1
|
König J, Blusch A, Fatoba O, Gold R, Saft C, Ellrichmann-Wilms G. Examination of Anti-Inflammatory Effects After Propionate Supplementation in the R6/2 Mouse Model of Huntington's Disease. Int J Mol Sci 2025; 26:3318. [PMID: 40244185 PMCID: PMC11989372 DOI: 10.3390/ijms26073318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Huntington's disease is a progressive, untreatable neurodegenerative disorder caused by a mutation in the Huntingtin gene. Next to neurodegeneration, altered immune activation is involved in disease progression. Since central nervous system inflammation and dysfunction of immune cells are recognized as driving characteristics, immunomodulation might represent an additional therapeutic strategy. Short-chain fatty acids were known to have immunomodulatory effects in neuroinflammatory diseases, such as multiple sclerosis. In this study, R6/2 mice were treated daily with 150 mM propionate. Survival range, body weight, and motor abilities were monitored. In striatal and cortical samples, neuronal survival was analyzed by immunofluorescence staining of NeuN-positive cells and expression levels of BDNF mRNA by real-time polymerase chain reaction. As inflammatory marker TNFα mRNA and IL-6 mRNA were quantified by rtPCR, iNOS-expressing cells were counted in immunologically stained brain slides. Microglial activation was evaluated by immunofluorescent staining of IBA1-positive cells and total IBA1 protein by Western Blot, in addition, SPI1 mRNA expression was quantified by rtPCR. Except for clasping behavior, propionate treatment did neither improve the clinical course nor mediated neuronal protection in R6/2 mice. Yet there was a mild anti-inflammatory effect in the CNS, with (i) reduction in SPI1-mRNA levels, (ii) reduced iNOS positive cells in the motor cortex, and (iii) normalized TNFα-mRNA in the motor cortex of propionate-treated R6/2 mice. Thus, Short-chain fatty acids, as an environmental factor in the diet, may slightly alleviate symptoms by down-regulating inflammatory factors in the central nervous system. However, they cannot prevent clinical disease progression or neuronal loss.
Collapse
Affiliation(s)
- Jennifer König
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health, School of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Alina Blusch
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Oluwaseun Fatoba
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Carsten Saft
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Gisa Ellrichmann-Wilms
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Faculty of Health, School of Medicine, Chair of Neurology II, Witten/Herdecke University, 58448 Witten, Germany
| |
Collapse
|
2
|
Gil‐Salcedo A, Massart R, de Langavant LC, Bachoud‐Levi A. Modifiable factors associated with Huntington's disease progression in presymptomatic participants. Ann Clin Transl Neurol 2024; 11:1930-1941. [PMID: 38855890 PMCID: PMC11251488 DOI: 10.1002/acn3.52120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVE Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive motor, cognitive, and psychiatric symptoms. Our aim here was to identify factors that can be modified to slow disease progression even before the first symptoms appear. METHODS We included 2636 presymptomatic individuals (comparison with family controls) drawn from the prospective observational cohort Enroll-HD, with more than 35 CAG repeats and at least two assessments of disease progression measured with the composite Huntington's disease rating Scale (cUHDRS). The association between sociodemographic factors, health behaviors, health history, and cUHDRS trajectory was assessed with a mixed-effects random forest using partial dependence plots and Shapley additive explanation method. RESULTS Participants were followed by an average of 3.4 (SD = 1.97) years. We confirmed the negative impact of age and a high number of CAG repeats. We found that a high level of education, a body mass index (BMI) <23 kg/m2 before the age of 40 and >23 kg/m2 thereafter, alcohol consumption of <15 units per week, current coffee consumption and no smoking were linked to slow disease progression, as did no previous exposure to antidepressants or anxiolytic, no psychiatric history or comorbidities, and being female. Other comorbidities or marital status showed no major association with HD evolution. INTERPRETATION Reducing modifiable risk factors for HD is one way to support the presymptomatic population. A high level of education, low-to-moderate alcohol consumption, no smoking, and BMI control are likely to slow disease progression in this population.
Collapse
Affiliation(s)
- Andres Gil‐Salcedo
- Département d'Études Cognitives, École Normale SupérieurePSL UniversityParis75005France
- Faculté de MédecineUniversité Paris‐Est CréteilCréteil94000France
- Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe NeuroPsychologie InterventionnelleCréteil94000France
- NeurATRIS, Mondor NodeCréteilFrance
| | - Renaud Massart
- Département d'Études Cognitives, École Normale SupérieurePSL UniversityParis75005France
- Faculté de MédecineUniversité Paris‐Est CréteilCréteil94000France
- Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe NeuroPsychologie InterventionnelleCréteil94000France
- NeurATRIS, Mondor NodeCréteilFrance
| | - Laurent Cleret de Langavant
- Département d'Études Cognitives, École Normale SupérieurePSL UniversityParis75005France
- Faculté de MédecineUniversité Paris‐Est CréteilCréteil94000France
- Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe NeuroPsychologie InterventionnelleCréteil94000France
- NeurATRIS, Mondor NodeCréteilFrance
- APHP, Hôpital Henri Mondor, service de neurologie, centre national de référence maladie de HuntingtonCréteil94000France
| | - Anne‐Catherine Bachoud‐Levi
- Département d'Études Cognitives, École Normale SupérieurePSL UniversityParis75005France
- Faculté de MédecineUniversité Paris‐Est CréteilCréteil94000France
- Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe NeuroPsychologie InterventionnelleCréteil94000France
- NeurATRIS, Mondor NodeCréteilFrance
- APHP, Hôpital Henri Mondor, service de neurologie, centre national de référence maladie de HuntingtonCréteil94000France
| |
Collapse
|
3
|
Reilmann R, Anderson KE, Feigin A, Tabrizi SJ, Leavitt BR, Stout JC, Piccini P, Schubert R, Loupe P, Wickenberg A, Borowsky B, Rynkowski G, Volkinshtein R, Li T, Savola JM, Hayden M, Gordon MF. Safety and efficacy of laquinimod for Huntington's disease (LEGATO-HD): a multicentre, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Neurol 2024; 23:243-255. [PMID: 38280392 DOI: 10.1016/s1474-4422(23)00454-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Laquinimod modulates CNS inflammatory pathways thought to be involved in the pathology of Huntington's disease. Studies with laquinimod in transgenic rodent models of Huntington's disease suggested improvements in motor function, reduction of brain volume loss, and prolonged survival. We aimed to evaluate the safety and efficacy of laquinimod in improving motor function and reducing caudate volume loss in patients with Huntington's disease. METHODS LEGATO-HD was a multicentre, double-blind, placebo-controlled, phase 2 study done at 48 sites across ten countries (Canada, Czech Republic, Germany, Italy, Netherlands, Portugal, Russia, Spain, UK, and USA). Patients aged 21-55 years with a cytosine-adenosine-guanine (CAG) repeat length of between 36 and 49 who had symptomatic Huntington's disease with a Unified Huntington's Disease Rating Scale-Total Motor Score (UHDRS-TMS) of higher than 5 and a Total Functional Capacity score of 8 or higher were randomly assigned (1:1:1:1) by centralised interactive response technology to laquinimod 0·5 mg, 1·0 mg, or 1·5 mg, or to matching placebo, administered orally once daily over 52 weeks; people involved in the randomisation had no other role in the study. Participants, investigators, and study personnel were masked to treatment assignment. The 1·5 mg group was discontinued before recruitment was finished because of cardiovascular safety concerns in multiple sclerosis studies. The primary endpoint was change from baseline in the UHDRS-TMS and the secondary endpoint was percent change in caudate volume, both comparing the 1·0 mg group with the placebo group at week 52. Primary and secondary endpoints were assessed in the full analysis set (ie, all randomised patients who received at least one dose of study drug and had at least one post-baseline UHDRS-TMS assessment). Safety measures included adverse event frequency and severity, and clinical and laboratory examinations, and were assessed in the safety analysis set (ie, all randomised patients who received at least one dose of study drug). This trial is registered with ClinicalTrials.gov, NCT02215616, and EudraCT, 2014-000418-75, and is now complete. FINDINGS Between Oct 28, 2014, and June 19, 2018, 352 adults with Huntington's disease (179 [51%] men and 173 [49%] women; mean age 43·9 [SD 7·6] years and 340 [97%] White) were randomly assigned: 107 to laquinimod 0·5 mg, 107 to laquinimod 1·0 mg, 30 to laquinimod 1·5 mg, and 108 to matching placebo. Least squares mean change from baseline in UHDRS-TMS at week 52 was 1·98 (SE 0·83) in the laquinimod 1·0 mg group and 1·2 (0·82) in the placebo group (least squares mean difference 0·78 [95% CI -1·42 to 2·98], p=0·4853). Least squares mean change in caudate volume was 3·10% (SE 0·38) in the 1·0 mg group and 4·86% (0·38) in the placebo group (least squares mean difference -1·76% [95% CI -2·67 to -0·85]; p=0·0002). Laquinimod was well tolerated and there were no new safety findings. Serious adverse events were reported by eight (7%) patients on placebo, seven (7%) on laquinimod 0·5 mg, five (5%) on laquinimod 1·0 mg, and one (3%) on laquinimod 1·5 mg. There was one death, which occurred in the placebo group and was unrelated to treatment. The most frequent adverse events in all laquinimod dosed groups (0·5 mg, 1·0 mg, and 1·5 mg) were headache (38 [16%]), diarrhoea (24 [10%]), fall (18 [7%]), nasopharyngitis (20 [8%]), influenza (15 [6%]), vomiting (13 [5%]), arthralgia (11 [5%]), irritability (ten [4%]), fatigue (eight [3%]), and insomnia (eight [3%]). INTERPRETATION Laquinimod did not show a significant effect on motor symptoms assessed by the UHDRS-TMS, but significantly reduced caudate volume loss compared with placebo at week 52. Huntington's disease has a chronic and slowly progressive course, and this study does not address whether a longer duration of laquinimod treatment could have produced detectable and meaningful changes in the clinical assessments. FUNDING Teva Pharmaceutical Industries.
Collapse
Affiliation(s)
- Ralf Reilmann
- George Huntington Institute, Münster, Germany; Department of Clinical Radiology, University of Münster, Münster, Germany; Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Karen E Anderson
- Department of Psychiatry and Department of Neurology, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Feigin
- New York University Langone Health, New York, NY, USA
| | - Sarah J Tabrizi
- University College London Queen Square Institute of Neurology, London, UK
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Julie C Stout
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Paola Piccini
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Pippa Loupe
- Research and Development, Teva Pharmaceutical Industries, Petah Tikva, Israel
| | | | | | - Gail Rynkowski
- Research and Development, Teva Pharmaceutical Industries, Petah Tikva, Israel
| | - Rita Volkinshtein
- Research and Development, Teva Pharmaceutical Industries, Petah Tikva, Israel
| | - Thomas Li
- Research and Development, Teva Pharmaceutical Industries, Petah Tikva, Israel
| | | | - Michael Hayden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Prilenia Therapeutics, Herzliya, Israel
| | - Mark Forrest Gordon
- Research and Development, Teva Pharmaceutical Industries, Petah Tikva, Israel
| |
Collapse
|
4
|
Lin TW, Chang JK, Wu YR, Sun TH, Cheng YY, Ren CT, Pan MH, Wu JL, Chang KH, Yang HI, Chen CM, Wu CY, Chen YR. Ganglioside-focused Glycan Array Reveals Abnormal Anti-GD1b Auto-antibody in Plasma of Preclinical Huntington's Disease. Mol Neurobiol 2023; 60:3873-3882. [PMID: 36976478 DOI: 10.1007/s12035-023-03307-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
Huntington's disease (HD) is a progressive and devastating neurodegenerative disease marked by inheritable CAG nucleotide expansion. For offspring of HD patients carrying abnormal CAG expansion, biomarkers that predict disease onset are crucially important but still lacking. Alteration of brain ganglioside patterns has been observed in the pathology of patients carrying HD. Here, by using a novel and sensitive ganglioside-focused glycan array, we examined the potential of anti-glycan auto-antibodies for HD. In this study, we collected plasma from 97 participants including 42 control (NC), 16 pre-manifest HD (pre-HD), and 39 HD cases and measured the anti-glycan auto-antibodies by a novel ganglioside-focused glycan array. The association between plasma anti-glycan auto-antibodies and disease progression was analyzed using univariate and multivariate logistic regression. The disease-predictive capacity of anti-glycan auto-antibodies was further investigated by receiver operating characteristic (ROC) analysis. We found that anti-glycan auto-antibodies were generally higher in the pre-HD group when compared to the NC and HD groups. Specifically, anti-GD1b auto-antibody demonstrated the potential for distinguishing between pre-HD and control groups. Moreover, in combination with age and the number of CAG repeat, the level of anti-GD1b antibody showed excellent predictability with an area under the ROC curve (AUC) of 0.95 to discriminate between pre-HD carriers and HD patients. With glycan array technology, this study demonstrated abnormal auto-antibody responses that showed temporal changes from pre-HD to HD.
Collapse
Affiliation(s)
- Tien-Wei Lin
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jung-Kai Chang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Hsien Sun
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Hung Pan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jin-Lin Wu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|