1
|
Zeng R, Schlaeger S, Türk M, Baum T, Deschauer M, Janka R, Karampinos D, Kassubek J, Keller-Yamamura S, Kornblum C, Lehmann H, Lichtenstein T, Nagel AM, Reimann J, Rosenbohm A, Schlaffke L, Schmidt M, Schneider-Gold C, Schoser B, Trollmann R, Vorgerd M, Weber MA, Kirschke JS, Schmidt J. [Expert recommendations for magnetic resonance imaging of muscle disorders]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:653-662. [PMID: 38639916 DOI: 10.1007/s00117-024-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Magnetic resonance (MRI) imaging of the skeletal muscles (muscle MRI for short) is increasingly being used in clinical routine for diagnosis and longitudinal assessment of muscle disorders. However, cross-centre standards for measurement protocol and radiological assessment are still lacking. OBJECTIVES The aim of this expert recommendation is to present standards for the application and interpretation of muscle MRI in hereditary and inflammatory muscle disorders. METHODS This work was developed in collaboration between neurologists, neuroradiologists, radiologists, neuropaediatricians, neuroscientists and MR physicists from different university hospitals in Germany. The recommendations are based on expert knowledge and a focused literature search. RESULTS The indications for muscle MRI are explained, including the detection and monitoring of structural tissue changes and oedema in the muscle, as well as the identification of a suitable biopsy site. Recommendations for the examination procedure and selection of appropriate MRI sequences are given. Finally, steps for a structured radiological assessment are presented. CONCLUSIONS The present work provides concrete recommendations for the indication, implementation and interpretation of muscle MRI in muscle disorders. Furthermore, it provides a possible basis for the standardisation of the measurement protocols at all clinical centres in Germany.
Collapse
Affiliation(s)
- Rachel Zeng
- Klinik für Neurologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - Sarah Schlaeger
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland, Ismaningerstr. 22, 81675
- Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, München, Deutschland
| | - Matthias Türk
- Neurologische Klinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
- Zentrum für seltene Erkrankungen Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Thomas Baum
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland, Ismaningerstr. 22, 81675
| | - Marcus Deschauer
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, TUM School of Medicine and Health, Technische Universität München, München, Deutschland
| | - Rolf Janka
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Dimitrios Karampinos
- Institut für Diagnostische und Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Jan Kassubek
- Klinik für Neurologie, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Sarah Keller-Yamamura
- Klinik für Radiologie, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| | - Cornelia Kornblum
- Klinik und Poliklinik für Neurologie, Sektion Neuromuskuläre Erkrankungen, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Helmar Lehmann
- Neurologische Klinik, Klinikum Leverkusen, akademisches Lehrkrankenhaus der Universität zu Köln, Köln, Deutschland
- Klinik und Poliklinik für Neurologie, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln, Deutschland
| | - Thorsten Lichtenstein
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln, Deutschland
| | - Armin M Nagel
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Jens Reimann
- Klinik und Poliklinik für Neurologie, Sektion Neuromuskuläre Erkrankungen, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Angela Rosenbohm
- Klinik für Neurologie, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Lara Schlaffke
- Klinik für Neurologie, BG Universitätsklinikum Bergmannsheil, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Manuel Schmidt
- Neuroradiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | | | - Benedikt Schoser
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU Klinikum, Ludwig-Maximilians-Universität München, München, Deutschland
| | - Regina Trollmann
- Zentrum für seltene Erkrankungen Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
- Abteilung Neuropädiatrie und Sozialpädiatrisches Zentrum am Universitätsklinikum, Kinder- und Jugendklinik, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Matthias Vorgerd
- Klinik für Neurologie, BG Universitätsklinikum Bergmannsheil, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Marc-André Weber
- Institut für Diagnostische und Interventionelle Radiologie, Kinder- und Neuroradiologie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - Jan S Kirschke
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland, Ismaningerstr. 22, 81675.
| | - Jens Schmidt
- Klinik für Neurologie, Universitätsmedizin Göttingen, Göttingen, Deutschland.
- Abteilung für Neurologie und Schmerztherapie, Neuromuskuläres Zentrum, Zentrum für Translationale Medizin, Immanuel Klinik Rüdersdorf, Universitätsklinikum der Medizinischen Hochschule Brandenburg, Rüdersdorf bei Berlin, Deutschland, Seebad 82/83, 15562.
- Fakultät für Gesundheitswissenschaften Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Rüdersdorf bei Berlin, Deutschland.
| |
Collapse
|
2
|
Zeng R, Schlaeger S, Türk M, Baum T, Deschauer M, Janka R, Karampinos D, Kassubek J, Keller-Yamamura S, Kornblum C, Lehmann H, Lichtenstein T, Nagel AM, Reimann J, Rosenbohm A, Schlaffke L, Schmidt M, Schneider-Gold C, Schoser B, Trollmann R, Vorgerd M, Weber MA, Kirschke JS, Schmidt J. [Expert recommendations for magnetic resonance imaging of muscle disorders]. DER NERVENARZT 2024; 95:721-729. [PMID: 38683354 DOI: 10.1007/s00115-024-01673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND Magnetic resonance (MRI) imaging of the skeletal muscles (muscle MRI for short) is increasingly being used in clinical routine for diagnosis and longitudinal assessment of muscle disorders. However, cross-centre standards for measurement protocol and radiological assessment are still lacking. OBJECTIVES The aim of this expert recommendation is to present standards for the application and interpretation of muscle MRI in hereditary and inflammatory muscle disorders. METHODS This work was developed in collaboration between neurologists, neuroradiologists, radiologists, neuropaediatricians, neuroscientists and MR physicists from different university hospitals in Germany. The recommendations are based on expert knowledge and a focused literature search. RESULTS The indications for muscle MRI are explained, including the detection and monitoring of structural tissue changes and oedema in the muscle, as well as the identification of a suitable biopsy site. Recommendations for the examination procedure and selection of appropriate MRI sequences are given. Finally, steps for a structured radiological assessment are presented. CONCLUSIONS The present work provides concrete recommendations for the indication, implementation and interpretation of muscle MRI in muscle disorders. Furthermore, it provides a possible basis for the standardisation of the measurement protocols at all clinical centres in Germany.
Collapse
Affiliation(s)
- Rachel Zeng
- Klinik für Neurologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - Sarah Schlaeger
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland, Ismaningerstr. 22, 81675
- Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, München, Deutschland
| | - Matthias Türk
- Neurologische Klinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
- Zentrum für seltene Erkrankungen Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Thomas Baum
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland, Ismaningerstr. 22, 81675
| | - Marcus Deschauer
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, TUM School of Medicine and Health, Technische Universität München, München, Deutschland
| | - Rolf Janka
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Dimitrios Karampinos
- Institut für Diagnostische und Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Jan Kassubek
- Klinik für Neurologie, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Sarah Keller-Yamamura
- Klinik für Radiologie, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| | - Cornelia Kornblum
- Klinik und Poliklinik für Neurologie, Sektion Neuromuskuläre Erkrankungen, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Helmar Lehmann
- Neurologische Klinik, Klinikum Leverkusen, akademisches Lehrkrankenhaus der Universität zu Köln, Köln, Deutschland
- Klinik und Poliklinik für Neurologie, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln, Deutschland
| | - Thorsten Lichtenstein
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln, Deutschland
| | - Armin M Nagel
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Jens Reimann
- Klinik und Poliklinik für Neurologie, Sektion Neuromuskuläre Erkrankungen, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Angela Rosenbohm
- Klinik für Neurologie, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Lara Schlaffke
- Klinik für Neurologie, BG Universitätsklinikum Bergmannsheil, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Manuel Schmidt
- Neuroradiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | | | - Benedikt Schoser
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU Klinikum, Ludwig-Maximilians-Universität München, München, Deutschland
| | - Regina Trollmann
- Zentrum für seltene Erkrankungen Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
- Abteilung Neuropädiatrie und Sozialpädiatrisches Zentrum am Universitätsklinikum, Kinder- und Jugendklinik, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Matthias Vorgerd
- Klinik für Neurologie, BG Universitätsklinikum Bergmannsheil, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Marc-André Weber
- Institut für Diagnostische und Interventionelle Radiologie, Kinder- und Neuroradiologie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - Jan S Kirschke
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland, Ismaningerstr. 22, 81675.
| | - Jens Schmidt
- Klinik für Neurologie, Universitätsmedizin Göttingen, Göttingen, Deutschland.
- Abteilung für Neurologie und Schmerztherapie, Neuromuskuläres Zentrum, Zentrum für Translationale Medizin, Immanuel Klinik Rüdersdorf, Universitätsklinikum der Medizinischen Hochschule Brandenburg, Rüdersdorf bei Berlin, Deutschland, Seebad 82/83, 15562.
- Fakultät für Gesundheitswissenschaften Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Rüdersdorf bei Berlin, Deutschland.
| |
Collapse
|
3
|
Wimmer N, Müller H, Metze P, Rasche V, Ludolph AC, Kassubek J. The central pattern of weakness of ALS: Morphological correlates in whole-body muscle MRI. Ann Clin Transl Neurol 2024; 11:1000-1010. [PMID: 38356047 PMCID: PMC11021606 DOI: 10.1002/acn3.52019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
OBJECTIVE Monosynaptically cortically innervated α-motoneurons are early and strongly involved in amyotrophic lateral sclerosis (ALS). Consequently, the muscles that receive the strongest direct corticomotoneuronal input are the clinically most affected. To objectify this concept in vivo through morphological image correlates, whole-body magnetic resonance imaging (MRI) with muscle signal analysis was performed in patients with ALS compared to healthy controls. METHODS Modified Dixon-based whole-body MRI was acquired in patients with ALS (n = 33) and matched healthy controls (n = 30). Manual labeling of limb muscle MRI was performed, and a specific subset of nine muscles, selected as pairs of muscle groups with different corticomotoneuronal input, was analyzed per subject based on their volume, fat fraction, and functional remaining muscle area (fRMA). RESULTS Statistical analysis of 978 muscles in total revealed significantly decreased volumes, decreased fRMA, and increased fat fraction in the muscles of patients with ALS compared to controls. The clinical degree of pareses of directly innervated muscles was significantly worse than that of less directly innervated muscles in each comparison. The muscles receiving stronger direct corticomotoneuronal input showed more pronounced morphological involvement compared to those with less monosynaptic corticomotoneuronal input (fRMA, significant in three pairwise comparisons). INTERPRETATION In conclusion, whole-body MRI-based muscle analysis provided additional evidence for a characteristic pattern of pareses in ALS. This technical approach (parameterization and quantification of muscle alterations from MRI) to patients with ALS could pave the way for the future establishment of a diagnostic algorithm of muscle MRI for ALS and may serve as a biomarker.
Collapse
Affiliation(s)
| | | | - Patrick Metze
- Department of Internal Medicine IIUlm University Medical CenterUlmGermany
| | - Volker Rasche
- Department of Internal Medicine IIUlm University Medical CenterUlmGermany
| | - Albert C. Ludolph
- Department of NeurologyUniversity Hospital UlmUlmGermany
- German Centre of Neurodegenerative Diseases (DZNE)UlmGermany
| | - Jan Kassubek
- Department of NeurologyUniversity Hospital UlmUlmGermany
- German Centre of Neurodegenerative Diseases (DZNE)UlmGermany
| |
Collapse
|
4
|
Valor-Méndez L, Türk M, Schett G, Manger B, Knitza J. Misdiagnosis of polymyositis in a young female patient with occult limb-girdle muscular dystrophy. Rheumatol Adv Pract 2023; 7:rkad061. [PMID: 37476387 PMCID: PMC10353999 DOI: 10.1093/rap/rkad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Affiliation(s)
- Lara Valor-Méndez
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bernhard Manger
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Johannes Knitza
- Correspondence to: Johannes Knitza, Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany. E-mail:
| |
Collapse
|
5
|
Wang F, Zhou S, Hou B, Santini F, Yuan L, Guo Y, Zhu J, Hilbert T, Kober T, Zhang Y, Wang Q, Zhao Y, Jin Z. Assessment of idiopathic inflammatory myopathy using a deep learning method for muscle T2 mapping segmentation. Eur Radiol 2023; 33:2350-2357. [PMID: 36396791 PMCID: PMC9672653 DOI: 10.1007/s00330-022-09254-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the utility of an automatic deep learning (DL) method for segmentation of T2 maps in patients with idiopathic inflammatory myopathy (IIM) against healthy controls, and also the association of quantitative T2 values in patients with laboratory and pulmonary findings. METHODS Structural MRI and T2 mapping of bilateral thigh muscles from patients with IIM and healthy volunteers were segmented using dedicated software based on a pre-trained convolutional neural network. Incremental and federated learning were implemented for continuous adaptation and improvement. Muscle T2 values derived from DL segmentation were compared between patients and healthy controls, and T2 values of patients were further analyzed with serum muscle enzymes, and interstitial lung disease (ILD) which was diagnosed and graded based on chest HRCT. RESULTS Overall, 64 patients (27 patients with dermatomyositis, 29 with polymyositis, and 8 with antisynthetase syndrome (ASS)) and 10 healthy controls were included. By using DL-based muscle segmentation, T2 values generated from T2 maps accurately differentiated patients from those of controls (p < 0.001) with a cutoff value of 36.4 ms (sensitivity 96.9%, and specificity 100%). In patients with IIM, muscle T2 values positively correlated with all the serum muscle enzymes (all p < 0.05). ILD score of patients with ASS was markedly higher than that of those without ASS (p = 0.011), while dissociation between the severity of muscular involvement and ILD was observed (p = 0.080). CONCLUSION Automatic DL could be used to segment thigh muscles and help quantitatively assess muscular inflammation of IIM through T2 mapping. KEY POINTS • Muscle T2 mapping automatically segmented by deep learning can differentiate IIM from healthy controls. • T2 value, an indicator of active muscle inflammation, positively correlates with serum muscle enzymes. • T2 mapping can detect muscle disease in patients with normal muscle enzyme levels.
Collapse
Affiliation(s)
- Fengdan Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Hou
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Francesco Santini
- Department of Research & Analytic Services, University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland.
- Radiological Physics, University Hospital Basel, Basel, Switzerland.
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.
| | - Ling Yuan
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ye Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinxia Zhu
- MR Collaboration, Siemens Healthcare Ltd., Beijing, China
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yan Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhengyu Jin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Department of Radiology, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China.
| |
Collapse
|
6
|
Clark R, Shaw T, Sanchez L. Lumbosacral MRI findings in two dogs diagnosed with a
Neospora caninum
infection. VETERINARY RECORD CASE REPORTS 2022. [DOI: 10.1002/vrc2.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Liu JB, Wu JL, Zuo R, Li CQ, Zhang C, Zhou Y. Does MIS-TLIF or TLIF result in better pedicle screw placement accuracy and clinical outcomes with navigation guidance? BMC Musculoskelet Disord 2022; 23:153. [PMID: 35172784 PMCID: PMC8848978 DOI: 10.1186/s12891-022-05106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Although previous studies have suggested that navigation can improve the accuracy of pedicle screw placement, few studies have compared navigation-assisted transforaminal lumbar interbody fusion (TLIF) and navigation-assisted minimally invasive TLIF (MIS-TLIF). The entry point of pedicle screw insertion in navigation-assisted MIS-TLIF (NM-TLIF) may deviate from the planned entry point due to an uneven bone surface, which may result in misplacement. The purpose of this study was to explore the pedicle screw accuracy and clinical consequences of MIS-TLIF and TLIF, both under O-arm navigation, to determine which surgical method is better. Methods A retrospective study of 54 patients who underwent single-segment NM-TLIF or navigation-assisted TLIF (N-TLIF) was conducted. In addition to the patients’ demographic characteristics, intraoperative indicators and complications, the Oswestry Disability Index (ODI) and visual analog scale (VAS) score were recorded and analyzed preoperatively and at the 1-, 6-, and 12-month and final postoperative follow-ups. The clinical qualitative accuracy and absolute quantitative accuracy of pedicle screw placement were assessed by postoperative CT. Multifidus muscle injury was evaluated by T2-weighted MRI. Results Compared with N-TLIF, NM-TLIF was more advantageous in terms of the incision length, intraoperative blood loss, drainage volume, time to ambulation, length of hospital stay, blood transfusion rate and analgesia rate (P < 0.05). The ODI and VAS scores for low back pain were better than those of N-TLIF at 1 month and 6 months post-surgery (P < 0.05). There was no significant difference in the clinical qualitative screw placement accuracy (97.3% vs. 96.2%, P > 0.05). The absolute quantitative accuracy results showed that the axial translational error, sagittal translational error, and sagittal angle error in the NM-TLIF group were significantly greater than those in the N-TLIF group (P < 0.05). The mean T2-weighted signal intensity of the multifidus muscle in the NM-TLIF group was significantly lower than that in the N-TLIF group (P < 0.05). Conclusions Compared with N-TLIF, NM-TLIF has the advantages of being less invasive, yielding similar or better screw placement accuracy and achieving better symptom relief in the midterm postoperative recovery period. However, more attention should be given to real-time adjustment for pedicle insertion in NM-TLIF rather than just following the entry point and trajectory of the intraoperative plan.
Collapse
Affiliation(s)
- Jia Bin Liu
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Jun Long Wu
- Department of Orthopaedics, The Hospital of People Liberation Army Hong Kong Garrison, Hong Kong, 999077, People's Republic of China.,Department of Orthopaedics, The 941 Hospital of Chinese People Liberation Army, Xining, 810007, People's Republic of China
| | - Rui Zuo
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Chang Qing Li
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Chao Zhang
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China.
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China.
| |
Collapse
|