1
|
Zhang J, Du Y, Xiong Z, Cheng H, Du Y, Xiong Y, Lv J, Huang W, Qiu K, Zhang S. Bombesin protects myocardium against ischemia/reperfusion injury via activation of the Keap1-Nrf2-HO-1 signaling pathway. Peptides 2024; 180:171279. [PMID: 39053647 DOI: 10.1016/j.peptides.2024.171279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
AIMS It has been reported that some peptides released by the gastro-intestinal tract play important roles in the prevention of myocardial ischemia/reperfusion injury (MIRI). Bombesin (BN) is a biologically active peptide released by non-adrenergic non-cholinergic nerves on the gastric antrum mucosa controlled by the vagus nerve. However, there is a lack of reports on the impact of BN on MIRI. This study aimed to explore the influence of BN on MIRI and its underlying mechanism. MATERIALS AND METHODS MIRI was induced by either 30 min of global ischemia in Langendorff perfused rat hearts, or by ligation of the descending coronary artery for 30 min in anesthetized Spraque-Dawley rats, and both were followed by 120 min reperfusion. Infarct size and left ventricular function were assessed, and lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels were measured spectrophotometrically, while cardiomyocyte apoptosis was detected by TUNEL assay. The content of BN in plasma was measured with enzyme-linked immunosorbent assays (ELISA). The expression of caspase 3, Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were quantified. KEY FINDINGS BN and vagus nerve stimulation improved cardiac contractile function and reduced myocardial infarct size, attenuated oxidative stress damage and myocardial cell apoptosis, increased the expression of Keap1, Nrf2, and HO-1. and these effects were blocked by using a BN receptor antagonist. SIGNIFICANCE BN provides protection against MIRI, and its underlying mechanism is through activation of the Keap1/Nrf2/HO-1 pathway. This research provides more reliable evidence for the "gut-heart axis dialogue" and explores potential therapeutic approaches for MIRI.
Collapse
Affiliation(s)
- Jinyi Zhang
- State Administration of Traditional Chinese Medicine Third Class Pharmacology Laboratory of Traditional Chinese Medicine, Basic medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Basic medical College of China Three Gorges University, Yichang 443002, China
| | - Yanhuan Du
- State Administration of Traditional Chinese Medicine Third Class Pharmacology Laboratory of Traditional Chinese Medicine, Basic medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Basic medical College of China Three Gorges University, Yichang 443002, China
| | - Zhenyu Xiong
- State Administration of Traditional Chinese Medicine Third Class Pharmacology Laboratory of Traditional Chinese Medicine, Basic medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Basic medical College of China Three Gorges University, Yichang 443002, China
| | - Hang Cheng
- State Administration of Traditional Chinese Medicine Third Class Pharmacology Laboratory of Traditional Chinese Medicine, Basic medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Basic medical College of China Three Gorges University, Yichang 443002, China
| | - Yi Du
- State Administration of Traditional Chinese Medicine Third Class Pharmacology Laboratory of Traditional Chinese Medicine, Basic medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Basic medical College of China Three Gorges University, Yichang 443002, China
| | - Yulian Xiong
- State Administration of Traditional Chinese Medicine Third Class Pharmacology Laboratory of Traditional Chinese Medicine, Basic medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Basic medical College of China Three Gorges University, Yichang 443002, China
| | - Jianfeng Lv
- Department of Cardiovascular Medicine, Renhe Hospital affiliated to Three Gorges University, Yichang 443002, China
| | - Wenquan Huang
- State Administration of Traditional Chinese Medicine Third Class Pharmacology Laboratory of Traditional Chinese Medicine, Basic medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Basic medical College of China Three Gorges University, Yichang 443002, China
| | - Kuncheng Qiu
- State Administration of Traditional Chinese Medicine Third Class Pharmacology Laboratory of Traditional Chinese Medicine, Basic medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Basic medical College of China Three Gorges University, Yichang 443002, China
| | - Shizhong Zhang
- State Administration of Traditional Chinese Medicine Third Class Pharmacology Laboratory of Traditional Chinese Medicine, Basic medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Basic medical College of China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
2
|
Gu JX, Wang J, Ma FJ, Liu MM, Chen SH, Wei Y, Xiao YF, Lv PY, Liu X, Qu JQ, Yan XX, Chen T. Rab11a in the spinal cord: an essential contributor to complete Freund's adjuvant-induced inflammatory pain in mice. Mol Brain 2023; 16:70. [PMID: 37770900 PMCID: PMC10537208 DOI: 10.1186/s13041-023-01057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Inflammatory pain is a commonly observed clinical symptom in a range of acute and chronic diseases. However, the mechanism of inflammatory pain is far from clear yet. Rab11a, a small molecule guanosine triphosphate enzyme, is reported to regulate orofacial inflammatory pain in our previous works. However, the mechanism of Rab11a's involvement in the regulation of inflammatory pain remains obscure. Here, we aim to elucidate the potential mechanisms through which Rab11a contributes to the development of inflammatory pain in the spinal level. It's shown that neurons, rather than glial cells, were the primary cell type expressing Rab11a in the spinal dorsal horn (SDH). After intra-plantar injection of CFA, both the number of Fos/Rab11a-immunopositive neurons and the expression of Rab11a were increased. Administration of Rab11a-shRNA into the SDH resulted in significantly analgesic effect in mice with CFA injection. Application of Rab11a-shRNA also reduced the NMDA receptor-mediated excitatory post-synaptic current (EPSC) and the spike number of neurons in lamina II of the SDH in mice with CFA injection, without affecting the presynaptic glutamate release and the postsynaptic AMPA receptor-mediated EPSC. Our results thus suggest that the enhanced expression of neuronal Rab11a may be important for the process of inflammatory pain in mice with CFA injection, which is likely mediated by Rab11a's potentiation of the competence of post-synaptic NMDAR and spiking of SDH neurons.
Collapse
Affiliation(s)
- Jun-Xiang Gu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Jian Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fu-Juan Ma
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
- School of Medicine, Northwest University, Xi'an, China
| | - Miao-Miao Liu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Si-Hai Chen
- Department of Psychiatry, Xiaogan Mental Health Center, Xiaogan, China
| | - Yi Wei
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
- School of Medicine, Northwest University, Xi'an, China
| | - Yi-Fan Xiao
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
- School of Medicine, Northwest University, Xi'an, China
| | - Pei-Yuan Lv
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Xin Liu
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, Shandong, China
| | - Jian-Qiang Qu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xian-Xia Yan
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Tao Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Yang YQ, Sun RF, Ge P, Li WX, Zhang X, Zhang J, Ye L, Zhang N, Wang SY, Lv MQ, Zhou DX. GRPR down-regulation inhibits spermatogenesis through Ca 2+ mediated by PLCβ/IP3R signaling pathway in long-term formaldehyde-exposed rats. Food Chem Toxicol 2023; 179:113998. [PMID: 37604300 DOI: 10.1016/j.fct.2023.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Formaldehyde (FA), which is known as an air pollutant, has been proven to induce male infertility. However, the underlying mechanism of FA-induced male infertility remains elusive. In this study, 24 male SD rats were exposed to different levels of FA (0, 0.5, 2.46, and 5 mg/m3) for eight consecutive weeks. Through HE staining and sperm smear, we observed that FA exposure resulted in spermatogenic injury and the sperm quality decreased in rats. The qRT-PCR and Western blot analysis further revealed that GRPR was down-regulated in testicular tissues of FA-exposed rats as well as primary spermatogenic cells. Meanwhile, ZDOCK uncovered an interaction between GRPR and PLCβ. In addition, the CCK8, Fluo 3-AM and Flow cytometry results showed that FA exposure suppressed the expression of GRPR, PLCβ and IP3R, consequently reducing the Ca2+ concentration in spermatogenic cells, inducing apoptosis and inhibiting proliferation of spermatogenic cells. Moreover, rescue experiments confirmed that promoting GRPR could improve intracellular Ca2+ concentration by upregulating PLCβ and IP3R, partially reducing the apoptosis and promoting the proliferation of FA-treated spermatogenic cells. These findings revealed that GRPR participates in spermatogenesis through Ca2+ mediated by the PLCβ/IP3R signaling pathway in FA-exposed rats.
Collapse
Affiliation(s)
- Yan-Qi Yang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Rui-Fang Sun
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Pan Ge
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Wen-Xing Li
- Department of SURGICAL Oncology, Xi'an Jiaotong University Medical College First Affiliated Hospital, 277 West Yanta Road, Shaanxi, 710061, China
| | - Xiang Zhang
- Department of Electrocardiographic Diagnosis, Xi'an Children's Hospital, Xi'an, 710003, China
| | - Jian Zhang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Lu Ye
- Medical School, Xi'an Jiaotong University, Shaanxi, 710061, China; Xi'an Fourth Hospital, Shaanxi, 710061, China
| | - Nan Zhang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Si-Yu Wang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Mo-Qi Lv
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China.
| | - Dang-Xia Zhou
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China.
| |
Collapse
|
4
|
Imai N. Molecular and Cellular Neurobiology of Circadian and Circannual Rhythms in Migraine: A Narrative Review. Int J Mol Sci 2023; 24:10092. [PMID: 37373239 DOI: 10.3390/ijms241210092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Migraine-a primary headache-has circadian and circannual rhythms in the onset of attacks. The circadian and circannual rhythms involve the hypothalamus, which is strongly associated with pain processing in migraines. Moreover, the role of melatonin in circadian rhythms has been implied in the pathophysiology of migraines. However, the prophylactic effect of melatonin in migraines is controversial. Calcitonin gene-related peptide (CGRP) has recently attracted attention in the pathophysiology and treatment of migraines. Pituitary adenylate cyclase-activating peptide (PACAP)-a neuropeptide identical to CGRP-is a potential therapeutic target after CGRP. PACAP is involved in the regulation of circadian entrainment to light. This review provides an overview of circadian and circannual rhythms in the hypothalamus and describes the relationship between migraines and the molecular and cellular neurobiology of circadian and circannual rhythms. Furthermore, the potential clinical applications of PACAP are presented.
Collapse
Affiliation(s)
- Noboru Imai
- Department of Neurology and Headache Center, Japanese Red Cross Shizuoka Hospital, Shizuoka 420-0853, Japan
| |
Collapse
|
5
|
Sun HL, Ma QY, Bian HG, Meng XM, Jin J. Novel insight on GRP/GRPR axis in diseases. Biomed Pharmacother 2023; 161:114497. [PMID: 36933382 DOI: 10.1016/j.biopha.2023.114497] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The gastrin-releasing peptide receptor (GRPR), a member of the G protein-coupled receptors (GPCRs), binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. GRP/GRPR signalling is involved in the pathophysiological processes of many diseases, including inflammatory diseases, cardiovascular diseases, neurological diseases, and various cancers. In the immune system, the unique function of GRP/GRPR in neutrophil chemotaxis suggests that GRPR can be directly stimulated through GRP-mediated neutrophils to activate selective signalling pathways, such as PI3K, PKC, and MAPK, and participate in the occurrence and development of inflammation-related diseases. In the cardiovascular system, GRP increases intercellular adhesion molecule 1 (ICAM-1) and induces vascular cell adhesion molecule-1 (VCAM-1). GRP activates ERK1/2, MAPK, and AKT, leading to cardiovascular diseases, including myocardial infarction. Central nervous system signal transduction mediated by the GRP/GRPR axis plays a vital role in emotional responses, social interaction, and memory. The GRP/GRPR axis is elevated in various cancers, including lung, cervical, colorectal, renal cell, and head and neck squamous cell carcinomas. GRP is a mitogen in a variety of tumour cell lines. Its precursor, pro-gastrin-releasing peptide (ProGRP), may play an important role as an emerging tumour marker in early tumour diagnosis. GPCRs serve as therapeutic targets for drug development, but their function in each disease remains unclear, and their involvement in disease progression has not been well explored or summarised. This review lays out the above mentioned pathophysiological processes based on previous research conclusions. The GRP/GRPR axis may be a potential target for treating multiple diseases, and the study of this signalling axis is particularly important.
Collapse
Affiliation(s)
- Hao-Lu Sun
- School of Basic Medical Sciences, Anhui Medical University, Anhui, China
| | - Qiu-Ying Ma
- Department of pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, No. 100 Huaihai Road, Hefei, Anhui, 230012, China
| | - He-Ge Bian
- School of Basic Medical Sciences, Anhui Medical University, Anhui, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Juan Jin
- School of Basic Medical Sciences, Anhui Medical University, Anhui, China.
| |
Collapse
|
6
|
Coexistence of chronic hyperalgesia and multilevel neuroinflammatory responses after experimental SCI: a systematic approach to profiling neuropathic pain. J Neuroinflammation 2022; 19:264. [PMID: 36309729 PMCID: PMC9617391 DOI: 10.1186/s12974-022-02628-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background People with spinal cord injury (SCI) frequently develop neuropathic pain (NP) that worsens disability and diminishes rehabilitation efficacy. Chronic NP is presently incurable due to poor understanding of underlying mechanisms. We hypothesized that multilocus neuroinflammation (NIF) might be a driver of SCI NP, and tested it by investigating whether NP coexisted with central NIF, neurotransmission (NTM), neuromodulation (NML) and neuroplasticity (NPL) changes post-SCI. Methods Female Sprague–Dawley rats (230–250 g) with T10 compression or laminectomy were evaluated for physical conditions, coordinated hindlimb functions, neurological reflexes, and mechanical/thermal sensitivity thresholds at 1 day post-injury (p.i.) and weekly thereafter. Eight weeks p.i., central nervous system tissues were histochemically and immunohistochemically characterized for parameters/markers of histopathology and NIF/NTM/NML/NPL. Also analyzed was the correlative relationship between levels of selected biomarkers and thermosensitivity thresholds via statistical linear regression. Results SCI impaired sensorimotor functions, altered reflexes, and produced spontaneous pain signs and hypersensitivity to evoked nociceptive, mechanical, and thermal inputs. Only injured spinal cords exhibited neural lesion, microglia/astrocyte activation, and abnormal expression of proinflammatory cytokines, as well as NIF/NTM/NML/NPL markers. Brains of SCI animals displayed similar pathophysiological signs in the gracile and parabrachial nuclei (GrN and PBN: sensory relay), raphe magnus nucleus and periaqueduct gray (RMN and PAG: pain modulation), basolateral amygdala (BLA: emotional-affective dimension of pain), and hippocampus (HPC: memory/mood/neurogenesis). SCI augmented sensory NTM/NPL (GrN and PBN); increased GAD67 (PAG) level; reduced serotonin (RMN) and fear-off neuronal NTR2 (BLA) expressions; and perturbed neurogenesis (HPC). Conclusion T10 compression caused chronic hyperalgesia that coexisted with NIF/NTM/NML/NPL responses at multilevel neuroaxis centers. The data have provided multidimensional biomarkers as new mechanistic leads to profile SCI NP for therapeutic/therapy development. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02628-2.
Collapse
|