1
|
Liu P, Liu X, Yang L, Qian Y, Lu Q, Shi A, Wei S, Zhang X, Lv Y, Xiang J. Enhanced hemocompatibility and rapid magnetic anastomosis of electrospun small-diameter artificial vascular grafts. Front Bioeng Biotechnol 2024; 12:1331078. [PMID: 38328445 PMCID: PMC10847591 DOI: 10.3389/fbioe.2024.1331078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Background: Small-diameter (<6 mm) artificial vascular grafts (AVGs) are urgently required in vessel reconstructive surgery but constrained by suboptimal hemocompatibility and the complexity of anastomotic procedures. This study introduces coaxial electrospinning and magnetic anastomosis techniques to improve graft performance. Methods: Bilayer poly(lactide-co-caprolactone) (PLCL) grafts were fabricated by coaxial electrospinning to encapsulate heparin in the inner layer for anticoagulation. Magnetic rings were embedded at both ends of the nanofiber conduit to construct a magnetic anastomosis small-diameter AVG. Material properties were characterized by micromorphology, fourier transform infrared (FTIR) spectra, mechanical tests, in vitro heparin release and hemocompatibility. In vivo performance was evaluated in a rabbit model of inferior vena cava replacement. Results: Coaxial electrospinning produced PLCL/heparin grafts with sustained heparin release, lower platelet adhesion, prolonged clotting times, higher Young's modulus and tensile strength versus PLCL grafts. Magnetic anastomosis was significantly faster than suturing (3.65 ± 0.83 vs. 20.32 ± 3.45 min, p < 0.001) and with higher success rate (100% vs. 80%). Furthermore, magnetic AVG had higher short-term patency (2 days: 100% vs. 60%; 7 days: 40% vs. 0%) but similar long-term occlusion as sutured grafts. Conclusion: Coaxial electrospinning improved hemocompatibility and magnetic anastomosis enhanced implantability of small-diameter AVG. Short-term patency was excellent, but further optimization of anticoagulation is needed for long-term patency. This combinatorial approach holds promise for vascular graft engineering.
Collapse
Affiliation(s)
- Peng Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xin Liu
- Department of Graduate School, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Lifei Yang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yerong Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qiang Lu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Aihua Shi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shasha Wei
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xufeng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yi Lv
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Junxi Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Cao T, Jiang Z, Zhao H, Zhang KQ, Meng K. Numerical simulation to study the impact of compliance mismatch between artificial and host blood vessel on hemodynamics. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
3
|
Zakeri Z, Salehi R, Mahkam M, Rahbarghazi R, Abbasi F, Rezaei M. Electrospun POSS integrated poly(carbonate-urea)urethane provides appropriate surface and mechanical properties for the fabrication of small-diameter vascular grafts. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1415-1434. [PMID: 35380915 DOI: 10.1080/09205063.2022.2059741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study developed a platform for fabricating small-diameter vascular grafts using electrospun poly(carbonate-urea)urethane bonded with different concentrations of POSS nanocage. The characteristics of electrospun POSS-PCUUs were investigated by ATR-FTIR, 1HNMR, EDS, SEM, AFM, WCA, and DSC analyses. Besides, mechanical attributes such as tensile strength, modulus, elastic recovery, and inelastic behaviors were monitored. The survival rate and cellular attachment capacity were studied using human endothelial cells during a 7-day culture period. The results showed that electrospun nanofibers with 6 wt.% POSS-PCUU had better surface properties in terms of richness of POSS nanocage with notable improved mechanical strength and hysteresis loss properties (p < 0.05). The surface roughness of electrospun 6 wt.% POSS-PCUU reached 646 ± 10 nm with statistically significant differences compared to the control PCUU and groups containing 2, 4 wt.% POSS-PCUU (p < 0.05). The addition of 6 wt.% POSS increased the ultimate mechanical strength of nanofibers related to control PCUU and other groups (p < 0.05). The expansion of human endothelial cells on the 6 wt.% POSS-PCUU surface increased the viability reaching maximum levels on day 7 (p < 0.05). Immunofluorescence imaging using DAPI staining displayed the formation single-layer endothelial barrier at the luminal surface, indicating an appropriate cell-to-cell interaction.
Collapse
Affiliation(s)
- Ziba Zakeri
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehrdad Mahkam
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Reza Rahbarghazi
- cStem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhang Abbasi
- Institute of Polymeric Materials, Polymer Engineering Department, Sahand University of Technology, Tabriz, Iran
| | - Mostafa Rezaei
- Institute of Polymeric Materials, Polymer Engineering Department, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
4
|
Fang S, Ellman DG, Andersen DC. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells 2021; 10:713. [PMID: 33807009 PMCID: PMC8005053 DOI: 10.3390/cells10030713] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.
Collapse
Affiliation(s)
- Shu Fang
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- The Danish Regenerative Center, Odense University Hospital, J. B. Winsløwsvej 4, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Ditte Gry Ellman
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- The Danish Regenerative Center, Odense University Hospital, J. B. Winsløwsvej 4, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| |
Collapse
|
5
|
Akbari S, Mohebbi-Kalhori D, Samimi A. Effect of corrugated structure on the collapsing of the small-diameter vascular scaffolds. J Biomater Appl 2020; 34:1355-1367. [DOI: 10.1177/0885328220910021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Saeed Akbari
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran
| | - Davod Mohebbi-Kalhori
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran
| | - Abdolreza Samimi
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran
| |
Collapse
|
6
|
Rahmati Nejad M, Yousefzadeh M, Solouk A. Electrospun PET/PCL small diameter nanofibrous conduit for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110692. [PMID: 32204006 DOI: 10.1016/j.msec.2020.110692] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
In recent years, the mortality rate caused by cardiovascular diseases has increased dramatically around the world. Tissue engineering is considered as a novel and efficient approach to offer a substituent of engineered tissues for defective body tissues. For this purpose, fabrication of the scaffold that resembles the physical and mechanical properties of natural body vessels, and culturing appropriate cells seems to be a promising approach. Due to the fibrous structure of the vascular wall, the nanofibrous scaffold produced by electrospinning could be a proper choice for vascular tissue engineering. One of the main properties of artificial vessels is its mechanical properties consistency with the native one in order to mimic its natural characteristics. To do so, in present study two biocompatible polymers, polyethylene terephthalate (PET) and polycaprolactone (PCL) with different blend ratio were electrospun into a tubular nanofibrous structure with 6 mm internal diameter and the mechanical properties such as tensile strength, modulus, compliance, bursting pressure, elastic recovery, and suture retention were investigated. The results revealed that PET/PCL (1:3) had better similar properties with the reported natural one as its longitudinal and transverse tensile strength was about 9.47 and 6.38 MPa, respectively. The longitudinal strain at break, compliance, bursting pressure, and suture retention were 205.88 ± 51.12%, 4.19 ± 0.78%/100 mmHg, 6378.76 ± 2159.20 mmHg, and 287.73 ± 13.10 gmf, respectively. The elasticity of this studied sample was 60.21 ± 12.49% as it was relieved, and this may be a good candidate for the artificial vessel in this size, as the MTT test confirmed its appropriate substrate for cell culture.
Collapse
Affiliation(s)
- Maryam Rahmati Nejad
- Textile Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran.
| | - Maryam Yousefzadeh
- Textile Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran.
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran.
| |
Collapse
|