1
|
Tanaka F, Maeda M, Kishi S, Kogue R, Umino M, Ishikawa H, Ii Y, Shindo A, Sakuma H. Updated imaging markers in cerebral amyloid angiopathy: What radiologists need to know. Jpn J Radiol 2025; 43:736-751. [PMID: 39730931 PMCID: PMC12053366 DOI: 10.1007/s11604-024-01720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is an age-related small vessel disease pathologically characterized by the progressive accumulation of amyloid-beta (Aβ) peptide in cerebrovascular walls, affecting both cortical and leptomeningeal vessels. Amyloid deposition results in fragile vessels, which may lead to lobar intracerebral hemorrhage (ICH) and cognitive impairment. To evaluate the probability and severity of CAA, the imaging markers depicted on CT and MRI techniques are crucial, as brain pathological examination is highly invasive. Although the Boston criteria have established diagnostic value and have been updated to version 2.0, due to an aging population, the patients with CAA should also be assessed for their risk of future ICH or cognitive impairment. Furthermore, an increased awareness of CAA is essential when introducing anticoagulants for infarct in elderly patients or anti-amyloid antibodies for Alzheimer's disease, as these may worsen CAA-related hemorrhagic lesions. However, the radiological literature on CAA has not been comprehensively updated. Here, we review the imaging markers of CAA and clinical significance. We also discuss the clinical and imaging characteristics of CAA-related inflammation, amyloid-related imaging abnormalities, and iatrogenic-CAA.
Collapse
Affiliation(s)
- Fumine Tanaka
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Seiya Kishi
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuichiro Ii
- Department of Neuroimaging and Pathophysiology, Mie University School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
2
|
Özütemiz C, Hussein HM, Ikramuddin S, Clark HB, Charidimou A, Streib C. Occult Amyloid-β-Related Angiitis: Neuroimaging Findings at 1.5T, 3T, and 7T MRI. AJNR Am J Neuroradiol 2024; 45:1013-1018. [PMID: 38937114 PMCID: PMC11383424 DOI: 10.3174/ajnr.a8264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/22/2024] [Indexed: 06/29/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a progressive neurodegenerative small vessel disease that is associated with intracranial hemorrhage and cognitive impairment in the elderly. The clinical and radiographic presentations have many overlapping features with vascular cognitive impairment, hemorrhagic stroke, and Alzheimer disease (AD). Amyloid-β-related angiitis (ABRA) is a form of primary CNS vasculitis linked to CAA, with the development of spontaneous autoimmune inflammation against amyloid in the vessel wall with resultant vasculitis. The diagnosis of ABRA and CAA is important. ABRA is often fatal if untreated and requires prompt immunosuppression. Important medical therapies such as anticoagulation and antiamyloid agents for AD are contraindicated in CAA. Here, we present a biopsy-proved case of ABRA with underlying occult CAA. Initial 1.5T and 3T MR imaging did not suggest CAA per the Boston Criteria 2.0. ABRA was not included in the differential diagnosis due to the lack of any CAA-related findings on conventional MR imaging. However, a follow-up 7T MR imaging revealed extensive cortical/subcortical cerebral microbleeds, cortical superficial siderosis, and intragyral hemorrhage in extensive detail throughout the supratentorial brain regions, which radiologically supported the diagnosis of ABRA in the setting of CAA. This case suggests an increased utility of high-field MR imaging to detect occult hemorrhagic neuroimaging findings with the potential to both diagnose more patients with CAA and diagnose them earlier.
Collapse
Affiliation(s)
- Can Özütemiz
- From the Department of Radiology (C.Ö.), University of Minnesota, Minneapolis, MN, USA
| | - Haitham M Hussein
- Department of Neurology (H.M.H., S.I., C.S.), University of Minnesota, Minneapolis, MN, USA
| | - Salman Ikramuddin
- Department of Neurology (H.M.H., S.I., C.S.), University of Minnesota, Minneapolis, MN, USA
| | - H Brent Clark
- Department of Laboratory Medicine & Pathology (H.B.C.), University of Minnesota, Minneapolis, Minnesota
| | - Andreas Charidimou
- Chobanian & Avedisian School of Medicine, Department of Neurology (A.C.), Boston University, Boston, Massachusetts
| | - Christopher Streib
- Department of Neurology (H.M.H., S.I., C.S.), University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Perera Molligoda Arachchige AS, Meuli S, Centini FR, Stomeo N, Catapano F, Politi LS. Evaluating the role of 7-Tesla magnetic resonance imaging in neurosurgery: Trends in literature since clinical approval. World J Radiol 2024; 16:274-293. [PMID: 39086607 PMCID: PMC11287432 DOI: 10.4329/wjr.v16.i7.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND After approval for clinical use in 2017, early investigations of ultra-high-field abdominal magnetic resonance imaging (MRI) have demonstrated its feasibility as well as diagnostic capabilities in neuroimaging. However, there are no to few systematic reviews covering the entirety of its neurosurgical applications as well as the trends in the literature with regard to the aforementioned application. AIM To assess the impact of 7-Tesla MRI (7T MRI) on neurosurgery, focusing on its applications in diagnosis, treatment planning, and postoperative assessment, and to systematically analyze and identify patterns and trends in the existing literature related to the utilization of 7T MRI in neurosurgical contexts. METHODS A systematic search of PubMed was conducted for studies published between January 1, 2017, and December 31, 2023, using MeSH terms related to 7T MRI and neurosurgery. The inclusion criteria were: Studies involving patients of all ages, meta-analyses, systematic reviews, and original research. The exclusion criteria were: Pre-prints, studies with insufficient data (e.g., case reports and letters), non-English publications, and studies involving animal subjects. Data synthesis involved standardized extraction forms, and a narrative synthesis was performed. RESULTS We identified 219 records from PubMed within our defined period, with no duplicates or exclusions before screening. After screening, 125 articles were excluded for not meeting inclusion criteria, leaving 94 reports. Of these, 2 were irrelevant to neurosurgery and 7 were animal studies, resulting in 85 studies included in our systematic review. Data were categorized by neurosurgical procedures and diseases treated using 7T MRI. We also analyzed publications by country and the number of 7T MRI facilities per country was also presented. Experimental studies were classified into comparison and non-comparison studies based on whether 7T MRI was compared to lower field strengths. CONCLUSION 7T MRI holds great potential in improving the characterization and understanding of various neurological and psychiatric conditions that may be neurosurgically treated. These include epilepsy, pituitary adenoma, Parkinson's disease, cerebrovascular diseases, trigeminal neuralgia, traumatic head injury, multiple sclerosis, glioma, and psychiatric disorders. Superiority of 7T MRI over lower field strengths was demonstrated in terms of image quality, lesion detection, and tissue characterization. Findings suggest the need for accelerated global distribution of 7T magnetic resonance systems and increased training for radiologists to ensure safe and effective integration into routine clinical practice.
Collapse
Affiliation(s)
| | - Sarah Meuli
- Faculty of Medicine, Humanitas University, Pieve Emanuele, Milan 20072, Italy
| | | | - Niccolò Stomeo
- Department of Anaesthesiology and Intensive Care, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
| | - Federica Catapano
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| |
Collapse
|
4
|
Özütemiz C. Cerebrovascular Imaging at 7T: A New High. Semin Roentgenol 2024; 59:148-156. [PMID: 38880513 DOI: 10.1053/j.ro.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 06/18/2024]
Affiliation(s)
- Can Özütemiz
- University of Minnesota, Department of Radiology, MMC 292, 420 Delaware St. SE Minneapolis, MN.
| |
Collapse
|
5
|
Koemans EA, Rasing I, Voigt S, van Harten TW, van der Zwet RG, Kaushik K, Schipper MR, van der Weerd N, van Zwet EW, van Etten ES, van Osch MJ, Kuiperij B, Verbeek MM, Terwindt GM, Greenberg SM, van Walderveen MA, Wermer MJ. Temporal Ordering of Biomarkers in Dutch-Type Hereditary Cerebral Amyloid Angiopathy. Stroke 2024; 55:954-962. [PMID: 38445479 PMCID: PMC10962436 DOI: 10.1161/strokeaha.123.044688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND The temporal ordering of biomarkers for cerebral amyloid angiopathy (CAA) is important for their use in trials and for the understanding of the pathological cascade of CAA. We investigated the presence and abnormality of the most common biomarkers in the largest (pre)symptomatic Dutch-type hereditary CAA (D-CAA) cohort to date. METHODS We included cross-sectional data from participants with (pre)symptomatic D-CAA and controls without CAA. We investigated CAA-related cerebral small vessel disease markers on 3T-MRI, cerebrovascular reactivity with functional 7T-MRI (fMRI) and amyloid-β40 and amyloid-β42 levels in cerebrospinal fluid. We calculated frequencies and plotted biomarker abnormality according to age to form scatterplots. RESULTS We included 68 participants with D-CAA (59% presymptomatic, mean age, 50 [range, 26-75] years; 53% women), 53 controls (mean age, 51 years; 42% women) for cerebrospinal fluid analysis and 36 controls (mean age, 53 years; 100% women) for fMRI analysis. Decreased cerebrospinal fluid amyloid-β40 and amyloid-β42 levels were the earliest biomarkers present: all D-CAA participants had lower levels of amyloid-β40 and amyloid-β42 compared with controls (youngest participant 30 years). Markers of nonhemorrhagic injury (>20 enlarged perivascular spaces in the centrum semiovale and white matter hyperintensities Fazekas score, ≥2, present in 83% [n=54]) and markers of impaired cerebrovascular reactivity (abnormal BOLD amplitude, time to peak and time to baseline, present in 56% [n=38]) were present from the age of 30 years. Finally, markers of hemorrhagic injury were present in 64% (n=41) and only appeared after the age of 41 years (first microbleeds and macrobleeds followed by cortical superficial siderosis). CONCLUSIONS Our results suggest that amyloid biomarkers in cerebrospinal fluid are the first to become abnormal in CAA, followed by MRI biomarkers for cerebrovascular reactivity and nonhemorrhagic injury and lastly hemorrhagic injury. This temporal ordering probably reflects the pathological stages of CAA and should be taken into account when future therapeutic trials targeting specific stages are designed.
Collapse
Affiliation(s)
- Emma A. Koemans
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Ingeborg Rasing
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
- Radiology (S.V., T.W.v.H., M.R.S., M.J.v.P.O., M.A.A.v.W.), Leiden University Medical Center, the Netherlands
| | - Thijs W. van Harten
- Radiology (S.V., T.W.v.H., M.R.S., M.J.v.P.O., M.A.A.v.W.), Leiden University Medical Center, the Netherlands
| | - Reinier G.J. van der Zwet
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Kanishk Kaushik
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Manon R. Schipper
- Radiology (S.V., T.W.v.H., M.R.S., M.J.v.P.O., M.A.A.v.W.), Leiden University Medical Center, the Netherlands
| | - Nelleke van der Weerd
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Erik W. van Zwet
- Biostatistics (E.W.v.Z.), Leiden University Medical Center, the Netherlands
| | - Ellis S. van Etten
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Matthias J.P. van Osch
- Radiology (S.V., T.W.v.H., M.R.S., M.J.v.P.O., M.A.A.v.W.), Leiden University Medical Center, the Netherlands
| | - Bea Kuiperij
- Department Neurology and Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen (B.K., M.M.V.)
| | - Marcel M. Verbeek
- Department Neurology and Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen (B.K., M.M.V.)
| | - Gisela M. Terwindt
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Steven M. Greenberg
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (S.M.G.)
| | | | - Marieke J.H. Wermer
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
- Department of Neurology, University Medical Center Groningen, the Netherlands (M.J.H.W.)
| |
Collapse
|
6
|
Perosa V, Auger CA, Zanon Zotin MC, Oltmer J, Frosch MP, Viswanathan A, Greenberg SM, van Veluw SJ. Histopathological Correlates of Lobar Microbleeds in False-Positive Cerebral Amyloid Angiopathy Cases. Ann Neurol 2023; 94:856-870. [PMID: 37548609 PMCID: PMC11573502 DOI: 10.1002/ana.26761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE A definite diagnosis of cerebral amyloid angiopathy (CAA), characterized by the accumulation of amyloid β in walls of cerebral small vessels, can only be obtained through pathological examination. A diagnosis of probable CAA during life relies on the presence of hemorrhagic markers, including lobar cerebral microbleeds (CMBs). The aim of this project was to study the histopathological correlates of lobar CMBs in false-positive CAA cases. METHODS In 3 patients who met criteria for probable CAA during life, but showed no CAA upon neuropathological examination, lobar CMBs were counted on ex vivo 3T magnetic resonance imaging (MRI) and on ex vivo 7T MRI. Areas with lobar CMBs were next sampled and cut into serial sections, on which the CMBs were then identified. RESULTS Collectively, there were 25 lobar CMBs on in vivo MRI and 22 on ex vivo 3T MRI of the analyzed hemispheres. On ex vivo MRI, we targeted 12 CMBs for sampling, and definite histopathological correlates were retrieved for 9 of them, of which 7 were true CMBs. No CAA was found on any of the serial sections. The "culprit vessels" associated with the true CMBs instead showed moderate to severe arteriolosclerosis. Furthermore, CMBs in false-positive CAA cases tended to be located more often in the juxtacortical or subcortical white matter than in the cortical ribbon. INTERPRETATION These findings suggest that arteriolosclerosis can generate lobar CMBs and that more detailed investigations into the exact localization of CMBs with respect to the cortical ribbon could potentially aid the diagnosis of CAA during life. ANN NEUROL 2023;94:856-870.
Collapse
Affiliation(s)
- Valentina Perosa
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Corinne A Auger
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Maria Clara Zanon Zotin
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Imaging Sciences and Medical Physics, Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jan Oltmer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Matthew P Frosch
- Department of Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
7
|
Koemans EA, van Walderveen MAA, Voigt S, Rasing I, van Harten TW, J A van Os H, van der Weerd N, Terwindt GM, van Osch MJP, van Veluw SJ, Freeze WM, Wermer MJH. Subarachnoid CSF hyperintensities at 7 tesla FLAIR MRI: A novel marker in cerebral amyloid angiopathy. Neuroimage Clin 2023; 38:103386. [PMID: 36989852 PMCID: PMC10074985 DOI: 10.1016/j.nicl.2023.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
BACKGROUND We observed subarachnoid cerebrospinal fluid (CSF) hyperintensities at non-contrast 7-tesla (T) fluid-attenuated inversion recovery (FLAIR) MRI, frequently topographically associated with cortical superficial siderosis (cSS), in participants with cerebral amyloid angiopathy (CAA). To systemically evaluate these CSF hyperintensities we investigated their frequency and anatomical and temporal relationship with cSS on 7T and 3T MRI in hereditary Dutch-type CAA (D-CAA), sporadic CAA (sCAA), and non-CAA controls. METHODS CAA participants were included from two prospective natural history studies and non-CAA controls from a 7T study in healthy females and females with ischemic stroke. CSF hyperintensities were scored by two independent observers. RESULTS We included 38 sCAA participants (mean age 72y), 50 D-CAA participants (mean age 50y) and 44 non-CAA controls (mean age 53y, 15 with stroke). In total 27/38 (71 %, 95 %CI 56-84) sCAA and 23/50 (46 %, 95 %CI 33-60) D-CAA participants had subarachnoid CSF hyperintensities at baseline 7T. Most (96 %) of those had cSS, in 54 % there was complete topographical overlap with cSS. The remaining 46 % had ≥1 sulcus with CSF hyperintensities without co-localizing cSS. None of the healthy controls and 2/15 (13 %, 95 %CI 2-41, 100 % cSS overlap) of the stroke controls had CSF hyperintensities. In 85 % of the CAA participants CSF hyperintensities could retrospectively be identified at 3T. Of the 35 CAA participants with follow-up 7T after two years, 17/35 (49 %) showed increase and 6/35 (17 %) decrease of regional CSF hyperintensities. In 2/11 (18 %) of participants with follow-up who had baseline CSF hyperintensities without overlapping cSS, new cSS developed at those locations. CONCLUSIONS Subarachnoid CSF hyperintensities at 7T FLAIR MRI occur frequently in CAA and are associated with cSS, although without complete overlap. We hypothesize that the phenomenon could be a sign of subtle plasma protein or blood product leakage into the CSF, resulting in CSF T1-shortening.
Collapse
Affiliation(s)
- Emma A Koemans
- Leiden University Medical Center, Department of Neurology, Leiden, The Netherlands.
| | | | - Sabine Voigt
- Leiden University Medical Center, Department of Neurology, Leiden, The Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | - Ingeborg Rasing
- Leiden University Medical Center, Department of Neurology, Leiden, The Netherlands
| | - Thijs W van Harten
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | - Hine J A van Os
- Leiden University Medical Center, Department of Neurology, Leiden, The Netherlands; Leiden University Medical Center, Department of Public Health, Leiden, The Netherlands
| | | | - Gisela M Terwindt
- Leiden University Medical Center, Department of Neurology, Leiden, The Netherlands
| | | | - Susanne J van Veluw
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands; Massachusetts General Hospital, Harvard Medical School, J. Philip Kistler Stroke Research Center, Boston, MA, USA; Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Whitney M Freeze
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | - Marieke J H Wermer
- Leiden University Medical Center, Department of Neurology, Leiden, The Netherlands
| |
Collapse
|
8
|
Goeldlin M, Stewart C, Radojewski P, Wiest R, Seiffge D, Werring DJ. Clinical neuroimaging in intracerebral haemorrhage related to cerebral small vessel disease: contemporary practice and emerging concepts. Expert Rev Neurother 2022; 22:579-594. [PMID: 35850578 DOI: 10.1080/14737175.2022.2104157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION About 80% of all non-traumatic intracerebral haemorrhage (ICH) are caused by the sporadic cerebral small vessel diseases deep perforator arteriopathy (DPA, also termed hypertensive arteriopathy or arteriolosclerosis) and cerebral amyloid angiopathy (CAA), though these frequently co-exist in older people. Contemporary neuroimaging (MRI and CT) detects an increasing spectrum of haemorrhagic and non-haemorrhagic imaging biomarkers of small vessel disease which may identify the underlying arteriopathies. AREAS COVERED We discuss biomarkers for cerebral small vessel disease subtypes in ICH, and explore their implications for clinical practice and research. EXPERT OPINION ICH is not a single disease, but results from a defined range of vascular pathologies with important implications for prognosis and treatment. The terms "primary" and "hypertensive" ICH are poorly defined and should be avoided, as they encourage incomplete investigation and classification. Imaging-based criteria for CAA will show improved diagnostic accuracy, but specific imaging biomarkers of DPA are needed. Ultra-high-field 7T-MRI using structural and quantitative MRI may provide further insights into mechanisms and pathophysiology of small vessel disease. We expect neuroimaging biomarkers and classifications to allow personalized treatments (e.g. antithrombotic drugs) in clinical practice and to improve patient selection and monitoring in trials of targeted therapies directed at the underlying arteriopathies.
Collapse
Affiliation(s)
- Martina Goeldlin
- Department of Neurology, Inselspital Bern University Hospital and University of Bern, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Catriona Stewart
- Stroke Research Group, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Piotr Radojewski
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital University Hospital Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital University Hospital Bern, Switzerland
| | - David Seiffge
- Department of Neurology, Inselspital Bern University Hospital and University of Bern, Bern, Switzerland
| | - David J Werring
- Stroke Research Group, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|