1
|
Targas ABA, Victoriano PHM, Garcia MBB, Alexandre-Silva V, Cominetti MR. Exploring the connection between dementia and cardiovascular risk with a focus on ADAM10. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167825. [PMID: 40174790 DOI: 10.1016/j.bbadis.2025.167825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Alzheimer's disease (AD) represents a leading cause of dementia, characterized by progressive cognitive and functional decline. Although extensive research has unraveled critical aspects of AD pathology, its etiology remains incompletely understood, urging further exploration into potential risk factors. Growing evidence underscores a significant link between cardiovascular disease (CVD) risk factors and AD, with modifiable lifestyle elements - such as physical inactivity, high low-density lipoprotein (LDL) levels, obesity, hypertension, atherosclerosis, and diabetes - emerging as contributors to cerebrovascular damage and neurodegeneration. ADAM10, a disintegrin and metalloproteinase involved in the non-amyloidogenic processing of amyloid precursor protein (APP), has garnered interest for its dual role in cardiovascular and neurodegenerative processes. ADAM10's regulation of neuroinflammation, endothelial function, and proteolytic cleavage of APP potentially moderates amyloid-β (Aβ) peptide formation, thus influencing both cardiovascular and brain health. Given these interconnected roles, this narrative review investigates whether ADAM10-driven vascular dysfunction accelerates neurodegeneration, how lipid metabolism influences ADAM10 activity in CVD and AD, and whether targeting ADAM10 could offer a dual-benefit therapeutic strategy to mitigate disease burden. By exploring epidemiological data, clinical studies, and molecular pathways, we aim to clarify ADAM10's bridging function between AD and cardiovascular risk, offering a new perspective into therapeutic opportunities to alleviate the dual burden of these interrelated conditions.
Collapse
Affiliation(s)
| | | | | | | | - Marcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Wang J, Gao H. Effects of repetitive transcranial magnetic stimulation on learning and memory cognitive function in rats with vascular cognitive impairment and its neural induction mechanism. BMC Neurosci 2025; 26:24. [PMID: 40102718 PMCID: PMC11916909 DOI: 10.1186/s12868-025-00933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The treatment of vascular cognitive impairment (VCI) is challenging, and its neurological mechanisms are not yet fully understood. Repetitive transcranial magnetic stimulation (rTMS) offers a new non-invasive treatment approach. METHODS One hundred male SD rats were grouped: intervention group (IG), model group (MG), sham group (SG), and control group (CG), to prepare the rat model of VCI. The Morris water maze (MWM) test was conducted, and oxidative stress (OS) markers, neurotrophic factors, apoptosis factors, and the amplitude of postsynaptic potential (PSP) in the hippocampus of rats were measured. RESULTS Post-intervention, IG's escape latency was lower than MG but higher than SG and CG. IG's hippocampal malondialdehyde (MDA) content, Bax, and Caspase-3 (Cas-3) were lower than MG but higher than SG and CG, while the tendency was opposite for Bcl-2 expression and the content of glutathione (GSH) and superoxide dismutase (SOD). IG's brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and N-methyl-D-aspartate receptor 1 (NMDAR1) in the hippocampus were higher than MG but lower than SG and CG; The changes in the amplitude of PSP in the hippocampal region of IG at 10, 30, and 60 min were all higher than those in MG but lower than those in SG and CG (P < 0.05). CONCLUSION Low-frequency rTMS visibly improved the learning and memory abilities of VCI rats and reduced OS levels.
Collapse
Affiliation(s)
- Jiati Wang
- Department of Neurology, Yan'an University Xianyang Hospital, Xianyang, 712000, Shaanxi, China
| | - Huan Gao
- Department of Neurology, Yan'an University Xianyang Hospital, Xianyang, 712000, Shaanxi, China.
| |
Collapse
|
3
|
Nakase T, Tatewaki Y, Takano Y, Nomura S, Baek HW, Taki Y. Blood Biomarkers Reflect Dementia Symptoms and Are Influenced by Cerebrovascular Lesions. Int J Mol Sci 2025; 26:2325. [PMID: 40076944 PMCID: PMC11899992 DOI: 10.3390/ijms26052325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Dementia blood biomarkers are becoming increasingly important. Various factors, such as ischemic lesions and inflammation, can influence the pathomechanism of dementia. We aimed to evaluate the effects of past stroke lesions on blood biomarkers (BMs). Following approval from the institutional ethics committee, patients who were admitted to the memory clinic and were consented to written documents were enrolled (n = 111, average [standard deviation] age: 74.5 [9.1] years-old). Brain magnetic resonance imaging, cognitive function, and neuropsychological symptoms were analyzed. The amyloid-β 42 (Aβ42)/Aβ40 ratio, phosphorylated tau181 (p-tau181), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and Aβ42/p-tau181 ratio were assessed as plasma BMs. The patients were diagnosed with Alzheimer's disease (n = 45), mild cognitive impairment (n = 56), depression (n = 8), and subjective cognitive impairment (n = 4). Bivariate analysis exhibited that all measured BM indicators were significantly associated with cognitive decline in patients without past stroke lesions. Whereas the patients with stroke lesions presented a significant association only between GFAP and cognitive decline (p = 0.0011). Multiple regression analysis showed that NfL significantly correlated with cognitive decline only in patients without stroke lesions (r = 0.4988, p = 0.0003) and with delusion only in those with stroke lesions (r = 0.5492, p = 0.0121). Past stroke lesions should be addressed in the assessment of the correlation between blood biomarkers and cognitive decline in dementia patients.
Collapse
Affiliation(s)
- Taizen Nakase
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo Machi, Sendai 980-8575, Miyagi, Japan (H.W.B.); (Y.T.)
| | | | | | | | | | | |
Collapse
|
4
|
Jiao D. Advancing personalized digital therapeutics: integrating music therapy, brainwave entrainment methods, and AI-driven biofeedback. Front Digit Health 2025; 7:1552396. [PMID: 40070544 PMCID: PMC11893577 DOI: 10.3389/fdgth.2025.1552396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Mental health disorders and cognitive decline are pressing global concerns, increasing the demand for non-pharmacological interventions targeting emotional dysregulation, memory deficits, and neural dysfunction. This review systematically examines three promising methodologies-music therapy, brainwave entrainment (binaural beats, isochronic tones, multisensory stimulation), and their integration into a unified therapeutic paradigm. Emerging evidence indicates that music therapy modulates affect, reduces stress, and enhances cognition by engaging limbic, prefrontal, and reward circuits. Brainwave entrainment, particularly within the gamma frequency range (30-100 Hz), facilitates neural oscillatory patterns linked to relaxation, concentration, and memory, with 40 Hz showing promise for cognitive enhancement, albeit with individual variability. Synchronized multisensory stimulation, combining auditory and visual inputs at gamma frequencies, has demonstrated potential in enhancing memory and supporting neural integrity, particularly in Alzheimer's disease. However, challenges such as patient response variability, lack of standardization, and scalability hinder widespread implementation. Recent research suggests that a synergistic application of these modalities may optimize therapeutic outcomes by leveraging complementary mechanisms. To actualize this, AI-driven biofeedback, enabling real-time physiological assessment and individualized adjustments-such as tailoring musical complexity, entrainment frequencies, and multisensory components-emerges as a promising solution. This adaptive model enhances treatment accessibility and consistency while maximizing long-term efficacy. Although in early stages, preliminary evidence highlights its transformative potential in reshaping non-pharmacological therapeutic strategies. Advancing this field requires interdisciplinary research, rigorous evaluation, and ethical data stewardship to develop innovative, patient-centered solutions for mental health and cognitive rehabilitation.
Collapse
Affiliation(s)
- Dian Jiao
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
5
|
De Meo E, Portaccio E, Bonacchi R, Giovannoli J, Niccolai C, Amato MP. An update on the treatment and management of cognitive dysfunction in patients with multiple sclerosis. Expert Rev Neurother 2025; 25:227-243. [PMID: 39801437 DOI: 10.1080/14737175.2025.2450788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Cognitive impairment (CI) occurs in 34-70% of multiple sclerosis (MS) patients, significantly impacting quality of life. CI can occur independently of physical disability, even in those with 'benign MS.' Cognitive deficits are heterogeneous, but common areas affected include processing speed, memory, and executive functions. AREAS COVERED A comprehensive literature search was conducted across databases such as PubMed and Google Scholar, using keywords like 'MS,' 'cognition,' and 'cognitive rehabilitation.' We focused on clinical assessment tools, emerging cognitive phenotypes, and both pharmacological and non-pharmacological treatments, including disease-modifying therapies and cognitive rehabilitation techniques. EXPERT OPINION Current evidence underscores the need for a multifaceted approach to managing CI in MS, incorporating emerging pharmacological treatments, cognitive rehabilitation strategies, and exercise programs. Future research should prioritize defining optimal training intensities, integrating therapies for sustained cognitive enhancement, and exploring neuromodulation and neuroimaging biomarkers within randomized controlled trials aimed at improving cognitive functioning in MS.
Collapse
Affiliation(s)
- Ermelinda De Meo
- NEUROFARBA, University of Florence, Florence, Italy
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | | | - Raffaello Bonacchi
- Department of Neuroradiology, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Claudia Niccolai
- NEUROFARBA, University of Florence, Florence, Italy
- Department of Neurorehabilitation, IRCCS Don Carlo Gnocchi Foundation, Florence, Italy
| | - Maria Pia Amato
- NEUROFARBA, University of Florence, Florence, Italy
- Department of Neurorehabilitation, IRCCS Don Carlo Gnocchi Foundation, Florence, Italy
| |
Collapse
|
6
|
Alfei S, Zuccari G. Ellagic Acid: A Green Multi-Target Weapon That Reduces Oxidative Stress and Inflammation to Prevent and Improve the Condition of Alzheimer's Disease. Int J Mol Sci 2025; 26:844. [PMID: 39859559 PMCID: PMC11766176 DOI: 10.3390/ijms26020844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS), generated by the overrun of reactive species of oxygen and nitrogen (RONS), is the key cause of several human diseases. With inflammation, OS is responsible for the onset and development of clinical signs and the pathological hallmarks of Alzheimer's disease (AD). AD is a multifactorial chronic neurodegenerative syndrome indicated by a form of progressive dementia associated with aging. While one-target drugs only soften its symptoms while generating drug resistance, multi-target polyphenols from fruits and vegetables, such as ellagitannins (ETs), ellagic acid (EA), and urolithins (UROs), having potent antioxidant and radical scavenging effects capable of counteracting OS, could be new green options to treat human degenerative diseases, thus representing hopeful alternatives and/or adjuvants to one-target drugs to ameliorate AD. Unfortunately, in vivo ETs are not absorbed, while providing mainly ellagic acid (EA), which, due to its trivial water-solubility and first-pass effect, metabolizes in the intestine to yield UROs, or irreversible binding to cellular DNA and proteins, which have very low bioavailability, thus failing as a therapeutic in vivo. Currently, only UROs have confirmed the beneficial effect demonstrated in vitro by reaching tissues to the extent necessary for therapeutic outcomes. Unfortunately, upon the administration of food rich in ETs or ETs and EA, URO formation is affected by extreme interindividual variability that renders them unreliable as novel clinically usable drugs. Significant attention has therefore been paid specifically to multitarget EA, which is incessantly investigated as such or nanotechnologically manipulated to be a potential "lead compound" with protective action toward AD. An overview of the multi-factorial and multi-target aspects that characterize AD and polyphenol activity, respectively, as well as the traditional and/or innovative clinical treatments available to treat AD, constitutes the opening of this work. Upon focus on the pathophysiology of OS and on EA's chemical features and mechanisms leading to its antioxidant activity, an all-around updated analysis of the current EA-rich foods and EA involvement in the field of AD is provided. The possible clinical usage of EA to treat AD is discussed, reporting results of its applications in vitro, in vivo, and during clinical trials. A critical view of the need for more extensive use of the most rapid diagnostic methods to detect AD from its early symptoms is also included in this work.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
7
|
Lee WJ, Cho KJ, Kim GW. Mitigation of Atherosclerotic Vascular Damage and Cognitive Improvement Through Mesenchymal Stem Cells in an Alzheimer's Disease Mouse Model. Int J Mol Sci 2024; 25:13210. [PMID: 39684920 DOI: 10.3390/ijms252313210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive memory loss and other cognitive disturbances. Patients with AD can be vulnerable to vascular damage, and damaged vessels can lead to cognitive impairment. Mesenchymal stem cell (MSC) treatment has shown potential in ameliorating AD pathogenesis, but its effect on vascular function remains unclear. This study aimed to improve cognitive function by alleviating atherosclerosis-induced vessel damage using MSCs in mice with a genetic AD background. In this study, a 5xFAD mouse model of AD was used, and atherosclerotic vessel damage was induced by high-fat diets (HFDs). MSCs were injected into the tail vein along with mannitol in 5xFAD mice on an HFD. MSCs were detected in the brain, and vascular damage was improved following MSC treatment. Behavioral tests showed that MSCs enhanced cognitive function, as measured by the Y-maze and passive avoidance tests. Additionally, muscle strength measured by the rotarod test was also increased by MSCs in AD mice with vessel damage induced by HFDs. Overall, our results suggest that stem cells can alleviate vascular damage caused by metabolic diseases, including HFDs, and vascular disease in individuals carrying the AD gene. Consequently, this alleviates cognitive decline related to vascular dementia symptoms.
Collapse
Affiliation(s)
- Woong Jin Lee
- Department of Neurology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoung Joo Cho
- Department of Life Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Gyung Whan Kim
- Department of Neurology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Markus HS. Exercise to prevent stroke and dementia-World Stroke Day 2024. Int J Stroke 2024; 19:960-961. [PMID: 39382291 DOI: 10.1177/17474930241291618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
|