1
|
Watson KS, Boukhloufi I, Bowerman M, Parson SH. The Relationship between Body Composition, Fatty Acid Metabolism and Diet in Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020131. [PMID: 33498293 PMCID: PMC7909254 DOI: 10.3390/brainsci11020131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive condition that results in pathological deficiency of the survival motor neuron (SMN) protein. SMA most frequently presents itself within the first few months of life and is characterized by progressive muscle weakness. As a neuromuscular condition, it prominently affects spinal cord motor neurons and the skeletal muscle they innervate. However, over the past few decades, the SMA phenotype has expanded to include pathologies outside of the neuromuscular system. The current therapeutic SMA landscape is at a turning point, whereby a holistic multi-systemic approach to the understanding of disease pathophysiology is at the forefront of fundamental research and translational endeavours. In particular, there has recently been a renewed interest in body composition and metabolism in SMA patients, specifically that of fatty acids. Indeed, there is increasing evidence of aberrant fat distribution and fatty acid metabolism dysfunction in SMA patients and animal models. This review will explore fatty acid metabolic defects in SMA and discuss how dietary interventions could potentially be used to modulate and reduce the adverse health impacts of these perturbations in SMA patients.
Collapse
Affiliation(s)
- Katherine S. Watson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Imane Boukhloufi
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
| | - Melissa Bowerman
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
- Correspondence: (M.B.); (S.H.P.)
| | - Simon H. Parson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
- Correspondence: (M.B.); (S.H.P.)
| |
Collapse
|
2
|
Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020; 42:1073-1101. [DOI: 10.1007/s10529-020-02886-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
|
3
|
Cardenas J, Menier M, Heitzer MD, Sproule DM. High Healthcare Resource Use in Hospitalized Patients with a Diagnosis of Spinal Muscular Atrophy Type 1 (SMA1): Retrospective Analysis of the Kids' Inpatient Database (KID). PHARMACOECONOMICS - OPEN 2019; 3:205-213. [PMID: 30182345 PMCID: PMC6533340 DOI: 10.1007/s41669-018-0093-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
BACKGROUND Patients with spinal muscular atrophy (SMA) have high healthcare resource use (HRU) due to respiratory and nutritional complications resulting from progressive muscle atrophy. While previous studies estimate the direct costs to be US$113,000 to US$121,682 per year in the US, they potentially understate costs for type 1 SMA (SMA1). This study analyzed HRU in hospitalizations with a diagnosis of SMA1 and compared it with hospitalizations with complex chronic conditions (CCC) other than SMA1 or those with no CCC. METHODS This retrospective analysis of a defined subset of the 2012 Kids' Inpatient Database (KID) compared a nationally estimated number of hospitalizations of children (aged < 3 years) categorized into three groups: (1) SMA1 (n = 237 admissions), (2) no CCC (n = 632,467 admissions), and (3) other CCC (n = 224,953 admissions). RESULTS Mean total charges were higher for SMA1 admissions compared with admissions with no CCC (US$150,921 vs US$19,261 per admission, respectively; costs: US$50,190 vs $5862 per admission, respectively; both p < 0.0001). A larger proportion of SMA1 admissions were billed for one or more procedure codes (81.9%) than in the no CCC group (39.4%) or other CCC group (70.1%; both p ≤ 0.0003). SMA1 admissions had a longer length of stay compared with admissions with no CCC (15.1 vs 3.4, respectively; p < 0.0001). CONCLUSIONS The average total charges for a single SMA1 admission were higher than those of the no CCC group. Because most infants with SMA1 require multiple hospitalizations per year, previous estimates may dramatically underestimate the direct costs associated with HRU. Further studies are required to determine the indirect costs and societal impacts of SMA1.
Collapse
Affiliation(s)
- Jessica Cardenas
- Department of Clinical Development, AveXis, Inc, 2275 Half Day Road, Suite 200, Bannockburn, IL, 60015, USA
| | - Melissa Menier
- Department of Clinical Development, AveXis, Inc, 2275 Half Day Road, Suite 200, Bannockburn, IL, 60015, USA
| | - Marjet D Heitzer
- Department of Clinical Development, AveXis, Inc, 2275 Half Day Road, Suite 200, Bannockburn, IL, 60015, USA
| | - Douglas M Sproule
- Department of Clinical Development, AveXis, Inc, 2275 Half Day Road, Suite 200, Bannockburn, IL, 60015, USA.
| |
Collapse
|
4
|
Matharu N, Rattanasopha S, Tamura S, Maliskova L, Wang Y, Bernard A, Hardin A, Eckalbar WL, Vaisse C, Ahituv N. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 2018; 363:science.aau0629. [PMID: 30545847 DOI: 10.1126/science.aau0629] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 12/06/2018] [Indexed: 12/30/2022]
Abstract
A wide range of human diseases result from haploinsufficiency, where the function of one of the two gene copies is lost. Here, we targeted the remaining functional copy of a haploinsufficient gene using CRISPR-mediated activation (CRISPRa) in Sim1 and Mc4r heterozygous mouse models to rescue their obesity phenotype. Transgenic-based CRISPRa targeting of the Sim1 promoter or its distant hypothalamic enhancer up-regulated its expression from the endogenous functional allele in a tissue-specific manner, rescuing the obesity phenotype in Sim1 heterozygous mice. To evaluate the therapeutic potential of CRISPRa, we injected CRISPRa-recombinant adeno-associated virus into the hypothalamus, which led to reversal of the obesity phenotype in Sim1 and Mc4r haploinsufficient mice. Our results suggest that endogenous gene up-regulation could be a potential strategy to treat altered gene dosage diseases.
Collapse
Affiliation(s)
- Navneet Matharu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sawitree Rattanasopha
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA.,Doctor of Philosophy Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Serena Tamura
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lenka Maliskova
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yi Wang
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Adelaide Bernard
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Aaron Hardin
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Walter L Eckalbar
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Christian Vaisse
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA. .,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Mohseni R, Ashrafi MR, Ai J, Nikougoftar M, Mohammadi M, Ghahvechi-Akbari M, Shoae-Hassani A, Hamidieh AA. Overexpression of SMN2 Gene in Motoneuron-Like Cells Differentiated from Adipose-Derived Mesenchymal Stem Cells by Ponasterone A. J Mol Neurosci 2018; 67:247-257. [PMID: 30535775 DOI: 10.1007/s12031-018-1232-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/25/2018] [Indexed: 01/25/2023]
Abstract
Cell therapy and stem cell transplantation strategies have provided potential therapeutic approaches for the treatment of neurological disorders. Adipose-derived mesenchymal stem cells (ADMSCs) are abundant adult stem cells with low immunogenicity, which can be used for allogeneic cell replacement therapies. Differentiation of ADMSCs into acetylcholine-secreting motoneurons (MNs) is a promising treatment for MN diseases, such as spinal muscular atrophy (SMA), which is associated with the level of SMN1 gene expression. The SMN2 gene plays an important role in MN disorders, as it can somewhat compensate for the lack of SMN1 expression in SMA patients. Although the differentiation potential of ADMSCs into MNs has been previously established, overexpression of SMN2 gene in a shorter period with a longer survival has yet to be elucidated. Ponasterone A (PNA), an ecdysteroid hormone activating the PI3K/Akt pathway, was studied as a new steroid to promote SMN2 overexpression in MNs differentiated from ADMSCs. After induction with retinoic acid, sonic hedgehog, forskolin, and PNA, MN phenotypes were differentiated from ADMSCs, and immunochemical staining, specific for β-tubulin, neuron-specific enolase, and choline acetyltransferase, was performed. Also, the results of real-time PCR assay indicated nestin, Pax6, Nkx2.2, Hb9, Olig2, and SMN2 expression in the differentiated cells. After 2 weeks of treatment, cultures supplemented with PNA showed a longer survival and a 1.2-fold increase in the expression of SMN2 (an overall 5.6-fold increase; *P ≤ 0.05), as confirmed by the Western blot analysis. The PNA treatment increased the levels of ChAT, Isl1, Hb9, and Nkx2 expression in MN-like cells. Our findings highlight the role of PNA in the upregulation of SMN2 genes from MSC-derived MN-like cells, which may serve as a potential candidate in cellular therapy for SMA patients.
Collapse
Affiliation(s)
- Rashin Mohseni
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Reza Ashrafi
- Pediatric Neurology Division, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mahmoud Mohammadi
- Pediatric Neurology Division, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Ghahvechi-Akbari
- Pediatric Neurology Division, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shoae-Hassani
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Pediatric Hematology, Oncology and Stem Cell Transplantation Department, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
LoMauro A, Banfi P, Mastella C, Alberti K, Baranello G, Aliverti A. A New Method for Measuring Bell-Shaped Chest Induced by Impaired Ribcage Muscles in Spinal Muscular Atrophy Children. Front Neurol 2018; 9:703. [PMID: 30271372 PMCID: PMC6146085 DOI: 10.3389/fneur.2018.00703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/03/2018] [Indexed: 11/16/2022] Open
Abstract
The involvement of the respiratory muscular pump makes SMA children prone to frequent hospitalization and morbidity, particularly in type 1. Progressive weakness affects ribcage muscles resulting in bell-shaped chest that was never quantified. The aims of the present work were: (1) to quantify the presence of bell-shaped chest in SMA infants and children and to correlate it with the action of ribcage muscles, assessed by the contribution of pulmonary ribcage to tidal volume (ΔVRC, p); (2) to verify if and how the structure of the ribcage and ΔVRC, p change after 1-year in SMA type 2. 91 SMA children were studied in supine position during awake spontaneous breathing: 32 with type 1 (SMA1, median age: 0.8 years), 51 with type 2 (SMA2, 3.7 years), 8 with type 3 (SMA3, 5.4 years) and 20 healthy children (HC, 5.2 years). 14 SMA2 showed negative ΔVRC, p (SMA2px), index of paradoxical inspiratory inward motion. The bell-shaped chest index was defined as the ratio between the distance of the two anterior axillary lines at sternal angle and the distance between the right and left 10th costal cartilage. If this index was < < 1, it indicated bell shape, if ~1 it indicated rectangular shape, while if >> 1 an inverted triangle shape was identified. While the bell-shaped index was similar between HC (0.92) and SMA3 (0.91), it was significantly (p < 0.05) reduced in SMA2 (0.81), SMA2px (0.74) and SMA1 (0.73), being similar between the last two. There was a good correlation (Spearman's rank correlation coefficient, ρ = 0.635, p < 0.001) between ribcage geometry and ΔVRC, p. After 1 year, ΔVRC, p reduced while bell-shaped chest index did not change being significantly lower than HC. The shape of the ribcage was quantified and correlated with the action of ribcage muscles in SMA children. The impaired ribcage muscles function alters the ribcage structure. HC and SMA3 show an almost rectangular ribcage shape, whereas SMA2, SMA2px and SMA1 are characterized by bell-shaped chest. In SMA, therefore, a vicious cycle starts since infancy: the disease progressively affects ribcage muscles resulting in reduced expansion of lung and ribcage that ultimately alters ribcage shape. This puts the respiratory muscles at mechanical disadvantage.
Collapse
Affiliation(s)
- Antonella LoMauro
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo Da Vinci, Milan, Italy
| | - Paolo Banfi
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Chiara Mastella
- Fondazione IRCCS Cà' Granda Ospedale Maggiore Policlinico, SAPRE-UONPIA, Neuropsichiatria dell'Infanzia e dell'Adolescenza, Milan, Italy
| | - Katia Alberti
- Fondazione IRCCS Cà' Granda Ospedale Maggiore Policlinico, SAPRE-UONPIA, Neuropsichiatria dell'Infanzia e dell'Adolescenza, Milan, Italy
| | - Giovanni Baranello
- UO Neurologia dello Sviluppo, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo Da Vinci, Milan, Italy
| |
Collapse
|
7
|
Matsumaru N, Hattori R, Ichinomiya T, Tsukamoto K, Kato Z. New quantitative method for evaluation of motor functions applicable to spinal muscular atrophy. Brain Dev 2018; 40:172-180. [PMID: 29395660 DOI: 10.1016/j.braindev.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aim of this study was to develop and introduce new method to quantify motor functions of the upper extremity. METHODS The movement was recorded using a three-dimensional motion capture system, and the movement trajectory was analyzed using newly developed two indices, which measure precise repeatability and directional smoothness. Our target task was shoulder flexion repeated ten times. We applied our method to a healthy adult without and with a weight, simulating muscle impairment. We also applied our method to assess the efficacy of a drug therapy for amelioration of motor functions in a non-ambulatory patient with spinal muscular atrophy. Movement trajectories before and after thyrotropin-releasing hormone therapy were analyzed. RESULTS In the healthy adult, we found the values of both indices increased significantly when holding a weight so that the weight-induced deterioration in motor function was successfully detected. From the efficacy assessment of drug therapy in the patient, the directional smoothness index successfully detected improvements in motor function, which were also clinically observed by the patient's doctors. CONCLUSION We have developed a new quantitative evaluation method of motor functions of the upper extremity. Clinical usability of this method is also greatly enhanced by reducing the required number of body-attached markers to only one. This simple but universal approach to quantify motor functions will provide additional insights into the clinical phenotypes of various neuromuscular diseases and developmental disorders.
Collapse
Affiliation(s)
- Naoki Matsumaru
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Japan; Global Regulatory Science, Gifu Pharmaceutical University, Japan.
| | - Ryo Hattori
- Division of Rehabilitation, Gifu University Hospital, Japan
| | - Takashi Ichinomiya
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Japan; Department of Biomedical Informatics, Graduate School of Medicine, Gifu University, Japan
| | | | - Zenichiro Kato
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Japan; Department of Pediatrics, Graduate School of Medicine, Gifu University, Japan
| |
Collapse
|
8
|
Saeman MR, DeSpain K, Liu MM, Wolf SE, Song J. Severe burn increased skeletal muscle loss in mdx mutant mice. J Surg Res 2016; 202:372-9. [PMID: 27229112 DOI: 10.1016/j.jss.2016.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/29/2016] [Accepted: 02/26/2016] [Indexed: 01/30/2023]
Abstract
BACKGROUND Severe burn causes muscle mass loss and atrophy. The balance between muscle cell death and growth maintains tissue homeostasis. We hypothesize that preexisting cellular structural defects will exacerbate skeletal muscle mass loss after burn. Using a Duchenne muscular dystrophy (mdx) mutant mouse, we investigated whether severe burn caused more damage in skeletal muscle with preexisting muscle disease. METHODS The mdx mice and wild-type (WT) mice received 25% total body surface area scald burn. Gastrocnemius (GM), tibialis anterior, and gluteus muscles were obtained at days 1 and 3 after burn. GM muscle function was measured on day 3. Animals without burn served as controls. RESULTS Wet tissue weight significantly decreased in tibialis anterior and gluteus in both mdx and WT mice after burn (P < 0.05). The ratio of muscle to body weight decreased in mdx mutant mice (P < 0.05) but not WT. Isometric force was significantly lower in mdx GM, and this difference persisted after burn (P < 0.05). Caspase-3 activity increased significantly after burn in both the groups, whereas HMGB1 expression was higher in burn mdx mice (P < 0.05). Proliferating cell nuclear antigen decreased significantly in mdx mice (P < 0.05). Myogenic markers pax7, myoD, and myogenin increased after burn in both the groups and were higher in mdx mice (P < 0.05). CONCLUSIONS More muscle loss occurred in response to severe burn in mdx mutant mice. Cell turnover in mdx mice after burn is differed from WT. Although markers of myogenic activation are elevated in mdx mutant mice, the underlying muscle pathophysiology is less tolerant of traumatic injury.
Collapse
Affiliation(s)
- Melody R Saeman
- Division of Burn/Trauma/Critical Care, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin DeSpain
- Division of Burn/Trauma/Critical Care, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ming-Mei Liu
- Division of Burn/Trauma/Critical Care, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven E Wolf
- Division of Burn/Trauma/Critical Care, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Juquan Song
- Division of Burn/Trauma/Critical Care, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
9
|
Ng KW, Connolly AM, Zaidman CM. Quantitative muscle ultrasound measures rapid declines over time in children with SMA type 1. J Neurol Sci 2015; 358:178-82. [PMID: 26432577 DOI: 10.1016/j.jns.2015.08.1532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/10/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
Muscles are small in spinal muscular atrophy (SMA). It is not known if muscle size changes over time in SMA type 1. We quantified changes over time in muscle size and echointensity during two repeated ultrasound examinations of unilateral proximal (biceps brachii/brachialis and quadriceps) and distal (anterior forearm flexors and tibialis anterior) muscles in three children with SMA type 1. We compared muscle thickness (MT) to body weight-dependent normal reference values. Children were 1, 6, and 11months old at baseline and had 2, 2 and 4 months between ultrasound examinations, respectively. At baseline, MT was normal for weight in all muscles except an atrophic quadriceps in the oldest child. MT decreased and echointensity increased (worsened) over time. At follow up, MT was below normal for weight in the quadriceps in all three children, in the biceps/brachioradialis in two, and in the anterior forearm in one. Tibialis anterior MT remained normal for weight in all three children. Muscle echointensity increased over time in all muscles and, on average, more than doubled in two children. In children with SMA type 1, muscle atrophies and becomes hyperechoic over time. Quantitative muscle ultrasound measures disease progression in SMA type 1 that warrants additional study in more children.
Collapse
Affiliation(s)
- Kay W Ng
- Washington University School of Medicine, Department of Neurology, St. Louis, MO 63110, United States
| | - Anne M Connolly
- Washington University School of Medicine, Department of Neurology, St. Louis, MO 63110, United States; Washington University School of Medicine, Department of Pediatrics, St. Louis, MO 63110, United States
| | - Craig M Zaidman
- Washington University School of Medicine, Department of Neurology, St. Louis, MO 63110, United States; Washington University School of Medicine, Department of Pediatrics, St. Louis, MO 63110, United States.
| |
Collapse
|
10
|
Valsecchi V, Boido M, De Amicis E, Piras A, Vercelli A. Expression of Muscle-Specific MiRNA 206 in the Progression of Disease in a Murine SMA Model. PLoS One 2015; 10:e0128560. [PMID: 26030275 PMCID: PMC4450876 DOI: 10.1371/journal.pone.0128560] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disease, the most common in infancy, and the third one among young people under 18 years. The major pathological landmark of SMA is a selective degeneration of lower motor neurons, resulting in progressive skeletal muscle denervation, atrophy, and paralysis. Recently, it has been shown that specific or general changes in the activity of ribonucleoprotein containing micro RNAs (miRNAs) play a role in the development of SMA. Additionally miRNA-206 has been shown to be required for efficient regeneration of neuromuscular synapses after acute nerve injury in an ALS mouse model. Therefore, we correlated the morphology and the architecture of the neuromuscular junctions (NMJs) of quadriceps, a muscle affected in the early stage of the disease, with the expression levels of miRNA-206 in a mouse model of intermediate SMA (SMAII), one of the most frequently used experimental model. Our results showed a decrease in the percentage of type II fibers, an increase in atrophic muscle fibers and a remarkable accumulation of neurofilament (NF) in the pre-synaptic terminal of the NMJs in the quadriceps of SMAII mice. Furthermore, molecular investigation showed a direct link between miRNA-206-HDAC4-FGFBP1, and in particular, a strong up-regulation of this pathway in the late phase of the disease. We propose that miRNA-206 is activated as survival endogenous mechanism, although not sufficient to rescue the integrity of motor neurons. We speculate that early modulation of miRNA-206 expression might delay SMA neurodegenerative pathway and that miRNA-206 could be an innovative, still relatively unexplored, therapeutic target for SMA.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Elena De Amicis
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Piras
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Chen TH, Yang YH, Mai HH, Liang WC, Wu YC, Wang HY, Jong YJ. Reliability and validity of outcome measures of in-hospital and at-home visits in a randomized, double-blind, placebo-controlled trial for spinal muscular atrophy. J Child Neurol 2014; 29:1680-1684. [PMID: 24163397 DOI: 10.1177/0883073813506935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We used at-home assessments in a clinical trial to relieve the visit burden for participants. A total of 57 patients with type II or III spinal muscular atrophy were enrolled and 10 of them (7 type II and 3 type III) received at-home assessments. The primary end points were Gross Motor Function Measure, Manual Muscle Test, and serum biomarker. The secondary endpoints were Modified Hammersmith Functional Motor Scale and forced vital capacity. The correlation coefficients and analysis of covariance showed good reliability and validity of all outcome measures. Except for Gross Motor Function Measure and Modified Hammersmith Functional Motor Scale, there were no significant differences in measures between in-hospital and at-home groups (intersubject) or among 3 patients who received both at-home and in-hospital visits (intrasubject). We concluded that at-home assessments could provide sufficient reliability in a controlled trial. This modification could help design a successful clinical trial for spinal muscular atrophy.
Collapse
Affiliation(s)
- Tai-Heng Chen
- Division of Pediatric Emergency, Department of Emergency, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsin Yang
- Statistical Analysis Laboratory, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hui-Hsia Mai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chen Liang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Wu
- Department of Physical Therapy, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Yi Wang
- Department of Physical Therapy, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuh-Jyh Jong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
12
|
Wynne GM, Russell AJ. Drug Discovery Approaches for Rare Neuromuscular Diseases. ORPHAN DRUGS AND RARE DISEASES 2014. [DOI: 10.1039/9781782624202-00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rare neuromuscular diseases encompass many diverse and debilitating musculoskeletal disorders, ranging from ultra-orphan conditions that affect only a few families, to the so-called ‘common’ orphan diseases like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which affect several thousand individuals worldwide. Increasingly, pharmaceutical and biotechnology companies, in an effort to improve productivity and rebuild dwindling pipelines, are shifting their business models away from the formerly popular ‘blockbuster’ strategy, with rare diseases being an area of increased focus in recent years. As a consequence of this paradigm shift, coupled with high-profile campaigns by not-for-profit organisations and patient advocacy groups, rare neuromuscular diseases are attracting considerable attention as new therapeutic areas for improved drug therapy. Much pioneering work has taken place to elucidate the underlying pathological mechanisms of many rare neuromuscular diseases. This, in conjunction with the availability of new screening technologies, has inspired the development of several truly innovative therapeutic strategies aimed at correcting the underlying pathology. A survey of medicinal chemistry approaches and the resulting clinical progress for new therapeutic agents targeting this devastating class of degenerative diseases is presented, using DMD and SMA as examples. Complementary strategies using small-molecule drugs and biological agents are included.
Collapse
Affiliation(s)
- Graham M. Wynne
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Angela J. Russell
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
13
|
Abstract
PURPOSE To identify the physical and psychosocial effects of equine-assisted activities and therapies (EAATs) on children with spinal muscular atrophy (SMA) from the perspective of the children and their parents. METHODS The families of all eligible children with SMA, who reported participation in EAAT, from a Western metropolitan academic center were contacted and invited to participate. This study implemented qualitative, semistructured interviews of children with SMA and their parents. RESULTS Three themes emerged from the qualitative content analysis: physical/psychosocial benefits; relationship development with the horses, instructors, and children; and barriers to continued EAAT engagement. CONCLUSIONS The data suggest that the overall EAAT experience was a source of enjoyment, self-confidence, and normalcy for the children with SMA. The results of this study provide preliminary support for the use of EAAT among children with SMA.
Collapse
|
14
|
Cherry JJ, Osman EY, Evans MC, Choi S, Xing X, Cuny GD, Glicksman MA, Lorson CL, Androphy EJ. Enhancement of SMN protein levels in a mouse model of spinal muscular atrophy using novel drug-like compounds. EMBO Mol Med 2013; 5:1103-18. [PMID: 23740718 PMCID: PMC3721476 DOI: 10.1002/emmm.201202305] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease that causes progressive muscle weakness, which primarily targets proximal muscles. About 95% of SMA cases are caused by the loss of both copies of the SMN1 gene. SMN2 is a nearly identical copy of SMN1, which expresses much less functional SMN protein. SMN2 is unable to fully compensate for the loss of SMN1 in motor neurons but does provide an excellent target for therapeutic intervention. Increased expression of functional full-length SMN protein from the endogenous SMN2 gene should lessen disease severity. We have developed and implemented a new high-throughput screening assay to identify small molecules that increase the expression of full-length SMN from a SMN2 reporter gene. Here, we characterize two novel compounds that increased SMN protein levels in both reporter cells and SMA fibroblasts and show that one increases lifespan, motor function, and SMN protein levels in a severe mouse model of SMA.
Collapse
Affiliation(s)
- Jonathan J Cherry
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Clinical and molecular cross-sectional study of a cohort of adult type III spinal muscular atrophy patients: clues from a biomarker study. Eur J Hum Genet 2012; 21:630-6. [PMID: 23073312 DOI: 10.1038/ejhg.2012.233] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations of the SMN1 gene. Based on severity, three forms of SMA are recognized (types I-III). All patients usually have 2-4 copies of a highly homologous gene (SMN2), which produces insufficient levels of functional survival motor neuron (SMN) protein due to the alternative splicing of exon 7. The availability of potential candidates to the treatment of SMA has raised a number of issues, including the availability of biomarkers. This study was aimed at evaluating whether the quantification of SMN2 products in peripheral blood is a suitable biomarker for SMA. Forty-five adult type III patients were evaluated by Manual Muscle Testing, North Star Ambulatory Assessment scale, 6-min walk test, myometry, forced vital capacity, and dual X-ray absorptiometry. Molecular assessments included SMN2 copy number, levels of full-length SMN2 (SMN2-fl) transcripts and those lacking exon 7 and SMN protein. Clinical outcome measures strongly correlated to each other. Lean body mass correlated inversely with years from diagnosis and with several aspects of motor performance. SMN2 copy number and SMN protein levels were not associated with motor performance or transcript levels. SMN2-fl levels correlated with motor performance in ambulant patients. Our results indicate that SMN2-fl levels correlate with motor performance only in patients preserving higher levels of motor function, whereas motor performance was strongly influenced by disease duration and lean body mass. If not taken into account, the confounding effect of disease duration may impair the identification of potential SMA biomarkers.
Collapse
|
16
|
Parra J, Tizzano EF. Raising obstetricians' awareness of spinal muscular atrophy: towards early detection and reproductive planning. J Matern Fetal Neonatal Med 2012; 25:2555-8. [PMID: 22712688 DOI: 10.3109/14767058.2012.703720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that is caused by degeneration of α motor neurons in the spinal cord anterior horns. This degeneration can lead to progressive atrophy of proximal muscles, weakness, respiratory failure and death in severe cases. SMA is the most common neuromuscular disease of childhood and one of the main causes of infant death, with no cure in sight. This review highlights the impact of the disease in families, summarizes genetics and ultrasound advances, discusses how obstetricians can work towards its early detection and explores the options for reproductive planning.
Collapse
Affiliation(s)
- Juan Parra
- Department of Obstetrics and Gynecology, Hospital Sant Pau, and Ciberer U-705(3), Barcelona, Spain
| | | |
Collapse
|
17
|
Rutkove SB, Gregas MC, Darras BT. Electrical impedance myography in spinal muscular atrophy: a longitudinal study. Muscle Nerve 2012; 45:642-7. [PMID: 22499089 DOI: 10.1002/mus.23233] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION New approaches for assessing disease progression in spinal muscular atrophy (SMA) are needed. In this study, we evaluate whether electrical impedance myography (EIM) can detect disease progression in SMA compared with a group of healthy children of similar age. METHODS Twenty-eight children with SMA and 20 normal children underwent repeated EIM testing in four muscles at regular intervals for up to 3 years. An average rate of change of EIM was calculated for each subject and normalized to subcutaneous fat thickness and muscle girth. RESULTS Multiple EIM parameters showed a change in normal subjects over a mean of 16.7 months; however, no change was found in SMA patients over this period. CONCLUSIONS EIM could detect non-mass-dependent muscle maturation in healthy children. In contrast, the muscle in children with SMA, as measured by EIM, was virtually static, showing no evidence of growth or active deterioration.
Collapse
Affiliation(s)
- Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
18
|
Chen PC, Gaisina IN, El-Khodor BF, Ramboz S, Makhortova NR, Rubin LL, Kozikowski AP. Identification of a Maleimide-Based Glycogen Synthase Kinase-3 (GSK-3) Inhibitor, BIP-135, that Prolongs the Median Survival Time of Δ7 SMA KO Mouse Model of Spinal Muscular Atrophy. ACS Chem Neurosci 2012; 3:5-11. [PMID: 22348181 DOI: 10.1021/cn200085z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of upregulated glycogen synthase kinase-3 (GSK-3) in various pathological conditions has led to the development of a host of chemically diverse small molecule GSK-3 inhibitors, such as BIP-135. GSK-3 inhibition emerged as an alternative therapeutic target for treating spinal muscular atrophy (SMA) when a number of GSK-3 inhibitors were shown to elevate survival motor neuron (SMN) levels in vitro and to rescue motor neurons when their intrinsic SMN level was diminished by SMN-specific short hairpin RNA (shRNA). Despite their cellular potency, the in vivo efficacy of GSK-3 inhibitors has yet to be evaluated in an animal model of SMA. Herein, we disclose that a potent and reasonably selective GSK-3 inhibitor, namely BIP-135, was tested in a transgenic Δ7 SMA KO mouse model of SMA, and found to prolong the median survival of these animals. In addition, this compound was shown to elevate the SMN protein level in SMA patient-derived fibroblast cells as determined by western blot, and was neuroprotective in a cell-based, SMA-related model of oxidative stress-induced neurodegeneration.
Collapse
Affiliation(s)
- Po C. Chen
- Department of Medicinal Chemistry
and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago,
Illinois 60612, United States
| | - Irina N. Gaisina
- Department of Medicinal Chemistry
and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago,
Illinois 60612, United States
| | - Bassem F. El-Khodor
- PsychoGenics Inc., 765 Old Sawmill River
Road, Tarrytown, New York 10591, United States
| | - Sylvie Ramboz
- PsychoGenics Inc., 765 Old Sawmill River
Road, Tarrytown, New York 10591, United States
| | - Nina R. Makhortova
- Department of Stem Cell and Regenerative
Biology and Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, United States
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative
Biology and Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, United States
| | - Alan P. Kozikowski
- Department of Medicinal Chemistry
and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago,
Illinois 60612, United States
| |
Collapse
|
19
|
Abstract
AbstractProgress in understanding the genetic basis and pathophysiology of spinal muscular atrophy (SMA), along with continuous efforts in finding a way to increase survival motor neuron (SMN) protein levels have resulted in several strategies that have been proposed as potential directions for efficient drug development. Here we provide an overview on the current status of the following approaches: 1) activation of SMN2 gene and increasing full length SMN2 transcript level, 2) modulating SMN2 splicing, 3) stabilizing SMN mRNA and SMN protein, 4) development of neurotrophic, neuroprotective and anabolic compounds and 5) stem cell and gene therapy. The new preclinical advances warrant a cautious optimism for emergence of an effective treatment in the very near future.
Collapse
|