1
|
Liaki V, Rosas-Perez B, Guerra C. Unlocking the Genetic Secrets of Pancreatic Cancer: KRAS Allelic Imbalances in Tumor Evolution. Cancers (Basel) 2025; 17:1226. [PMID: 40227826 PMCID: PMC11987834 DOI: 10.3390/cancers17071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) belongs to the types of cancer with the highest lethality. It is also remarkably chemoresistant to the few available cytotoxic therapeutic options. PDAC is characterized by limited mutational heterogeneity of the known driver genes, KRAS, CDKN2A, TP53, and SMAD4, observed in both early-stage and advanced tumors. In this review, we summarize the two proposed models of genetic evolution of pancreatic cancer. The gradual or stepwise accumulated mutations model has been widely studied. On the contrary, less evidence exists on the more recent simultaneous model, according to which rapid tumor evolution is driven by the concurrent accumulation of genetic alterations. In both models, oncogenic KRAS mutations are the main initiating event. Here, we analyze the emerging topic of KRAS allelic imbalances and how it arises during tumor evolution, as it is often detected in advanced and metastatic PDAC. We also summarize recent evidence on how it affects tumor biology, metastasis, and response to therapy. To this extent, we highlight the necessity to include studies of KRAS allelic frequencies in the design of future therapeutic strategies against pancreatic cancer.
Collapse
Affiliation(s)
- Vasiliki Liaki
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
| | - Blanca Rosas-Perez
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
| | - Carmen Guerra
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Liao HC, Liu SJ. Advances in nucleic acid-based cancer vaccines. J Biomed Sci 2025; 32:10. [PMID: 39833784 PMCID: PMC11748563 DOI: 10.1186/s12929-024-01102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/05/2024] [Indexed: 01/22/2025] Open
Abstract
Nucleic acid vaccines have emerged as crucial advancements in vaccine technology, particularly highlighted by the global response to the COVID-19 pandemic. The widespread administration of mRNA vaccines against COVID-19 to billions globally marks a significant milestone. Furthermore, the approval of an mRNA vaccine for Respiratory Syncytial Virus (RSV) this year underscores the versatility of this technology. In oncology, the combination of mRNA vaccine encoding neoantigens and immune checkpoint inhibitors (ICIs) has shown remarkable efficacy in eliciting protective responses against diseases like melanoma and pancreatic cancer. Although the use of a COVID-19 DNA vaccine has been limited to India, the inherent stability at room temperature and cost-effectiveness of DNA vaccines present a viable option that could benefit developing countries. These advantages may help DNA vaccines address some of the challenges associated with mRNA vaccines. Currently, several trials are exploring the use of DNA-encoded neoantigens in combination with ICIs across various cancer types. These studies highlight the promising role of nucleic acid-based vaccines as the next generation of immunotherapeutic agents in cancer treatment. This review will delve into the recent advancements and current developmental status of both mRNA and DNA-based cancer vaccines.
Collapse
Affiliation(s)
- Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 307378, Taiwan.
| |
Collapse
|
3
|
Zhou Q, Breitkopf-Heinlein K, Gaitantzi H, Birgin E, Reissfelder C, Rahbari NN. PDCD10 promotes the tumor-supporting functions of TGF-β in pancreatic cancer. Clin Sci (Lond) 2024; 138:1111-1129. [PMID: 39212293 PMCID: PMC11405861 DOI: 10.1042/cs20240450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The progression of pancreatic ductal adenocarcinoma (PDAC) is significantly affected by transforming growth factor (TGF)-β but targeting TGF-β can also compromize physiological effects in patients. Our study examined the functions of the ubiquitously expressed protein, PDCD10, as a modulator of TGF-β signaling in PDAC. Using in silico analyses we found that in patient samples, PDCD10 is significantly higher expressed in PDAC tumor tissue compared with normal pancreas and it is highly correlated with reduced survival. We created stable KO's of PDCD10 in two PDAC lines, PaTu 8902 (SMAD4 +/+) and PaTu 8988t (SMAD4 -/-), and found that KO lines are more sensitive to 5-FU and Gemcitabine treatment than their wild-type counterparts. Performing viability and wound closure assays we further found that PDCD10 promotes cell survival and proliferation by enhancing specifically the mitogenic functions of TGF-β. The molecular mechanism underlying this effect was further investigated using Western blots and with primary organoid lines derived from patient PDAC tissue samples. The data imply that PDCD10 mediates an increase in p-ERK through a non-SMAD4 pathway, leading to EMT promotion. Furthermore, PDCD10 facilitates deactivation of RB via a SMAD4-dependent pathway, thereby counter-acting the anti-proliferative actions of TGF-β. By performing proximity ligation assays (PLA) we found that PDCD10 associates with the kinase MST4, translocates it intracellularly and thereby facilitates phosphorylations of RB and ERK1/2. Our study indicates that PDCD10 promotes the proliferative function and EMT induction of TGF-β in pancreatic cancer cells. Therefore, targeting PDCD10 in PDAC patients could represent a promising new strategy to optimize TGF-β targeted therapies.
Collapse
Affiliation(s)
- Qianwen Zhou
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Katja Breitkopf-Heinlein
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Haristi Gaitantzi
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Emrullah Birgin
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Nuh N Rahbari
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| |
Collapse
|
4
|
Takeshita K, Hijioka S, Nagashio Y, Hara H, Agarie D, Kawasaki Y, Takasaki T, Yagi S, Hagiwara Y, Okamoto K, Yamashige D, Fukuda S, Kuwada M, Komori Y, Okada M, Maruki Y, Morizane C, Ueno H, Yatabe Y, Okusaka T. Study Protocol for a Prospective Self-Controlled Trial on Success in Meeting Comprehensive Genomic Profiling Analysis Criteria for Specimens Obtained by Endoscopic Ultrasound-Guided Tissue Acquisition Using a 19G Needle from Primary and Metastatic Lesions in Pancreatic Cancer with Metastatic Lesions: The PRIMATE Study. Diseases 2024; 12:182. [PMID: 39195181 DOI: 10.3390/diseases12080182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
EUS-TA in unresectable pancreatic cancer requires not only a tissue diagnosis but also tissue collection in anticipation of comprehensive genomic profiling. However, the optimal puncture target remains controversial. Therefore, the Primary and Metastatic Lesions in Pancreatic Cancer (PRIMATE) study was designed to clarify the optimal target by comparing the success rates for meeting OncoGuide NCC Oncopanel (NOP) analysis criteria on pre-check primary and metastatic lesion specimens obtained during the same EUS-TA session in patients with invasive pancreatic ductal adenocarcinoma. In this ongoing prospective study, two specimens, each from primary and metastatic lesions, are obtained by EUS-TA (typically using a 19G fine-needle biopsy needle) in patients with invasive pancreatic ductal adenocarcinoma. The primary endpoint is the proportion of EUS-TA specimens that meet NOP analysis criteria during pre-check (i.e., tumor cellularity of ≥20% and a tissue area of ≥4 mm2), which are then compared between primary and metastatic lesions. This study has been approved by the National Cancer Center Institutional Review Board (Research No. 2022-168). The results of this study will be reported at an international conference and published in an international peer-reviewed journal. The trial registration number is UMIN 000048966.
Collapse
Affiliation(s)
- Kotaro Takeshita
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
- Department of Gastroenterology, Tane General Hospital, Osaka 550-0025, Japan
| | - Susumu Hijioka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yoshikuni Nagashio
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hidenobu Hara
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Daiki Agarie
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yuki Kawasaki
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tetsuro Takasaki
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Shin Yagi
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yuya Hagiwara
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Kohei Okamoto
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Daiki Yamashige
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Soma Fukuda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Masaru Kuwada
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yasuhiro Komori
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Mao Okada
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yuta Maruki
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hideki Ueno
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| |
Collapse
|
5
|
Yang Q, Yang G, Wu Y, Zhang L, Song Z, Yang D. Bioinformatics analysis and validation of genes related to paclitaxel's anti-breast cancer effect through immunogenic cell death. Heliyon 2024; 10:e28409. [PMID: 38560098 PMCID: PMC10979210 DOI: 10.1016/j.heliyon.2024.e28409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Research indicated that Paclitaxel (PTX) can induce immunogenic cell death (ICD) through immunogenic modulation. However, the combination of PTX and ICD has not been extensively studied in breast cancer (BRCA). The TCGA-BRCA and GSE20685 datasets were enrolled in this study. Samples from the TCGA-BRCA dataset were consistently clustered based on selected immunogenic cell death-related genes (ICD-RGs). Next, candidate genes were obtained by overlapping differentially expressed genes (DEGs) between BRCA and normal groups, intersecting genes common to DEGs between cluster1 and cluster2 and hub module genes, and target genes of PTX from five databases. The univariate Cox algorithm and the least absolute shrinkage and selection operator (LASSO) were performed to obtain biomarkers and build a risk model. Following observing the immune microenvironment in differential risk subgroups, single-gene gene set enrichment analysis (GSEA) was carried out in all biomarkers. Finally, the expression of biomarkers was analyzed. Enrichment analysis showed that 626 intersecting genes were linked with inflammatory response. Further five biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified and a risk model was built. The model's performance was validated using GSE20685 dataset. Furthermore, the biomarkers were enriched with adaptive immune response. Lastly, the experimental results indicated that the alterations in IL18, SH2D2A, and CHI3L1 expression after treatment matched those in the public database. In this study, Five PTX-ICD-related biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified to aid in predicting BRCA treatment outcomes.
Collapse
Affiliation(s)
- Qianmei Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
- Yunnan College of Modern Biomedical Industry, Kunming, Yunnan, 650500, PR China
| | - Guimei Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
- Yunnan College of Modern Biomedical Industry, Kunming, Yunnan, 650500, PR China
| | - Yi Wu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Lun Zhang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Zhuoyang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Dan Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
6
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
7
|
Scianò F, Terrana F, Pecoraro C, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Exploring the therapeutic potential of focal adhesion kinase inhibition in overcoming chemoresistance in pancreatic ductal adenocarcinoma. Future Med Chem 2024; 16:271-289. [PMID: 38269431 DOI: 10.4155/fmc-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related deaths worldwide. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase often overexpressed in PDAC. FAK has been linked to cell migration, survival, proliferation, angiogenesis and adhesion. This review first highlights the chemoresistant nature of PDAC. Second, the role of FAK in PDAC cancer progression and resistance is carefully described. Additionally, it discusses recent developments of FAK inhibitors as valuable drugs in the treatment of PDAC, with a focus on diamine-substituted-2,4-pyrimidine-based compounds, which represent the most potent class of FAK inhibitors in clinical trials for the treatment of PDAC disease. To conclude, relevant computational studies performed on FAK inhibitors are reported to highlight the key structural features required for interaction with the protein, with the aim of optimizing this novel targeted therapy.
Collapse
Affiliation(s)
- Fabio Scianò
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Francesca Terrana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Barbara Parrino
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Patrizia Diana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, Pisa, 56017, Italy
| | - Daniela Carbone
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| |
Collapse
|
8
|
Bergonzini C, Gregori A, Hagens TMS, van der Noord VE, van de Water B, Zweemer AJM, Coban B, Capula M, Mantini G, Botto A, Finamore F, Garajova I, McDonnell LA, Schmidt T, Giovannetti E, Danen EHJ. ABCB1 overexpression through locus amplification represents an actionable target to combat paclitaxel resistance in pancreatic cancer cells. J Exp Clin Cancer Res 2024; 43:4. [PMID: 38163893 PMCID: PMC10759666 DOI: 10.1186/s13046-023-02879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer and the chemotherapies such as gemcitabine/nab-paclitaxel are confronted with intrinsic or acquired resistance. The aim of this study was to investigate mechanisms underlying paclitaxel resistance in PDAC and explore strategies to overcome it. METHODS Three paclitaxel (PR) and gemcitabine resistant (GR) PDAC models were established. Transcriptomics and proteomics were used to identify conserved mechanisms of drug resistance. Genetic and pharmacological approaches were used to overcome paclitaxel resistance. RESULTS Upregulation of ABCB1 through locus amplification was identified as a conserved feature unique to PR cells. ABCB1 was not affected in any of the GR models and no cross resistance was observed. The ABCB1 inhibitor verapamil or siRNA-mediated ABCB1 depletion sensitized PR cells to paclitaxel and prevented efflux of ABCB1 substrates in all models. ABCB1 expression was associated with a trend towards shorter survival in patients who had received gemcitabine/nab-paclitaxel treatment. A pharmacological screen identified known and novel kinase inhibitors that attenuate efflux of ABCB1 substrates and sensitize PR PDAC cells to paclitaxel. CONCLUSION Upregulation of ABCB1 through locus amplification represents a novel, conserved mechanism of PDAC paclitaxel resistance. Kinase inhibitors identified in this study can be further (pre) clinically explored as therapeutic strategies to overcome paclitaxel resistance in PDAC.
Collapse
Affiliation(s)
- Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alessandro Gregori
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Tessa M S Hagens
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Vera E van der Noord
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bob van de Water
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Annelien J M Zweemer
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mjriam Capula
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Asia Botto
- Proteomics and Metabolomics Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Francesco Finamore
- Proteomics and Metabolomics Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
| | - Ingrid Garajova
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Liam A McDonnell
- Proteomics and Metabolomics Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy.
| | - Erik H J Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
9
|
Marcinak CT, Schwartz PB, Basree MM, Hurst N, Bassetti M, Kratz JD, Uboha NV. Treatment of Oligometastatic GI Cancers. Am Soc Clin Oncol Educ Book 2024; 44:e430152. [PMID: 38190577 DOI: 10.1200/edbk_430152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Oligometastatic state is believed to potentially represent a transitional stage between early, locoregional state disease and widely metastatic disease. Historically, locoregional approaches, particularly in advanced colorectal cancers, have demonstrated efficacy in select patients with limited burden of metastatic disease. Recent strides in systemic therapies, including biomarker-based treatments and immunotherapy, alongside innovations in surgical techniques and novel locoregional approaches such as stereotactic radiotherapy and ablation, have ushered in a new era of therapeutic possibilities across all oligometastatic GI cancers. Despite these advancements, there remains a significant gap in high-quality prospective evidence guiding patient selection and treatment decisions across various disease types. Ongoing clinical trials are anticipated to provide crucial insights into oligometastatic states, fostering the refinement of disease-specific oligometastatic state definitions and treatment algorithms. This article reviews existing data on the management of oligometastatic GI cancer, summarizes current state of knowledge for each disease state, and provides updates on ongoing studies in this space.
Collapse
Affiliation(s)
- Clayton T Marcinak
- Department of Surgery, University of Wisconsin School of Medicine and Public Health University of Wisconsin-Madison, Madison, WI
| | - Patrick B Schwartz
- Department of Surgery, University of Wisconsin School of Medicine and Public Health University of Wisconsin-Madison, Madison, WI
| | - Mustafa M Basree
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI
| | - Newton Hurst
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI
| | - Michael Bassetti
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI
| | - Jeremy D Kratz
- University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
- Center for Human Genomics and Precision Medicine, University of Wisconsin, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Nataliya V Uboha
- University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
| |
Collapse
|
10
|
Chen M, Liu X, Lu J, Teng H, Yu C, Liu Y, Zheng Y. Dysregulation of the circ_0087502/miR-1179/TGFBR2 pathway supports gemcitabine resistance in pancreatic cancer. Cancer Biol Ther 2023; 24:2258566. [PMID: 37844011 PMCID: PMC10580792 DOI: 10.1080/15384047.2023.2258566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/12/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a cohort of non-coding RNAs generated by back-splicing events. Accumulating evidence supports the crucial role of circRNAs in human tumorigenesis, metastasis, and chemoresistance. However, the role and mechanism of circRNA circ_0087502 in pancreatic cancer are yet unknown. METHODS The expression and function of circ_0087502 in pancreatic cancer were investigated using qRT-PCR and cell experiments. The predicted binding between circ_0087502 and microRNA-1179 (miR-1179), and between miR-1179 and TGFBR2, were examined using reporter assays. RESULTS Pancreatic cancer tissues and cell lines were discovered to express circ_0087502 at higher levels. Patients with pancreatic cancer who express circ_0087502 at high levels have a worse prognosis. In addition, circ_0087502 knockdown reduced the proliferation, migration, and invasion of pancreatic cancer cells and made them more sensitive to gemcitabine treatment. We found that circ_0087502 worked as a sponge for miR-1179, allowing miR-1179 to bind to the critical oncogene TGFBR2 in its 3'-untranslated region (3'-UTR). Pancreatic cancer cells were highly resistant to gemcitabine and had increased proliferation, migration, and invasion when miR-1179 was inhibited or overexpressed. CONCLUSION These results confirm that circ_0087502 activates the miR-1179/TGFBR2 axis to promote gemcitabine resistance in pancreatic cancer. Thus, our data might lay the groundwork for developing novel therapeutic strategies targeting circ_0087502 in pancreatic cancer patients.
Collapse
Affiliation(s)
- Mingliu Chen
- Department of hepatobiliary and pancreatic surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of hepatobiliary and pancreatic surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xinxiu Liu
- Department of ultrasound, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinpeng Lu
- Department of hepatobiliary and pancreatic surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Haiwen Teng
- Department of hepatobiliary and pancreatic surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chengui Yu
- Department of hepatobiliary and pancreatic surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yingchun Liu
- Department of Cell Biology and Genetics, Fujian Medical University, Fuzhou, China
| | - Yansong Zheng
- Department of hepatobiliary and pancreatic surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Vogl TJ, Lilienthal C, Gruber-Rouh T, Afraz Z, Adwan H. Degradable Starch Microspheres Transarterial Chemoembolization with or without Lipiodol for Liver Metastases from Pancreatic Cancer: A Prospective Randomized Trial. Cancers (Basel) 2023; 15:5239. [PMID: 37958413 PMCID: PMC10649931 DOI: 10.3390/cancers15215239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
To evaluate and compare the outcome of patients with liver metastases from pancreatic cancer treated by transarterial chemoembolization (TACE) using two different protocols. In this prospective, randomized, single-center trial, patients were randomly assigned to receive TACE therapy either with degradable starch microspheres (DSM) alone or a combination of Lipiodol and DSM. From the initial 58 patients, 26 patients (13 DSM-TACE, 13 Lipiodol + DSM-TACE) who completed 3 TACE treatments at an interval of four weeks were considered for evaluation of tumor responses. Initial and final MRIs were used to evaluate local therapy response by RECIST 1.1; changes in diameter, volume, ADC value, and survival rate were statistically evaluated. The differences between the DSM-TACE and Lipiodol + DSM-TACE were identified for partial response (PR) as 15.4% versus 53.8%, stable disease (SD) as 69.2% versus 46.2%, progressive disease (PD) as 15.4% versus 0%, respectively (p = 0.068). Median overall survival times for DSM-TACE and Lipiodol + DSM-TACE were 20 months (95% CI, 18.1-21.9) and 23 months (95% CI, 13.8-32.2), respectively (p = 0.565). The one-year survival rates for DSM-TACE and Lipiodol + DSM-TACE were 85.4% and 60.4%, the two-year survival rates were 35.9% and 47.7%, and the three-year survival rates were 12% and 30.9%, respectively. The evaluated local therapy response by RECIST 1. was not significantly different between the two studied groups. A longer overall survival time was observed after Lipiodol + DSM-TACE therapy; however, it was not significantly different.
Collapse
Affiliation(s)
- Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (C.L.)
| | | | | | | | | |
Collapse
|
12
|
Ciurea AM, Schenker M, Ciofiac CM, Streba L, Schenker R, Streba CT. Genomic Profiling - A Need for Clinical Decision? -Case Reports. CURRENT HEALTH SCIENCES JOURNAL 2023; 49:467-473. [PMID: 38314216 PMCID: PMC10832885 DOI: 10.12865/chsj.49.03.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/21/2023] [Indexed: 02/06/2024]
Abstract
Cancer is still an important health issue worldwide due to increased incidence and mortality. Personalized medicine is the future of cancer treatment. Development in technology improved technical skills in DNA/RNA sequencing. NGS technology in solid-tumor samples can describe DNA or RNA analysis by including the entire genome to detect clinical relevant mutations. Genetic results may be considered having a dynamic impact because of heterogenous molecular alterations depending of time and treatment influence. We conducted a retrospective study of all NGS tests made in the last five years for the patients from 'Sf. Nectarie' Oncology Center, Craiova, Romania. We selected three relevant clinical cases where NGS analysis was performed and the results changed the perspective of the clinical decision. Our aim is to evaluate the importance of NGS results in clinical approach. Although medicine known an important development during the last decades, only a few patients can benefit of advanced personalized treatments. It is still hard to identify the alterations or gene mutations because of genetic tests are not easily available and only a small proportion of patients carries genetic alterations.
Collapse
Affiliation(s)
- Ana-Maria Ciurea
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Michael Schenker
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Cristina Mihaela Ciofiac
- Doctoral School, Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova
| | - Liliana Streba
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Ramona Schenker
- Psychology Department, Sf Nectarie Oncology Center, Craiova, Romania
| | - Costin Teodor Streba
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
13
|
Sadee W, Wang D, Hartmann K, Toland AE. Pharmacogenomics: Driving Personalized Medicine. Pharmacol Rev 2023; 75:789-814. [PMID: 36927888 PMCID: PMC10289244 DOI: 10.1124/pharmrev.122.000810] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Personalized medicine tailors therapies, disease prevention, and health maintenance to the individual, with pharmacogenomics serving as a key tool to improve outcomes and prevent adverse effects. Advances in genomics have transformed pharmacogenetics, traditionally focused on single gene-drug pairs, into pharmacogenomics, encompassing all "-omics" fields (e.g., proteomics, transcriptomics, metabolomics, and metagenomics). This review summarizes basic genomics principles relevant to translation into therapies, assessing pharmacogenomics' central role in converging diverse elements of personalized medicine. We discuss genetic variations in pharmacogenes (drug-metabolizing enzymes, drug transporters, and receptors), their clinical relevance as biomarkers, and the legacy of decades of research in pharmacogenetics. All types of therapies, including proteins, nucleic acids, viruses, cells, genes, and irradiation, can benefit from genomics, expanding the role of pharmacogenomics across medicine. Food and Drug Administration approvals of personalized therapeutics involving biomarkers increase rapidly, demonstrating the growing impact of pharmacogenomics. A beacon for all therapeutic approaches, molecularly targeted cancer therapies highlight trends in drug discovery and clinical applications. To account for human complexity, multicomponent biomarker panels encompassing genetic, personal, and environmental factors can guide diagnosis and therapies, increasingly involving artificial intelligence to cope with extreme data complexities. However, clinical application encounters substantial hurdles, such as unknown validity across ethnic groups, underlying bias in health care, and real-world validation. This review address the underlying science and technologies germane to pharmacogenomics and personalized medicine, integrated with economic, ethical, and regulatory issues, providing insights into the current status and future direction of health care. SIGNIFICANCE STATEMENT: Personalized medicine aims to optimize health care for the individual patients with use of predictive biomarkers to improve outcomes and prevent adverse effects. Pharmacogenomics drives biomarker discovery and guides the development of targeted therapeutics. This review addresses basic principles and current trends in pharmacogenomics, with large-scale data repositories accelerating medical advances. The impact of pharmacogenomics is discussed, along with hurdles impeding broad clinical implementation, in the context of clinical care, ethics, economics, and regulatory affairs.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Danxin Wang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Katherine Hartmann
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| |
Collapse
|
14
|
Hijioka S, Nagashio Y, Maruki Y, Kawasaki Y, Takeshita K, Morizane C, Okusaka T. Endoscopic Ultrasound-Guided Tissue Acquisition of Pancreaticobiliary Cancer Aiming for a Comprehensive Genome Profile. Diagnostics (Basel) 2023; 13:diagnostics13071275. [PMID: 37046493 PMCID: PMC10093621 DOI: 10.3390/diagnostics13071275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, cancer genomic medicine centered on comprehensive genome profile (CGP) analysis has become widely used in the field of pancreatic cancer. Endoscopic ultrasound-guided tissue acquisition (EUS-TA) has played an important role in pancreatic cancer, and recently, more EUS-TA tissue samples are considered for CGP analysis. Differences exist between the Oncoguide NCC Oncopanel System and Foundation One CDx Cancer Genome Profile, which are CGP tests approved by insurance programs in Japan, including the analysis criteria, optimal needle selection for meeting these criteria, and puncture target. It is important to understand not only the specimen collection factors, but also the specimen processing factors that can increase the success rate of CGP testing. Furthermore, cancer genome medicine is expected to enter an era of increasing turbulence in the future, and endoscopists need to respond flexibly to these changes. Herein, we review the current status of cancer genome medicine in pancreatic and biliary tract cancers and cancer gene panel testing using EUS-TA.
Collapse
|
15
|
Li C, Yin X, Liu Z, Wang J. Emerging Potential Mechanism and Therapeutic Target of Ferroptosis in PDAC: A Promising Future. Int J Mol Sci 2022; 23:15031. [PMID: 36499358 PMCID: PMC9740869 DOI: 10.3390/ijms232315031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic cancer (PC) is a devastating malignant tumor of gastrointestinal (GI) tumors characterized by late diagnosis, low treatment success and poor prognosis. The most common pathological type of PC is pancreatic ductal adenocarcinoma (PDAC), which accounts for approximately 95% of PC. PDAC is primarily driven by the Kirsten rat sarcoma virus (KRAS) oncogene. Ferroptosis was originally described as ras-dependent cell death but is now defined as a regulated cell death caused by iron accumulation and lipid peroxidation. Recent studies have revealed that ferroptosis plays an important role in the development and therapeutic response of tumors, especially PDAC. As the non-apoptotic cell death, ferroptosis may minimize the emergence of drug resistance for clinical trials of PDAC. This article reviews what has been learned in recent years about the mechanisms of ferroptosis in PDAC, introduces the association between ferroptosis and the KRAS target, and summarizes several potential strategies that are capable of triggering ferroptosis to suppress PDAC progression.
Collapse
Affiliation(s)
- Chang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
16
|
He Q, Liu Z, Wang J. Targeting KRAS in PDAC: A New Way to Cure It? Cancers (Basel) 2022; 14:cancers14204982. [PMID: 36291766 PMCID: PMC9599866 DOI: 10.3390/cancers14204982] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer is one of the most intractable malignant tumors worldwide, and is known for its refractory nature and poor prognosis. The fatality rate of pancreatic cancer can reach over 90%. In pancreatic ductal carcinoma (PDAC), the most common subtype of pancreatic cancer, KRAS is the most predominant mutated gene (more than 80%). In recent decades, KRAS proteins have maintained the reputation of being “undruggable” due to their special molecular structures and biological characteristics, making therapy targeting downstream genes challenging. Fortunately, the heavy rampart formed by KRAS has been broken down in recent years by the advent of KRASG12C inhibitors; the covalent inhibitors bond to the switch-II pocket of the KRASG12C protein. The KRASG12C inhibitor sotorasib has been received by the FDA for the treatment of patients suffering from KRASG12C-driven cancers. Meanwhile, researchers have paid close attention to the development of inhibitors for other KRAS mutations. Due to the high incidence of PDAC, developing KRASG12D/V inhibitors has become the focus of attention. Here, we review the clinical status of PDAC and recent research progress in targeting KRASG12D/V and discuss the potential applications.
Collapse
Affiliation(s)
- Qianyu He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (Z.L.); (J.W.)
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Correspondence: (Z.L.); (J.W.)
| |
Collapse
|