1
|
DiMaria S, Mangano N, Bruzzese A, Bartula B, Parikh S, Costa A. Genetic Variation and Sex-Based Differences: Current Considerations for Anesthetic Management. Curr Issues Mol Biol 2025; 47:202. [PMID: 40136457 PMCID: PMC11941548 DOI: 10.3390/cimb47030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Biomedical sciences have made immense progress and numerous discoveries aimed at improving the quality of life and life expectancy in modern times. Anesthesiology is typically tailored to individual patients as its clinical effects depend on multiple factors, including a patient's physiological and pathological states, age, environmental exposures, and genetic variations. Sex differences are also paramount for a complete understanding of the effects of specific anesthetic medications on men and women. However, women-specific research and the inclusion of women in clinical trials, specifically during child-bearing years, remain disproportionately low compared to the general population at large. This review describes and summarizes genetic variations, including sex differences, that affect responses to common anesthetic medications such as volatile anesthetics, induction agents, neuromuscular blocking drugs, opioids, and local anesthetics. It also discusses the influence of genetic variations on anesthesia outcomes, such as postoperative nausea and vomiting, allergic reactions, pain, depth of anesthesia, awareness under anesthesia and recall, and postoperative delirium.
Collapse
Affiliation(s)
- Stephen DiMaria
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| | - Nicholas Mangano
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| | - Adam Bruzzese
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.B.); (B.B.)
| | - Benjamin Bartula
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.B.); (B.B.)
| | - Shruti Parikh
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| | - Ana Costa
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| |
Collapse
|
2
|
Li N, Li L, Liu Z, Deng Y, Wang M, Li Y, Kang H, Wang Y, Yu P, Zhu J. Association of maternal prenatal phthalate exposure and genetic polymorphisms of metabolic enzyme genes with spontaneous preterm birth: a nested case-control study in China. BMC Pregnancy Childbirth 2025; 25:301. [PMID: 40097953 PMCID: PMC11917035 DOI: 10.1186/s12884-025-07420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND The relationship between prenatal phthalate exposure and preterm birth from previous studies has been inconsistent. Meanwhile, few studies have explored the relationship between spontaneous preterm birth (SPTB) and genetic polymorphisms of metabolic enzyme genes or gene-phthalate interactions. The aim of this study is to evaluate the association of maternal phthalate exposure, genetic polymorphisms, and their interactions with SPTB. METHODS A total of 182 cases with SPTB and 321 controls with full-term delivery were enrolled. Nine phthalate metabolites in maternal second trimester urine samples were measured by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. Genotyping was performed on twenty-six single nucleotide polymorphisms (SNPs) of metabolic enzyme genes, including CYP2C9, CYP2C19, UGT1A7, UGT2B7 and UGT2B15 genes. The associations between maternal phthalate exposure or genetic polymorphisms and SPTB were estimated by multivariable logistic regression analysis. The impact of interactions between gene-gene and gene-phthalate exposure on SPTB were analyzed via generalized multifactor dimensionality reduction. RESULTS There were no significant differences in the concentrations of phthalate metabolites between the two groups. No statistically significant associations were observed between maternal phthalate exposure and SPTB. The rs4244285 polymorphism of CYP2C19 gene was associated with decreased odds of SPTB under the log-additive (aOR = 0.73, 95% CI: 0.55-0.98) and recessive model (aOR = 0.37, 95% CI: 0.18-0.74). Two SNP loci of UGT2B15 were associated with increased odds of SPTB under the recessive genetic model (aOR = 3.85, 95% CI: 1.31-11.35 for rs3100, and aOR = 3.85, 95% CI: 1.31-11.35 for rs4148269). However, these associations were not significant after the false discovery rate correction. No significant gene-gene or gene-phthalate metabolites interactions for SPTB were observed. CONCLUSIONS Maternal phthalate exposure in the present subjects and genetic polymorphisms of metabolic enzyme genes were not associated with SPTB. Moreover, there were no significant gene-gene or gene-phthalates interactions for SPTB.
Collapse
Affiliation(s)
- Nana Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, RenMin South Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Lu Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, RenMin South Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Zhen Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, RenMin South Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, RenMin South Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, RenMin South Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yuting Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, RenMin South Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Hong Kang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, RenMin South Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yanping Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, RenMin South Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ping Yu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, RenMin South Road, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, RenMin South Road, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Adamczyk K, Zuzda K, Jankowski M, Świerczyński R, Chudziński K, Czapski B, Szułdrzyński K. Effects of Opioids in Cancer Pain: An Interplay Among Genetic Factors, Immune Response, and Clinical Outcomes-A Scoping Review. Cancers (Basel) 2025; 17:863. [PMID: 40075716 PMCID: PMC11899605 DOI: 10.3390/cancers17050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Managing cancer-related pain presents complex challenges involving the interplay between analgesic efficacy, immune system responses, and patient outcomes. Methods: Following the Scale for the Assessment of Narrative Review Articles (SANRA) criteria, we conducted a comprehensive literature search in Medline, Scopus, and Web of Science databases. The review synthesized evidence regarding opioid pain management modalities, genetic variations affecting pain perception, and associated drug metabolism. Results: The literature reveals significant associations between opioid administration and immune function, with potential implications for cancer progression and survival. Genetic polymorphisms in key genes influence individual responses to pain opioid metabolism and, finally, pain management strategies. The immunosuppressive effects of opioids emerge as a critical consideration in cancer pain management, potentially influencing disease progression and treatment outcomes. Conclusions: Genetic variants influence analgesic efficacy, while the interaction between opioid-induced immunosuppression and genetic factors impacts both pain control and survival outcomes. This emphasizes the need for personalized treatment approaches considering individual genetic profiles and immune function.
Collapse
Affiliation(s)
- Kamil Adamczyk
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Konrad Zuzda
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Miłosz Jankowski
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Rafał Świerczyński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Kamil Chudziński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Bartosz Czapski
- Department of Neurosurgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Konstanty Szułdrzyński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
4
|
Li N, Kang H, Liu Z, Li L, Deng Y, Wang M, Li Y, Xu W, Li X, Wang Y, Zhu J, Tao J, Yu P. Association of maternal phthalates exposure and metabolic gene polymorphisms with congenital heart diseases: a multicenter case-control study. BMC Pregnancy Childbirth 2024; 24:167. [PMID: 38408952 PMCID: PMC10895762 DOI: 10.1186/s12884-024-06343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The majority of congenital heart diseases (CHDs) are thought to result from the interactions of genetics and the environment factors. This study aimed to assess the association of maternal non-occupational phthalates exposure, metabolic gene polymorphisms and their interactions with risk of CHDs in offspring. METHODS A multicenter case-control study of 245 mothers with CHDs infants and 268 control mothers of health infant was conducted from six hospitals. Maternal urinary concentrations of eight phthalate metabolites were measured by ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Twenty single nucleotide polymorphisms (SNPs) in cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and 19 (CYP2C19), uridine diphosphate (UDP) glucuronosyl transferase family 1 member A7 (UGT1A7), family 2 member B7 (UGT2B7) and B15(UGT2B15) genes were genotyped. The multivariate logistic regressions were used to estimate the association between maternal phthalates exposure or gene polymorphisms and risk of CHDs. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the gene-gene and gene-phthalates exposure interactions. RESULTS There was no significant difference in phthalate metabolites concentrations between the cases and controls. No significant positive associations were observed between maternal exposure to phthalates and CHDs. The SNPs of UGT1A7 gene at rs4124874 (under three models, log-additive: aOR = 1.74, 95% CI:1.28-2.37; dominant: aOR = 1.86, 95% CI:1.25-2.78; recessive: aOR = 2.50, 95% CI: 1.26-4.94) and rs887829 (under the recessive model: aOR = 13.66, 95% CI: 1.54-121) were significantly associated with an increased risk of CHDs. Furthermore, the associations between rs4124874 (under log-additive and dominant models) of UGT1A7 were statistically significant after the false discovery rate correction. No significant gene-gene or gene-phthalate metabolites interactions were observed. CONCLUSIONS The polymorphisms of maternal UGT1A7 gene at rs4124874 and rs887829 were significantly associated with an increased risk of CHDs. More large-scale studies or prospective study designs are needed to confirm or refute our findings in the future.
Collapse
Affiliation(s)
- Nana Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Hong Kang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Zhen Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Lu Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yuting Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Wenli Xu
- Department of Maternal Healthcare, Pidu Maternal and Child Care Hospital, Chengdu, China
| | - Xiaohong Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yanping Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jing Tao
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| | - Ping Yu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Nishizawa D, Mieda T, Tsujita M, Nakagawa H, Yamaguchi S, Kasai S, Hasegawa J, Nakayama K, Ebata Y, Kitamura A, Shimizu H, Takashima T, Hayashida M, Ikeda K. Genome-Wide Association Study Identifies Genetic Polymorphisms Associated with Estimated Minimum Effective Concentration of Fentanyl in Patients Undergoing Laparoscopic-Assisted Colectomy. Int J Mol Sci 2023; 24:ijms24098421. [PMID: 37176129 PMCID: PMC10179231 DOI: 10.3390/ijms24098421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Sensitivity to opioids varies widely among individuals. To identify potential candidate single-nucleotide polymorphisms (SNPs) that may significantly contribute to individual differences in the minimum effective concentration (MEC) of an opioid, fentanyl, we conducted a three-stage genome-wide association study (GWAS) using whole-genome genotyping arrays in 350 patients who underwent laparoscopic-assisted colectomy. To estimate the MEC of fentanyl, plasma and effect-site concentrations of fentanyl over the 24 h postoperative period were estimated with a pharmacokinetic simulation model based on initial bolus doses and subsequent patient-controlled analgesia doses of fentanyl. Plasma and effect-site MECs of fentanyl were indicated by fentanyl concentrations, estimated immediately before each patient-controlled analgesia dose. The GWAS revealed that an intergenic SNP, rs966775, that mapped to 5p13 had significant associations with the plasma MEC averaged over the 6 h postoperative period and the effect-site MEC averaged over the 12 h postoperative period. The minor G allele of rs966775 was associated with increases in these MECs of fentanyl. The nearest protein-coding gene around this SNP was DRD1, encoding the dopamine D1 receptor. In the gene-based analysis, the association was significant for the SERP2 gene in the dominant model. Our findings provide valuable information for personalized pain treatment after laparoscopic-assisted colectomy.
Collapse
Affiliation(s)
- Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tsutomu Mieda
- Department of Anesthesiology, Saitama Medical University Hospital, Saitama 350-0495, Japan
| | - Miki Tsujita
- Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
| | - Hideyuki Nakagawa
- Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
| | - Shigeki Yamaguchi
- Division of Colorectal Surgery, Department of Surgery, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Shinya Kasai
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kyoko Nakayama
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuko Ebata
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Akira Kitamura
- Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
| | - Hirotomo Shimizu
- Laboratory for Safety Assessment and ADME, Asahi Kasei Pharma Corporation, Shizuoka 410-2321, Japan
| | - Tadayuki Takashima
- Laboratory for Safety Assessment and ADME, Asahi Kasei Pharma Corporation, Shizuoka 410-2321, Japan
| | - Masakazu Hayashida
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
- Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
6
|
Babayeva M, Loewy ZG. Cannabis Pharmacogenomics: A Path to Personalized Medicine. Curr Issues Mol Biol 2023; 45:3479-3514. [PMID: 37185752 PMCID: PMC10137111 DOI: 10.3390/cimb45040228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cannabis and related compounds have created significant research interest as a promising therapy in many disorders. However, the individual therapeutic effects of cannabinoids and the incidence of side effects are still difficult to determine. Pharmacogenomics may provide the answers to many questions and concerns regarding the cannabis/cannabinoid treatment and help us to understand the variability in individual responses and associated risks. Pharmacogenomics research has made meaningful progress in identifying genetic variations that play a critical role in interpatient variability in response to cannabis. This review classifies the current knowledge of pharmacogenomics associated with medical marijuana and related compounds and can assist in improving the outcomes of cannabinoid therapy and to minimize the adverse effects of cannabis use. Specific examples of pharmacogenomics informing pharmacotherapy as a path to personalized medicine are discussed.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Zvi G Loewy
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
7
|
Ayuso P, Macías Y, Gómez-Tabales J, García-Martín E, Agúndez JAG. Molecular monitoring of patient response to painkiller drugs. Expert Rev Mol Diagn 2022; 22:545-558. [PMID: 35733288 DOI: 10.1080/14737159.2022.2093638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Non-steroidal anti-inflammatory drugs and opioids are widely prescribed for the treatment of mild to severe pain. Wide interindividual variability regarding the analgesic efficacy and adverse reactions to these drugs (ADRs) exist, although the mechanisms responsible for these ADRs are not well understood. AREAS COVERED We provide an overview of the clinical impact of variants in genes related to the pharmacokinetics and pharmacodynamics of painkillers, as well as those associated with the susceptibility to ADRs. Also, we discuss the current pharmacogenetic-guided treatment recommendations for the therapeutic use of non-steroidal anti-inflammatory drugs and opioids. EXPERT OPINION In the light of the data analyzed, common variants in genes involved in pharmacokinetics and pharmacodynamics processes may partially explain the lack of response to painkiller treatment and the occurrence of adverse drug reactions. The implementation of high-throughput sequencing technologies may help to unveil the role of rare variants as considerable contributors to explaining the interindividual variability in drug response. Furthermore, a consensus between the diverse pharmacogenetic guidelines is necessary to extend the implementation of pharmacogenetic-guided prescription in daily clinical practice. Additionally, the physiologically-based pharmacokinetics and pharmacodynamics modeling techniques may contribute to the improvement of these guidelines and facilitate clinicians drug dose adjustment.
Collapse
Affiliation(s)
- Pedro Ayuso
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL, Instituto de Salud Carlos III, Cáceres, Spain
| | - Yolanda Macías
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL, Instituto de Salud Carlos III, Cáceres, Spain
| | - Javier Gómez-Tabales
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL, Instituto de Salud Carlos III, Cáceres, Spain
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL, Instituto de Salud Carlos III, Cáceres, Spain
| | - José A G Agúndez
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL, Instituto de Salud Carlos III, Cáceres, Spain
| |
Collapse
|
8
|
Llorach-Pares L, Nonell-Canals A, Avila C, Sanchez-Martinez M. Computer-Aided Drug Design (CADD) to De-Orphanize Marine Molecules: Finding Potential Therapeutic Agents for Neurodegenerative and Cardiovascular Diseases. Mar Drugs 2022; 20:53. [PMID: 35049908 PMCID: PMC8781171 DOI: 10.3390/md20010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022] Open
Abstract
Computer-aided drug design (CADD) techniques allow the identification of compounds capable of modulating protein functions in pathogenesis-related pathways, which is a promising line on drug discovery. Marine natural products (MNPs) are considered a rich source of bioactive compounds, as the oceans are home to much of the planet's biodiversity. Biodiversity is directly related to chemodiversity, which can inspire new drug discoveries. Therefore, natural products (NPs) in general, and MNPs in particular, have been used for decades as a source of inspiration for the design of new drugs. However, NPs present both opportunities and challenges. These difficulties can be technical, such as the need to dive or trawl to collect the organisms possessing the compounds, or biological, due to their particular marine habitats and the fact that they can be uncultivable in the laboratory. For all these difficulties, the contributions of CADD can play a very relevant role in simplifying their study, since, for example, no biological sample is needed to carry out an in-silico analysis. Therefore, the amount of natural product that needs to be used in the entire preclinical and clinical study is significantly reduced. Here, we exemplify how this combination between CADD and MNPs can help unlock their therapeutic potential. In this study, using a set of marine invertebrate molecules, we elucidate their possible molecular targets and associated therapeutic potential, establishing a pipeline that can be replicated in future studies.
Collapse
Affiliation(s)
- Laura Llorach-Pares
- Mind the Byte S.L., 08028 Barcelona, Catalonia, Spain; (L.L.-P.); (A.N.-C.)
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain;
| | | | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain;
| | | |
Collapse
|
9
|
Udayakumar P, Udayakumar S. Fentanyl-Induced Respiratory Depression: A Narrative Review on the Possible Single-Nucleotide Polymorphism. Anesth Essays Res 2021; 15:4-7. [PMID: 34667340 PMCID: PMC8462425 DOI: 10.4103/aer.aer_94_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Opioid-related respiratory depression is a serious clinical problem as it can cause multiple deaths and anoxic brain injury. Genetic variations influence the safety and clinical efficacy of fentanyl. Pharmacogenetic studies help in identifying single-nucleotide polymorphisms (SNPs) associated with fentanyl causing respiratory depression and aid clinician in personalized pain medicine. This narrative review gives an insight of the common SNPs associated with fentanyl.
Collapse
Affiliation(s)
- Prabha Udayakumar
- Department of Anesthesiology, Sri Ramakrishna Hospital, Coimbatore, Tamil Nadu, India
| | - Srisruthi Udayakumar
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
10
|
Freda PJ, Moore JH, Kranzler HR. The phenomics and genetics of addictive and affective comorbidity in opioid use disorder. Drug Alcohol Depend 2021; 221:108602. [PMID: 33652377 PMCID: PMC8059867 DOI: 10.1016/j.drugalcdep.2021.108602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
Opioid use disorder (OUD) creates significant public health and economic burdens worldwide. Therefore, understanding the risk factors that lead to the development of OUD is fundamental to reducing both its prevalence and its impact. Significant sources of OUD risk include co-occurring lifetime and current diagnoses of both psychiatric disorders, primarily mood disorders, and other substance use disorders, and unique and shared genetic factors. Although there appears to be pleiotropy between OUD and both mood and substance use disorders, this aspect of OUD risk is poorly understood. In this review, we describe the prevalence and clinical significance of addictive and affective comorbidities as risk factors for OUD development as a basis for rational opioid prescribing and OUD treatment and to improve efforts to prevent the disorder. We also review the genetic variants that have been associated with OUD and other addictive and affective disorders to highlight targets for future study and risk assessment protocols.
Collapse
Affiliation(s)
- Philip J. Freda
- University of Pennsylvania, Biostatistics, Epidemiology, & Informatics, The Perelman School of Medicine, University of Pennsylvania A201 R…, Philadelphia, Pennsylvania 19104, United States
| | - Jason H. Moore
- Edward Rose Professor of Informatics, Director, Institute for Biomedical Informatics, Director, Division of Informatics, Department of Biostatistics, Epidemiology, & Informatics, Senior Associate Dean for Informatics, The Perelman School of Medicine, University of Pennsylvania, Contact Information: D202 Richards Building, 3700 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104-6116
| | - Henry R. Kranzler
- Benjamin Rush Professor in Psychiatry, Department of Psychiatry, University of Pennsylvania, Treatment Research Center, 3535 Market Street, Suite 500, Philadelphia, PA 19104-6178
| |
Collapse
|
11
|
Soeda M, Ohka S, Nishizawa D, Hasegawa J, Nakayama K, Ebata Y, Ichinohe T, Fukuda KI, Ikeda K. Cold pain sensitivity is associated with single-nucleotide polymorphisms of PAR2/ F2RL1 and TRPM8. Mol Pain 2021; 17:17448069211002009. [PMID: 33765896 PMCID: PMC8822448 DOI: 10.1177/17448069211002009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pain sensitivity differs individually, but the mechanisms and genetic factors that underlie these differences are not fully understood. To investigate genetic factors that are involved in sensing cold pain, we applied a cold-induced pain test and evaluated protease-activated receptor 2 (PAR2/F2RL1) and transient receptor potential melastatin 8 (TRPM8), which are related to pain. We statistically investigated the associations between genetic polymorphisms and cold pain sensitivity in 461 healthy patients who were scheduled to undergo cosmetic orthognathic surgery for mandibular prognathism. We found an association between cold pain sensitivity and the rs2243057 polymorphism of the PAR2 gene. We also found a significant association between cold pain sensitivity and the rs12992084 polymorphism of the TRPM8 gene. Carriers of the minor A allele of the rs2243057 polymorphism of PAR2 and minor C allele of the rs12992084 polymorphism of TRPM8 exhibited a longer latency to pain perception in the cold-induced pain test, reflecting a decrease in cold pain sensitivity. These results suggest that genetic polymorphisms of both PAR2 and TRPM8 are involved in individual differences in cold pain sensitivity.
Collapse
Affiliation(s)
- Moe Soeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Seii Ohka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Nakayama
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuko Ebata
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Ken-Ichi Fukuda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
12
|
Chaturvedi R, Alexander B, A'Court AM, Waterman RS, Burton BN, Urman RD, Gabriel RA. Genomics testing and personalized medicine in the preoperative setting: Can it change outcomes in postoperative pain management? Best Pract Res Clin Anaesthesiol 2020; 34:283-295. [PMID: 32711834 DOI: 10.1016/j.bpa.2020.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Postoperative pain and opioid use are major challenges in perioperative medicine. Pain perception and its response to opioid use are multi-faceted and include pharmacological, psychological, and genetic components. Precision medicine is a unique approach to individualized health care in which decisions in management are based on genetics, lifestyle, and environment of each person. Genetic variations can have an impact on the perception of pain and response to treatment. This can have an effect on pain management in both acute and chronic settings. Although there is currently not enough evidence for making recommendations about genetic testing to guide pain management in the acute care setting, there are some known polymorphisms that play a role in surgical pain and opioid-related postoperative adverse outcomes. In this review, we describe the potential use of pharmacogenomics (PGx) for improving perioperative pain management. We first review a number of genotypes that have shown correlations with pain and opioid use and then describe the importance of PGx-guided analgesic protocols and implementation of screening in a preoperative evaluation clinical setting.
Collapse
Affiliation(s)
- Rahul Chaturvedi
- School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Brenton Alexander
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA.
| | - Alison M A'Court
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA.
| | - Ruth S Waterman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA.
| | - Brittany N Burton
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA.
| | - Rodney A Gabriel
- Department of Anesthesiology and Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Yang Z, Yin Q, Li X. Influences of UGT2B7 rs7439366 and rs12233719 Polymorphisms on Fentanyl Sensitivity in Chinese Gynecologic Patients. Med Sci Monit 2020; 26:e924153. [PMID: 32401749 PMCID: PMC7245057 DOI: 10.12659/msm.924153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background This study discussed potential influences of UDP glucuronosyltransferase family 2 member B7 (UGT2B7) rs7439366 and rs12233719 polymorphisms on fentanyl sensitivity among Chinese gynecologic patients. Material/Methods UGT2B7 polymorphisms were genotyped by polymerase chain reaction (PCR) and direct sequencing. Before surgery, baseline latency to pain perception (PPLpre) and pain perception latency of the dominant hand (PPLpost) at 3 minutes after injecting fentanyl were measured by cold pressor-induced pain test. Perioperative fentanyl adoption referred to the total of fentanyl administration during and after operation. Intensity of spontaneous pain was appraised adopting 100-mm visual analog scale (VAS). Factorial analysis was performed by Mann-Whitney U test and Kruskal-Wallis H test. Results Significant differences of PPLpost (CC/CT/TT, P=0.038) and preoperative analgesic effect (CC/CT/TT, P=0.028) were discovered between the rs7439366 genotypes. PPLpost was significantly different between the CT and TT groups (P=0.009) and the CC+CT and TT groups (P=0.026). Preoperative analgesic effect was significantly different between the CT and TT groups (P=0.007) and the CC+CT and TT groups (P=0.009). All of the clinical features studied had no close association with rs12233719 SNP. Conclusions Gynecologic patients with rs7439366 TT genotype had significantly lower fentanyl sensitivity than the other 2 genotype carriers.
Collapse
Affiliation(s)
- Zhenling Yang
- The Pain Management Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Qingfeng Yin
- Institute of Evidence-Based Medicine and Clinical Transformation, Henan University, Kaifeng, Henan, China (mainland)
| | - Xiaodong Li
- Institutes of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, Henan, China (mainland).,Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| |
Collapse
|
14
|
Abstract
Fentanyl has been implicated as a major contributor to the increased number of opioid overdose deaths. Surprisingly, little is known about the pharmacogenetic influences on fentanyl pharmacokinetics or pharmacodynamics. Pharmacogenetic studies of fentanyl are based largely on small sample sizes and have examined the potential association of only a small number of high frequency variants in selected candidate genes primarily with postoperative pain. Few data are available on low frequency variants, variants from racially/ethnically diverse populations, or on other phenotypes. Given the genetic diversity of low frequency variants, DNA sequencing may be needed to determine whether pharmacogenetic differences may contribute to lethal opioid overdoses.
Collapse
|
15
|
Margarit C, Roca R, Inda MDM, Muriel J, Ballester P, Moreu R, Conte AL, Nuñez A, Morales D, Peiró AM. Genetic Contribution in Low Back Pain: A Prospective Genetic Association Study. Pain Pract 2019; 19:836-847. [PMID: 31269327 DOI: 10.1111/papr.12816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/19/2019] [Accepted: 06/06/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Chronic pain is one of the most common reasons individuals seek medical attention. It is a major issue because of the wide interindividual variability in the analgesic response. This might be partly explained by the presence of variants in genes encoding molecules involved in pharmacodynamics and pharmacokinetics. The aim was to analyze opioid effectiveness in chronic low back pain (CLBP) relief after opioid titration, unveiling the impact of pharmacogenetics. METHODS The study included 231 opioid-naïve patients from the Spine Unit; age 63 ± 14 years, 64% female, body mass index 29 ± 6 kg/m2 , visual analog scale pain intensity score 73 ± 16 mm. Clinical data were collected at baseline, 3 months after opioid titration, and after 2 to 4 years of follow-up concerning pain (intensity and relief), quality of life, disability, comorbidities, and drug prescription (opioid dose, rotations, and adverse events). The genotype influence of OPRM1, COMT, UGT2B7, ABCB1, KCNJ6, and CYP3A5*3A in analgesic response was analyzed by reverse-transcription polymerase chain reaction genotyping. RESULTS Patients with the COMT G472A-AA genotype (rs4680) and KCNJ6 A1032G-A allele (rs2070995) CLBP responded differently to opioid titration, with higher pain intensity requiring higher dosing. Furthermore, GG- genotypes of A118G (OPRM1, rs1799971) and A854G (UGT2B7, rs776746) influenced the neuropathic component. After opioid titration, CLBP intensity, neuropathic component, low back pain disability, anxiety, and depression significantly decreased, while quality of life improved. CONCLUSION Single-nucleotide polymorphisms in genes involved in pain transmission and opioid metabolism might predispose to exaggerated sensitivity and differences in the opioid analgesic effect in patients with CLBP. We encourage clinical trials for their clinical application in chronic pain management.
Collapse
Affiliation(s)
- César Margarit
- Pain Unit, Department of Health of Alicante, Alicante General Hospital, Alicante, Spain.,Neuropharmacology in Pain (NED) Group, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | - Reyes Roca
- Neuropharmacology in Pain (NED) Group, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | - María-Del-Mar Inda
- Neuropharmacology in Pain (NED) Group, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | - Javier Muriel
- Neuropharmacology in Pain (NED) Group, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | - Pura Ballester
- Neuropharmacology in Pain (NED) Group, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | - Rocío Moreu
- Clinical Pharmacology Unit, Department of Health of Alicante, Alicante General Hospital, Alicante, Spain
| | - Anna Lucia Conte
- Occupational Observatory, Miguel Hernández University of Elche, Alicante, Spain
| | - Angela Nuñez
- Operations Research Center, Miguel Hernández University of Elche, Elche, Spain
| | - Domingo Morales
- Operational Centre, Miguel Hernandez University, Elche, Spain
| | - Ana M Peiró
- Pain Unit, Department of Health of Alicante, Alicante General Hospital, Alicante, Spain.,Neuropharmacology in Pain (NED) Group, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain.,Clinical Pharmacology Unit, Department of Health of Alicante, Alicante General Hospital, Alicante, Spain
| |
Collapse
|
16
|
Ma J, Li W, Chai Q, Tan X, Zhang K. Correlation of P2RX7 gene rs1718125 polymorphism with postoperative fentanyl analgesia in patients with lung cancer. Medicine (Baltimore) 2019; 98:e14445. [PMID: 30762755 PMCID: PMC6408006 DOI: 10.1097/md.0000000000014445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the association between purinergic receptor P2X7 (P2RX7) gene rs1718125 polymorphism and analgesic effect of fentanyl after surgery among patients with lung cancer in a Chinese Han population.A total of 238 patients with lung cancer who received resection were enrolled in our study. The genotype distributions of P2RX7 rs1718125 polymorphism were detected by polymerase chain reaction and direct sequencing. Postoperative analgesia was performed by patient-controlled intravenous analgesia, and the consumption of fentanyl was recorded. The postoperative pain was measured by visual analog scale (VAS). Differences in postoperative VAS score and postoperative fentanyl consumption for analgesia in different genotype groups were analyzed by analysis of variance assay.The frequencies of GG, GA, and AA genotypes were 46.22%, 44.96%, and 8.82%, respectively. After surgery, the postoperative VAS score of GA group was significantly high in the period of analepsia after general anesthesia and at 6 hours after surgery (P = .041 and P = .030, respectively), while AA group exhibited obviously high in the period of analepsia after general anesthesia (P < .001), at postoperative 6 hours (P = .006) and 24 hours (P = .016). Moreover, the patients carrying GA and AA genotypes needed more fentanyl to control pain within 48 hours after surgery (P < .05 for all).P2RX7 gene rs1718125 polymorphism is significantly associated with postoperative pain and fentanyl consumption in patients with lung cancer.
Collapse
|
17
|
Genome-wide association study identifies polymorphisms associated with the analgesic effect of fentanyl in the preoperative cold pressor-induced pain test. J Pharmacol Sci 2018; 136:107-113. [PMID: 29502940 DOI: 10.1016/j.jphs.2018.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 02/03/2023] Open
Abstract
Opioid analgesics are widely used for the treatment of moderate to severe pain. The analgesic effects of opioids are well known to vary among individuals. The present study focused on the genetic factors that are associated with interindividual differences in pain and opioid sensitivity. We conducted a multistage genome-wide association study in subjects who were scheduled to undergo mandibular sagittal split ramus osteotomy and were not medicated until they received fentanyl for the induction of anesthesia. We preoperatively conducted the cold pressor-induced pain test before and after fentanyl administration. The rs13093031 and rs12633508 single-nucleotide polymorphisms (SNPs) near the LOC728432 gene region and rs6961071 SNP in the tcag7.1213 gene region were significantly associated with the analgesic effect of fentanyl, based on differences in pain perception latency before and after fentanyl administration. The associations of these three SNPs that were identified in our exploratory study have not been previously reported. The two polymorphic loci (rs13093031 and rs12633508) were shown to be in strong linkage disequilibrium. Subjects with the G/G genotype of the rs13093031 and rs6961071 SNPs presented lower fentanyl-induced analgesia. Our findings provide a basis for investigating genetics-based analgesic sensitivity and personalized pain control.
Collapse
|
18
|
Yoshida K, Nishizawa D, Ide S, Ichinohe T, Fukuda KI, Ikeda K. A pharmacogenetics approach to pain management. Neuropsychopharmacol Rep 2018; 38:2-8. [PMID: 30106264 PMCID: PMC7292326 DOI: 10.1002/npr2.12003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Introduction Opioid analgesics are widely used as effective analgesics for the treatment of moderate‐to‐severe pain. However, the analgesic efficacy of opioids is well known to vary widely among individuals, and effective pain treatment is hampered by vast individual differences. Although these differences in opioid requirements have been attributed to various factors, genetic factors are becoming increasingly relevant to the development of genome science. Aim This review covers the association between opioid analgesic requirements and particularly gene polymorphisms. Future perspectives Personalized pain treatment has begun using prediction formulas based on associated gene polymorphisms. Improvements in personalized pain treatment are expected as scientific knowledge further expands in the future. The analgesic efficacy of opioids is well known to vary widely among individuals, and effective pain treatment is hampered by vast individual differences. Although these differences in opioid requirements have been attributed to various factors, genetic factors are becoming increasingly relevant to the development of genome science. This review covers the association between opioid analgesic requirements and particularly gene polymorphisms.
![]()
Collapse
Affiliation(s)
- Kaori Yoshida
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Ken-Ichi Fukuda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
19
|
Van Donge T, Mian P, Tibboel D, Van Den Anker J, Allegaert K. Drug metabolism in early infancy: opioids as an illustration. Expert Opin Drug Metab Toxicol 2018; 14:287-301. [PMID: 29363349 DOI: 10.1080/17425255.2018.1432595] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Drug dosing in infants frequently depends on body weight as a crude indicator for maturation. Fentanyl (metabolized by Cytochrome P450 3A4) and morphine (glucuronidated by UDP-glucuronosyltransferase-2B7) served as model drugs to provide insight in maturation patterns of these enzymes and provide understanding of the impact of non-maturational factors to optimize dosing in infants. Areas covered: Systematic searches on metabolism and population pharmacokinetic (Pop-PK) models for fentanyl and morphine were performed. Pre- and post-model selection criteria were applied to assess and evaluate the validity of these models. It was observed that maturational changes have been rather well investigated, be it with variability in the maturational function estimates. The same holds true for Pop-PK models, where non-maturational covariates have also been reported (pharmacogenetics, disease state or external influences), although less incorporated in the PK models and with limited knowledge on mechanisms involved. Expert opinion: PK models for fentanyl and morphine are currently available. Consequently, we suggest that researchers should not continue to develop new models, but should investigate whether collected data fit in already existing models and provide additional value concerning the impact of (non)-maturational factors like drug-drug interactions or pharmacogenetics.
Collapse
Affiliation(s)
- Tamara Van Donge
- a Intensive Care and Department of Paediatric Surgery , Erasmus MC-Sophia Children's Hospital , Rotterdam , The Netherlands.,b Systems Biomedicine and Pharmacology , LACDR, Leiden University , Leiden , The Netherlands
| | - Paola Mian
- a Intensive Care and Department of Paediatric Surgery , Erasmus MC-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Dick Tibboel
- a Intensive Care and Department of Paediatric Surgery , Erasmus MC-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - John Van Den Anker
- a Intensive Care and Department of Paediatric Surgery , Erasmus MC-Sophia Children's Hospital , Rotterdam , The Netherlands.,c Paediatric Pharmacology and Pharmacometrics , University of Basel Children's Hospital , Basel , Switzerland.,d Division of Clinical Pharmacology , Children's National Health System , Washington , DC , USA
| | - Karel Allegaert
- a Intensive Care and Department of Paediatric Surgery , Erasmus MC-Sophia Children's Hospital , Rotterdam , The Netherlands.,e Department of Development and Regeneration , KU Leuven , Leuven , Belgium
| |
Collapse
|