing radiation, which can damage the genetic material in the cells, leading to stochastic health effects in the form of heritable genetic mutations and increased cancer risk. These probabilistic, long-term carcinogenic effects of radiation can be seen over a lifetime and may sometimes take several decades to manifest. This review briefly describes what is known about the health effects of radiation, the lowest dose for which there exists compelling evidence about increased radiation-induced cancer risk and the evidence regarding this risk at typical CT doses. The lifetime attributable risk (LAR) of cancer from low- and standard-dose chest CT scans performed in COVID-19 subjects is also discussed along with the projected number of future cancers that could be related to chest CT scans performed during the COVID-19 pandemic. The LAR of cancer Incidence from chest CT has also been compared with those from other radiation sources, daily life risks and lifetime baseline risk.
Collapse
Affiliation(s)
- Mandeep Garg
- Department of Radiodiagnosis & Imaging, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vahid Karami
- Clinical Research Development Unite, Ganjavian Hospital, Dezful University of Medical Sciences, Dezful 6461653476, Iran
| | - Javad Moazen
- Infectious and Tropical Diseases Research Center, School of Medicine, Dezful University of Medical Sciences, Dezful 6461653480, Iran
| | - Thomas Kwee
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Hanzeplein, 9700 Groningen, The Netherlands
| | - Ashu Seith Bhalla
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Yu-Hsuan Joni Shao
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 106, Taiwan
| |
Collapse
|
7
|
Linear non-threshold (LNT) fails numerous toxicological stress tests: Implications for continued policy use. Chem Biol Interact 2022; 365:110064. [DOI: 10.1016/j.cbi.2022.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
|
8
|
Hurlbert M, Shasko L, Neetz MI. Addressing Risk Perceptions of Low-Dose Radiation Exposure. Dose Response 2022; 20:15593258221088428. [PMID: 35418815 PMCID: PMC8995549 DOI: 10.1177/15593258221088428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Concern over low-dose radiation (LDR) (exposure of less than 100 milligray (mGy))
is resulting in people refusing diagnostic procedures and medical treatment1 and also inhibiting revision of the linear no-threshold (LNT) assumption
that informs much of science policy. This article reviews representative surveys
in Ontario and Saskatchewan and focus groups conducted with science and policy
stakeholders in addressing how the public and policy stakeholders understand
issues of exposure to LDR and how policy issues can be addressed. Research results from focus groups demonstrated that policy stakeholders are
knowledgeable about issues surrounding the public and perceptions about LDR and
implications for policy consistent with LDR literature. Participants understood
that the challenge went beyond providing more education about LDR and issues of
emotions and biases must be addressed. This research resulted in rich
suggestions for public communication and engagement surrounding LDR and a
process for addressing the issue of the LNT.
Collapse
Affiliation(s)
| | - Larissa Shasko
- Johnson Shoyama Graduate School of Public Policy, Saskatoon, Canada
| | - MIchaela Neetz
- Johnson Shoyama Graduate School of Public Policy, Saskatoon, Canada
| |
Collapse
|
9
|
Aerts A, Eberlein U, Holm S, Hustinx R, Konijnenberg M, Strigari L, van Leeuwen FWB, Glatting G, Lassmann M. EANM position paper on the role of radiobiology in nuclear medicine. Eur J Nucl Med Mol Imaging 2021; 48:3365-3377. [PMID: 33912987 PMCID: PMC8440244 DOI: 10.1007/s00259-021-05345-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
Abstract
With an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.
Collapse
Affiliation(s)
- An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Uta Eberlein
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.
| | - Sören Holm
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, GIGA-CRC in vivo Imaging, University of Liège, Liège, Belgium
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Lidia Strigari
- Medical Physics Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Khan AUH, Blimkie M, Yang DS, Serran M, Pack T, Wu J, Kang JY, Laakso H, Lee SH, Le Y. Effects of Chronic Low-Dose Internal Radiation on Immune-Stimulatory Responses in Mice. Int J Mol Sci 2021; 22:7303. [PMID: 34298925 PMCID: PMC8306076 DOI: 10.3390/ijms22147303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
The Linear-No-Threshold (LNT) model predicts a dose-dependent linear increase in cancer risk. This has been supported by biological and epidemiological studies at high-dose exposures. However, at low-doses (LDR ≤ 0.1 Gy), the effects are more elusive and demonstrate a deviation from linearity. In this study, the effects of LDR on the development and progression of mammary cancer in FVB/N-Tg(MMTVneu)202Mul/J mice were investigated. Animals were chronically exposed to total doses of 10, 100, and 2000 mGy via tritiated drinking water, and were assessed at 3.5, 6, and 8 months of age. Results indicated an increased proportion of NK cells in various organs of LDR exposed mice. LDR significantly influenced NK and T cell function and activation, despite diminishing cell proliferation. Notably, the expression of NKG2D receptor on NK cells was dramatically reduced at 3.5 months but was upregulated at later time-points, while the expression of NKG2D ligand followed the opposite trend, with an increase at 3.5 months and a decrease thereafter. No noticeable impact was observed on mammary cancer development, as measured by tumor load. Our results demonstrated that LDR significantly influenced the proportion, proliferation, activation, and function of immune cells. Importantly, to the best of our knowledge, this is the first report demonstrating that LDR modulates the cross-talk between the NKG2D receptor and its ligands.
Collapse
Affiliation(s)
- Abrar Ul Haq Khan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.U.H.K.); (D.S.Y.); (J.-Y.K.)
| | - Melinda Blimkie
- Radiobiology and Health Branch, Canadian Nuclear Laboratories Ltd., Chalk River, ON K0J 1J0, Canada; (M.B.); (M.S.); (T.P.); (J.W.); (H.L.)
| | - Doo Seok Yang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.U.H.K.); (D.S.Y.); (J.-Y.K.)
| | - Mandy Serran
- Radiobiology and Health Branch, Canadian Nuclear Laboratories Ltd., Chalk River, ON K0J 1J0, Canada; (M.B.); (M.S.); (T.P.); (J.W.); (H.L.)
| | - Tyler Pack
- Radiobiology and Health Branch, Canadian Nuclear Laboratories Ltd., Chalk River, ON K0J 1J0, Canada; (M.B.); (M.S.); (T.P.); (J.W.); (H.L.)
| | - Jin Wu
- Radiobiology and Health Branch, Canadian Nuclear Laboratories Ltd., Chalk River, ON K0J 1J0, Canada; (M.B.); (M.S.); (T.P.); (J.W.); (H.L.)
| | - Ji-Young Kang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.U.H.K.); (D.S.Y.); (J.-Y.K.)
| | - Holly Laakso
- Radiobiology and Health Branch, Canadian Nuclear Laboratories Ltd., Chalk River, ON K0J 1J0, Canada; (M.B.); (M.S.); (T.P.); (J.W.); (H.L.)
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.U.H.K.); (D.S.Y.); (J.-Y.K.)
- Centre for Infection, The University of Ottawa, Immunity and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Yevgeniya Le
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.U.H.K.); (D.S.Y.); (J.-Y.K.)
- CANDU Owners Group Inc., Toronto, ON M5G 2K4, Canada
| |
Collapse
|
11
|
Pylak M, Fornalski KW, Reszczyńska J, Kukulski P, Waligórski MPR, Dobrzyński L. Analysis of Indoor Radon Data Using Bayesian, Random Binning, and Maximum Entropy Methods. Dose Response 2021; 19:15593258211009337. [PMID: 34035781 PMCID: PMC8132103 DOI: 10.1177/15593258211009337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 11/17/2022] Open
Abstract
Three statistical methods: Bayesian, randomized data binning and Maximum Entropy Method (MEM) are described and applied in the analysis of US radon data taken from the US registry. Two confounding factors-elevation of inhabited dwellings, and UVB (ultra-violet B) radiation exposure-were considered to be most correlated with the frequency of lung cancer occurrence. MEM was found to be particularly useful in extracting meaningful results from epidemiology data containing such confounding factors. In model testing, MEM proved to be more effective than the least-squares method (even via Bayesian analysis) or multi-parameter analysis, routinely applied in epidemiology. Our analysis of the available residential radon epidemiology data consistently demonstrates that the relative number of lung cancers decreases with increasing radon concentrations up to about 200 Bq/m3, also decreasing with increasing altitude at which inhabitants live. Correlation between UVB intensity and lung cancer has also been demonstrated.
Collapse
Affiliation(s)
- Maciej Pylak
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk, Poland.,Institute of Physics, Polish Academy of Sciences (IF PAN), Warszawa, Poland
| | | | - Joanna Reszczyńska
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk, Poland.,Department of Biophysics and Human Physiology, Medical University of Warsaw (WUM), Warszawa, Poland
| | - Piotr Kukulski
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Michael P R Waligórski
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Kraków, Poland
| | | |
Collapse
|
12
|
Thresholds for carcinogens. Chem Biol Interact 2021; 341:109464. [PMID: 33823170 DOI: 10.1016/j.cbi.2021.109464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
Current regulatory cancer risk assessment principles and practices assume a linear dose-response relationship-the linear no-threshold (LNT) model-that theoretically estimates cancer risks occurring following low doses of carcinogens by linearly extrapolating downward from experimentally determined risks at high doses. The two-year rodent bioassays serve as experimental vehicles to determine the high-dose cancer risks in animals and then to predict, by extrapolation, the number of carcinogen-induced tumors (tumor incidence) that will arise during the lifespans of humans who are exposed to environmental carcinogens at doses typically orders of magnitude below those applied in the rodent assays. An integrated toxicological analysis is conducted herein to reconsider an alternative and once-promising approach, tumor latency, for estimating carcinogen-induced cancer risks at low doses. Tumor latency measures time-to-tumor following exposure to a carcinogen, instead of tumor incidence. Evidence for and against the concept of carcinogen-induced tumor latency is presented, discussed, and then examined with respect to its relationship to dose, dose rates, and the dose-related concepts of initiation, tumor promotion, tumor regression, tumor incidence, and hormesis. Considerable experimental evidence indicates: (1) tumor latency (time-to-tumor) is inversely related to the dose of carcinogens and (2) lower doses of carcinogens display quantifiably discrete latency thresholds below which the promotion and, consequently, the progression and growth of tumors are delayed or prevented during a normal lifespan. Besides reconciling well with the concept of tumor promotion, such latency thresholds also reconcile favorably with the existence of thresholds for tumor incidence, the stochastic processes of tumor initiation, and the compensatory repair mechanisms of hormesis. Most importantly, this analysis and the arguments presented herein provide sound theoretical, experimental, and mechanistic rationales for rethinking the foundational premises of low-dose linearity and updating the current practices of cancer risk assessment to include the concept of carcinogen thresholds.
Collapse
|
13
|
Oakley PA, Harrison DE. Are Continued Efforts to Reduce Radiation Exposures from X-Rays Warranted? Dose Response 2021; 19:1559325821995653. [PMID: 33746654 PMCID: PMC7903835 DOI: 10.1177/1559325821995653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
There are pressures to avoid use of radiological imaging throughout all healthcare due to the notion that all radiation is carcinogenic. This perception stems from the long-standing use of the linear no-threshold (LNT) assumption of risk associated with radiation exposures. This societal perception has led to relentless efforts to avoid and reduce radiation exposures to patients at great costs. Many radiation reduction campaigns have been launched to dissuade doctors from using radiation imaging. Lower-dose imaging techniques and practices are being advocated. Alternate imaging procedures are encouraged. Are these efforts warranted? Based on recent evidence, LNT ideology is shown to be defunct for risk assessment at low-dose exposure ranges which includes X-rays and CT scans. In fact, the best evidence that was once used to support LNT ideology, including the Life Span Study data, now indicates thresholds for cancer induction are high; therefore, low-dose X-rays cannot cause harm. Current practices are safe as exposures currently encountered are orders of magnitude below threshold levels shown to be harmful. As long as imaging is medically warranted, it is shown that efforts to reduce exposures that are within background radiation levels and that are also shown to enhance health by upregulating natural adaptive protection systems are definitively wasted resources.
Collapse
|
14
|
Kaminski CY, Dattoli M, Kaminski JM. Replacing LNT: The Integrated LNT-Hormesis Model. Dose Response 2020; 18:1559325820913788. [PMID: 32313523 PMCID: PMC7160778 DOI: 10.1177/1559325820913788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 01/04/2023] Open
Abstract
Many scientists and regulators utilize the linear no-threshold (LNT) relationship to
estimate the likelihood of carcinogenesis. The LNT model is incorrect and was adopted
based upon false pretenses. The use of the model has been corrupted by many to claim that
even the smallest ionizing radiation dose may initiate carcinogenesis. This claim has
resulted in societal harm.
Collapse
Affiliation(s)
| | | | - Joseph M Kaminski
- Cara Radiology, LLC, Sarasota, FL, USA.,Dattoli Cancer Center, Sarasota, FL, USA
| |
Collapse
|
15
|
Oakley PA, Harrison DE. Death of the ALARA Radiation Protection Principle as Used in the Medical Sector. Dose Response 2020; 18:1559325820921641. [PMID: 32425724 PMCID: PMC7218317 DOI: 10.1177/1559325820921641] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
ALARA is the acronym for "As Low As Reasonably Achievable." It is a radiation protection concept borne from the linear no-threshold (LNT) hypothesis. There are no valid data today supporting the use of LNT in the low-dose range, so dose as a surrogate for risk in radiological imaging is not appropriate, and therefore, the use of the ALARA concept is obsolete. Continued use of an outdated and erroneous principle unnecessarily constrains medical professionals attempting to deliver high-quality care to patients by leading to a reluctance by doctors to order images, a resistance from patients/parents to receive images, subquality images, repeated imaging, increased radiation exposures, the stifling of low-dose radiation research and treatment, and the propagation of radiophobia and continued endorsement of ALARA by regulatory bodies. All these factors result from the fear of radiogenic cancer, many years in the future, that will not occur. It has been established that the dose threshold for leukemia is higher than previously thought. A low-dose radiation exposure from medical imaging will likely upregulate the body's adaptive protection systems leading to the prevention of future cancers. The ALARA principle, as used as a radiation protection principle throughout medicine, is scientifically defunct and should be abandoned.
Collapse
|
16
|
Radiation dose monitoring: time for a paradigm change? Nucl Med Commun 2019; 40:1193-1194. [PMID: 31568195 DOI: 10.1097/mnm.0000000000001094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|