1
|
Okafor O, Kim K. Cytotoxicity of Quantum Dots in Receptor-Mediated Endocytic and Pinocytic Pathways in Yeast. Int J Mol Sci 2024; 25:4714. [PMID: 38731933 PMCID: PMC11083673 DOI: 10.3390/ijms25094714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the promising applications of the use of quantum dots (QDs) in the biomedical field, the long-lasting effects of QDs on the cell remain poorly understood. To comprehend the mechanisms underlying the toxic effects of QDs in yeast, we characterized defects associated with receptor-mediated endocytosis (RME) as well as pinocytosis using Saccharomyces cerevisiae as a model in the presence of cadmium selenide/zinc sulfide (CdSe/ZnS) QDs. Our findings revealed that QDs led to an inefficient RME at the early, intermediate, and late stages of endocytic patch maturation at the endocytic site, with the prolonged lifespan of GFP fused yeast fimbrin (Sac6-GFP), a late marker of endocytosis. The transit of FM1-43, a lipophilic dye from the plasma membrane to the vacuole, was severely retarded in the presence of QDs. Finally, QDs caused an accumulation of monomeric red fluorescent protein fused carbamoyl phosphate synthetase 1 (mRFP-Cps1), a vacuolar lumen marker in the vacuole. In summary, the present study provides novel insights into the possible impact of CdSe/ZnS QDs on the endocytic machinery, enabling a deeper comprehension of QD toxicity.
Collapse
Affiliation(s)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
| |
Collapse
|
2
|
Liu N, Liang Y, Wei T, Huang X, Zhang T, Tang M. Protein corona exacerbated inflammatory response in macrophages elicited by CdTe quantum dots. NANOIMPACT 2024; 33:100494. [PMID: 38246246 DOI: 10.1016/j.impact.2024.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Nano-bio interface is significant concern in nanomedicine. When nanoparticles (NPs) come into contact with cells, they form complexes with proteins known as protein corona (PC). Cadmium telluride quantum dots (CdTe QDs) have been applied as bioimaging probes and for macrophage theragnostic. However, the impact of protein corona on the behavior of CdTe QDs is not well understood. Macrophages play a crucial role in defending against NPs. In this study, RAW264.7 cells were used to investigated the inflammatory response in macrophages when exposed to CdTe QDs before and after PC formation in fetal bovine serum. The results indicated that protein corona polarized more macrophages towards M1 phenotype. Transcriptomics analysis revealed that PC-CdTe QDs altered a greater number of differentially expressed genes (DEGs) compared to CdTe QDs (177 and 398) at 1.0 μM in macrophages. The DEGs affected by PC-CdTe QDs contained several personalized inflammatory cytokines. The enriched pathways after PC formation included Cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and TNF signaling pathway, etc. Furthermore, PC specifically exacerbated the overexpression of CCL2 and IL-1β proteins. Importantly, PC altered the mechanism of CdTe QD-induced pyroptosis, shifting it from activating NLRC4 to both NLRP1 and NLRP3 inflammasomes, and from cleaving GSDMD and GSDMB to GSDMB alone. Overall, protein corona exacerbated the inflammatory response induced by CdTe QDs in macrophages. This study provides valuable insight into the pro-inflammatory effect of protein corona on CdTe QDs, with implications for their use in bioimaging or macrophage theragnostic by either exploiting or eliminating this biological interface effect.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - Ying Liang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
3
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
4
|
Abdelkader Y, Perez-Davalos L, LeDuc R, Zahedi RP, Labouta HI. Omics approaches for the assessment of biological responses to nanoparticles. Adv Drug Deliv Rev 2023; 200:114992. [PMID: 37414362 DOI: 10.1016/j.addr.2023.114992] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Nanotechnology has enabled the development of innovative therapeutics, diagnostics, and drug delivery systems. Nanoparticles (NPs) can influence gene expression, protein synthesis, cell cycle, metabolism, and other subcellular processes. While conventional methods have limitations in characterizing responses to NPs, omics approaches can analyze complete sets of molecular entities that change upon exposure to NPs. This review discusses key omics approaches, namely transcriptomics, proteomics, metabolomics, lipidomics and multi-omics, applied to the assessment of biological responses to NPs. Fundamental concepts and analytical methods used for each approach are presented, as well as good practices for omics experiments. Bioinformatics tools are essential to analyze, interpret and visualize large omics data, and to correlate observations in different molecular layers. The authors envision that conducting interdisciplinary multi-omics analyses in future nanomedicine studies will reveal integrated cell responses to NPs at different omics levels, and the incorporation of omics into the evaluation of targeted delivery, efficacy, and safety will improve the development of nanomedicine therapies.
Collapse
Affiliation(s)
- Yasmin Abdelkader
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada; Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St., Cairo 12622, Egypt
| | - Luis Perez-Davalos
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada
| | - Richard LeDuc
- Children's Hospital Research Institute of Manitoba, 513 - 715 McDermot Av. W, Winnipeg, Manitoba R3E 3P4, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Av., Winnipeg, Manitoba R3E 0J9, Canada
| | - Rene P Zahedi
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Av., Winnipeg, Manitoba R3E 0J9, Canada; Department of Internal Medicine, 715 McDermot Av., Winnipeg, Manitoba R3E 3P4, Canada; Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Av., Winnipeg, Manitoba R3E 3P4, Canada; CancerCare Manitoba Research Institute, 675 McDermot Av., Manitoba R3E 0V9, Canada
| | - Hagar I Labouta
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada; Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt, 21521.
| |
Collapse
|