1
|
Beishon L, Vasilopoulos T, Salinet ASM, Levis B, Barnes S, Hills E, Ramesh P, Gkargkoula P, Minhas JS, Castro P, Brassard P, Goettel N, Gommer ED, Jara JL, Liu J, Mueller M, Nasr N, Payne S, Robertson AD, Simpson D, Robinson TG, Panerai RB, Nogueira RC. Individual Patient Data Meta-Analysis of Dynamic Cerebral Autoregulation and Functional Outcome After Ischemic Stroke. Stroke 2024; 55:1235-1244. [PMID: 38511386 PMCID: PMC7615849 DOI: 10.1161/strokeaha.123.045700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The relationship between dynamic cerebral autoregulation (dCA) and functional outcome after acute ischemic stroke (AIS) is unclear. Previous studies are limited by small sample sizes and heterogeneity. METHODS We performed a 1-stage individual patient data meta-analysis to investigate associations between dCA and functional outcome after AIS. Participating centers were identified through a systematic search of the literature and direct invitation. We included centers with dCA data within 1 year of AIS in adults aged over 18 years, excluding intracerebral or subarachnoid hemorrhage. Data were obtained on phase, gain, coherence, and autoregulation index derived from transfer function analysis at low-frequency and very low-frequency bands. Cerebral blood velocity, arterial pressure, end-tidal carbon dioxide, heart rate, stroke severity and sub-type, and comorbidities were collected where available. Data were grouped into 4 time points after AIS: <24 hours, 24 to 72 hours, 4 to 7 days, and >3 months. The modified Rankin Scale assessed functional outcome at 3 months. Modified Rankin Scale was analyzed as both dichotomized (0 to 2 versus 3 to 6) and ordinal (modified Rankin Scale scores, 0-6) outcomes. Univariable and multivariable analyses were conducted to identify significant relationships between dCA parameters, comorbidities, and outcomes, for each time point using generalized linear (dichotomized outcome), or cumulative link (ordinal outcome) mixed models. The participating center was modeled as a random intercept to generate odds ratios with 95% CIs. RESULTS The sample included 384 individuals (35% women) from 7 centers, aged 66.3±13.7 years, with predominantly nonlacunar stroke (n=348, 69%). In the affected hemisphere, higher phase at very low-frequency predicted better outcome (dichotomized modified Rankin Scale) at <24 (crude odds ratios, 2.17 [95% CI, 1.47-3.19]; P<0.001) hours, 24-72 (crude odds ratios, 1.95 [95% CI, 1.21-3.13]; P=0.006) hours, and phase at low-frequency predicted outcome at 3 (crude odds ratios, 3.03 [95% CI, 1.10-8.33]; P=0.032) months. These results remained after covariate adjustment. CONCLUSIONS Greater transfer function analysis-derived phase was associated with improved functional outcome at 3 months after AIS. dCA parameters in the early phase of AIS may help to predict functional outcome.
Collapse
Affiliation(s)
- Lucy Beishon
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Terrie Vasilopoulos
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Angela SM Salinet
- Neurology Department, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Brooke Levis
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Centre for Prognosis Research, School of Medicine, Keele University, Staffordshire, UK
| | - Samuel Barnes
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Eleanor Hills
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
| | - Pranav Ramesh
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
| | | | - Jatinder S. Minhas
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Pedro Castro
- Department of Neurology, Centro Hospitalar Universitário de São João, Faculty of Medicine, University of Porto
| | - Patrice Brassard
- Département de Kinésiologie, Faculté de médecine, Institut universitaire de cardiologie et de pneumologie de Québec
| | - Nicolai Goettel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Erik D. Gommer
- Department of Clinical Neurophysiology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jose Luis Jara
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology at the Chinese Academy of Sciences in Shenzhen, China
| | - Martin Mueller
- Department of Neurology and Neurorehabilitation, Spitalstrasse, CH 6000 Lucerne
| | - Nathalie Nasr
- Department of Neurology, Poitiers University Hospital, Laboratoire de Neurosciences Expérimentales et Cliniques, University of Poitiers, France
| | - Stephen Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Andrew D. Robertson
- Schlegel-UW Research Institute for Aging, University of Waterloo, Waterloo, ON, CA
| | - David Simpson
- Faculty of Engineering and Physical Sciences, University of Southampton
| | - Thompson G Robinson
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Ronney B. Panerai
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Ricardo C. Nogueira
- Neurology Department, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Sarwal A, Robba C, Venegas C, Ziai W, Czosnyka M, Sharma D. Cerebral Autoregulation: Igniting the Debate on Therapeutic Focus. Neurocrit Care 2023; 39:738-739. [PMID: 37726546 DOI: 10.1007/s12028-023-01841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 09/21/2023]
Affiliation(s)
- Aarti Sarwal
- Department of Neurology, Atrium Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Chiara Robba
- Department of Neuro and General Intensive Care, Policlinico San Martino, Genoa, Italy
| | - Carla Venegas
- Department of Critical Care Medicine, Mayo Clinic School of Medicine, Jacksonville, FL, USA
| | - Wendy Ziai
- Department of Neurology, Anesthesiology and Critical Care Medicine, Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge-Professor-Emeritus of Brain Physics, Cambridge, UK
| | - Deepak Sharma
- Neuroanesthesia & Perioperative Neuroscience, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Brasil S, Caldas J, Beishon L, Minhas JS, Nogueira RC. Cerebral Autoregulation Monitoring: A Guide While Navigating in Troubled Waters. Neurocrit Care 2023; 39:736-737. [PMID: 37726547 DOI: 10.1007/s12028-023-01840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 09/21/2023]
Affiliation(s)
- Sérgio Brasil
- Department of Neurology, University of São Paulo School of Medicine, Av. Dr. Enéas de Carvalho Aguiar 255, São Paulo, Brazil.
| | - Juliana Caldas
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Instituto D'Or de Pesquisa e Ensino, Salvador, Bahia, Brazil
| | - Lucy Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health and Care Research Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health and Care Research Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Ricardo C Nogueira
- Department of Neurology, University of São Paulo School of Medicine, Av. Dr. Enéas de Carvalho Aguiar 255, São Paulo, Brazil
| |
Collapse
|
4
|
Abstract
Despite advances in acute management and prevention of cerebrovascular disease, stroke and vascular cognitive impairment together remain the world's leading cause of death and neurological disability. Hypertension and its consequences are associated with over 50% of ischemic and 70% of hemorrhagic strokes but despite good control of blood pressure (BP), there remains a 10% risk of recurrent cerebrovascular events, and there is no proven strategy to prevent vascular cognitive impairment. Hypertension evolves over the lifespan, from predominant sympathetically driven hypertension with elevated mean BP in early and mid-life to a late-life phenotype of increasing systolic and falling diastolic pressures, associated with increased arterial stiffness and aortic pulsatility. This pattern may partially explain both the increasing incidence of stroke in younger adults as well as late-onset, chronic cerebrovascular injury associated with concurrent systolic hypertension and historic mid-life diastolic hypertension. With increasing arterial stiffness and autonomic dysfunction, BP variability increases, independently predicting the risk of ischemic and intracerebral hemorrhage, and is potentially modifiable beyond control of mean BP. However, the interaction between hypertension and control of cerebral blood flow remains poorly understood. Cerebral small vessel disease is associated with increased pulsatility in large cerebral vessels and reduced reactivity to carbon dioxide, both of which are being targeted in early phase clinical trials. Cerebral arterial pulsatility is mainly dependent upon increased transmission of aortic pulsatility via stiff vessels to the brain, while cerebrovascular reactivity reflects endothelial dysfunction. In contrast, although cerebral autoregulation is critical to adapt cerebral tone to BP fluctuations to maintain cerebral blood flow, its role as a modifiable risk factor for cerebrovascular disease is uncertain. New insights into hypertension-associated cerebrovascular pathophysiology may provide key targets to prevent chronic cerebrovascular disease, acute events, and vascular cognitive impairment.
Collapse
Affiliation(s)
- Alastair J S Webb
- Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom (A.J.S.W.)
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom (D.J.W.)
| |
Collapse
|
5
|
Fan JL, Brassard P, Rickards CA, Nogueira RC, Nasr N, McBryde FD, Fisher JP, Tzeng YC. Integrative cerebral blood flow regulation in ischemic stroke. J Cereb Blood Flow Metab 2022; 42:387-403. [PMID: 34259070 PMCID: PMC8985438 DOI: 10.1177/0271678x211032029] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Optimizing cerebral perfusion is key to rescuing salvageable ischemic brain tissue. Despite being an important determinant of cerebral perfusion, there are no effective guidelines for blood pressure (BP) management in acute stroke. The control of cerebral blood flow (CBF) involves a myriad of complex pathways which are largely unaccounted for in stroke management. Due to its unique anatomy and physiology, the cerebrovascular circulation is often treated as a stand-alone system rather than an integral component of the cardiovascular system. In order to optimize the strategies for BP management in acute ischemic stroke, a critical reappraisal of the mechanisms involved in CBF control is needed. In this review, we highlight the important role of collateral circulation and re-examine the pathophysiology of CBF control, namely the determinants of cerebral perfusion pressure gradient and resistance, in the context of stroke. Finally, we summarize the state of our knowledge regarding cardiovascular and cerebrovascular interaction and explore some potential avenues for future research in ischemic stroke.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Canada.,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Fiona D McBryde
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Department of Surgery & Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
6
|
Nogueira RC, Aries M, Minhas JS, H Petersen N, Xiong L, Kainerstorfer JM, Castro P. Review of studies on dynamic cerebral autoregulation in the acute phase of stroke and the relationship with clinical outcome. J Cereb Blood Flow Metab 2022; 42:430-453. [PMID: 34515547 PMCID: PMC8985432 DOI: 10.1177/0271678x211045222] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute stroke is associated with high morbidity and mortality. In the last decades, new therapies have been investigated with the aim of improving clinical outcomes in the acute phase post stroke onset. However, despite such advances, a large number of patients do not demonstrate improvement, furthermore, some unfortunately deteriorate. Thus, there is a need for additional treatments targeted to the individual patient. A potential therapeutic target is interventions to optimize cerebral perfusion guided by cerebral hemodynamic parameters such as dynamic cerebral autoregulation (dCA). This narrative led to the development of the INFOMATAS (Identifying New targets FOr Management And Therapy in Acute Stroke) project, designed to foster interventions directed towards understanding and improving hemodynamic aspects of the cerebral circulation in acute cerebrovascular disease states. This comprehensive review aims to summarize relevant studies on assessing dCA in patients suffering acute ischemic stroke, intracerebral haemorrhage, and subarachnoid haemorrhage. The review will provide to the reader the most consistent findings, the inconsistent findings which still need to be explored further and discuss the main limitations of these studies. This will allow for the creation of a research agenda for the use of bedside dCA information for prognostication and targeted perfusion interventions.
Collapse
Affiliation(s)
- Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Department of Neurology, Hospital Nove de Julho, São Paulo, Brazil
| | - Marcel Aries
- Department of Intensive Care, University of Maastricht, Maastricht University Medical Center+, School for Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nils H Petersen
- Department of Neurology, Yale University School of Medicine, New Haven, USA
| | - Li Xiong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
| | - Pedro Castro
- Department of Neurology, Faculty of Medicine of University of Porto, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
7
|
Fan JL, Nogueira RC, Brassard P, Rickards CA, Page M, Nasr N, Tzeng YC. Integrative physiological assessment of cerebral hemodynamics and metabolism in acute ischemic stroke. J Cereb Blood Flow Metab 2022; 42:454-470. [PMID: 34304623 PMCID: PMC8985442 DOI: 10.1177/0271678x211033732] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Restoring perfusion to ischemic tissue is the primary goal of acute ischemic stroke care, yet only a small portion of patients receive reperfusion treatment. Since blood pressure (BP) is an important determinant of cerebral perfusion, effective BP management could facilitate reperfusion. But how BP should be managed in very early phase of ischemic stroke remains a contentious issue, due to the lack of clear evidence. Given the complex relationship between BP and cerebral blood flow (CBF)-termed cerebral autoregulation (CA)-bedside monitoring of cerebral perfusion and oxygenation could help guide BP management, thereby improve stroke patient outcome. The aim of INFOMATAS is to 'identify novel therapeutic targets for treatment and management in acute ischemic stroke'. In this review, we identify novel physiological parameters which could be used to guide BP management in acute stroke, and explore methodologies for monitoring them at the bedside. We outline the challenges in translating these potential prognostic markers into clinical use.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew Page
- Department of Radiology, Wellington Regional Hospital, Wellington, New Zealand
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
8
|
Beishon LC, Minhas JS. Cerebral Autoregulation and Neurovascular Coupling in Acute and Chronic Stroke. Front Neurol 2021; 12:720770. [PMID: 34539560 PMCID: PMC8446264 DOI: 10.3389/fneur.2021.720770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lucy C. Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Jatinder S. Minhas
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
9
|
Nogueira RC, Beishon L, Bor-Seng-Shu E, Panerai RB, Robinson TG. Cerebral Autoregulation in Ischemic Stroke: From Pathophysiology to Clinical Concepts. Brain Sci 2021; 11:511. [PMID: 33923721 PMCID: PMC8073938 DOI: 10.3390/brainsci11040511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke (IS) is one of the most impacting diseases in the world. In the last decades, new therapies have been introduced to improve outcomes after IS, most of them aiming for recanalization of the occluded vessel. However, despite this advance, there are still a large number of patients that remain disabled. One interesting possible therapeutic approach would be interventions guided by cerebral hemodynamic parameters such as dynamic cerebral autoregulation (dCA). Supportive hemodynamic therapies aiming to optimize perfusion in the ischemic area could protect the brain and may even extend the therapeutic window for reperfusion therapies. However, the knowledge of how to implement these therapies in the complex pathophysiology of brain ischemia is challenging and still not fully understood. This comprehensive review will focus on the state of the art in this promising area with emphasis on the following aspects: (1) pathophysiology of CA in the ischemic process; (2) methodology used to evaluate CA in IS; (3) CA studies in IS patients; (4) potential non-reperfusion therapies for IS patients based on the CA concept; and (5) the impact of common IS-associated comorbidities and phenotype on CA status. The review also points to the gaps existing in the current research to be further explored in future trials.
Collapse
Affiliation(s)
- Ricardo C. Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Neurology, Hospital Nove de Julho, São Paulo 01409-002, Brazil
| | - Lucy Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
| | - Edson Bor-Seng-Shu
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Ronney B. Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University of Leicester, Leicester LE5 4PW, UK
| | - Thompson G. Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University of Leicester, Leicester LE5 4PW, UK
| |
Collapse
|
10
|
Panerai RB, Intharakham K, Minhas JS, Llwyd O, Salinet ASM, Katsogridakis E, Maggio P, Robinson TG. COHmax: an algorithm to maximise coherence in estimates of dynamic cerebral autoregulation. Physiol Meas 2020; 41:085003. [PMID: 32668416 DOI: 10.1088/1361-6579/aba67e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The reliability of dynamic cerebral autoregulation (dCA) parameters, obtained with transfer function analysis (TFA) of spontaneous fluctuations in arterial blood pressure (BP), require statistically significant values of the coherence function. A new algorithm (COHmax) is proposed to increase values of coherence by means of the automated, selective removal of sub-segments of data. APPROACH Healthy subjects were studied at baseline (normocapnia) and during 5% breathing of CO2 (hypercapnia). BP (Finapres), cerebral blood flow velocity (CBFV, transcranial Doppler), end-tidal CO2 (EtCO2, capnography) and heart rate (ECG) were recorded continuously during 5 min in each condition. TFA was performed with sub-segments of data of duration (SEGD) 100 s, 50 s or 25 s and the autoregulation index (ARI) was obtained from the CBFV response to a step change in BP. The area-under-the curve (AUC) was obtained from the receiver-operating characteristic (ROC) curve for the detection of changes in dCA resulting from hypercapnia. MAIN RESULTS In 120 healthy subjects (69 male, age range 20-77 years), CO2 breathing was effective in changing mean EtCO2 and CBFV (p < 0.001). For SEGD = 100 s, ARI changed from 5.8 ± 1.4 (normocapnia) to 4.0 ± 1.7 (hypercapnia, p < 0.0001), with similar differences for SEGD = 50 s or 25 s. Depending on the value of SEGD, in normocapnia, 15.8% to 18.3% of ARI estimates were rejected due to poor coherence, with corresponding rates of 8.3% to 13.3% in hypercapnia. With increasing coherence, 36.4% to 63.2% of these could be recovered in normocapnia (p < 0.001) and 50.0% to 83.0% in hypercapnia (p < 0.005). For SEGD = 100 s, ROC AUC was not influenced by the algorithm, but it was superior to corresponding values for SEGD = 50 s or 25 s. SIGNIFICANCE COHmax has the potential to improve the yield of TFA estimates of dCA parameters, without introducing a bias or deterioration of their ability to detect impairment of autoregulation. Further studies are needed to assess the behaviour of the algorithm in patients with different cerebrovascular conditions.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom. NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|