1
|
Ayers AT, Ho CN, Kerr D, Cichosz SL, Mathioudakis N, Wang M, Najafi B, Moon SJ, Pandey A, Klonoff DC. Artificial Intelligence to Diagnose Complications of Diabetes. J Diabetes Sci Technol 2025; 19:246-264. [PMID: 39578435 DOI: 10.1177/19322968241287773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Artificial intelligence (AI) is increasingly being used to diagnose complications of diabetes. Artificial intelligence is technology that enables computers and machines to simulate human intelligence and solve complicated problems. In this article, we address current and likely future applications for AI to be applied to diabetes and its complications, including pharmacoadherence to therapy, diagnosis of hypoglycemia, diabetic eye disease, diabetic kidney diseases, diabetic neuropathy, diabetic foot ulcers, and heart failure in diabetes.Artificial intelligence is advantageous because it can handle large and complex datasets from a variety of sources. With each additional type of data incorporated into a clinical picture of a patient, the calculation becomes increasingly complex and specific. Artificial intelligence is the foundation of emerging medical technologies; it will power the future of diagnosing diabetes complications.
Collapse
Affiliation(s)
| | - Cindy N Ho
- Diabetes Technology Society, Burlingame, CA, USA
| | - David Kerr
- Center for Health Systems Research, Sutter Health, Santa Barbara, CA, USA
| | - Simon Lebech Cichosz
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Michelle Wang
- University of California, San Francisco, San Francisco, CA, USA
| | - Bijan Najafi
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Center for Advanced Surgical and Interventional Technology (CASIT), Department of Surgery, Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Sun-Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Ambarish Pandey
- Division of Cardiology and Geriatrics, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - David C Klonoff
- Diabetes Technology Society, Burlingame, CA, USA
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
2
|
Tian T, Aaron RE, DuNova AY, Jendle JH, Kerr D, Cengiz E, Drincic A, Pickup JC, Chen KY, Schwartz N, Muchmore DB, Akturk HK, Levy CJ, Schmidt S, Bellazzi R, Wu AHB, Spanakis EK, Najafi B, Chase JG, Seley JJ, Klonoff DC. Diabetes Technology Meeting 2023. J Diabetes Sci Technol 2024; 18:1208-1244. [PMID: 38528741 PMCID: PMC11418435 DOI: 10.1177/19322968241235205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Diabetes Technology Society hosted its annual Diabetes Technology Meeting from November 1 to November 4, 2023. Meeting topics included digital health; metrics of glycemia; the integration of glucose and insulin data into the electronic health record; technologies for insulin pumps, blood glucose monitors, and continuous glucose monitors; diabetes drugs and analytes; skin physiology; regulation of diabetes devices and drugs; and data science, artificial intelligence, and machine learning. A live demonstration of a personalized carbohydrate dispenser for people with diabetes was presented.
Collapse
Affiliation(s)
- Tiffany Tian
- Diabetes Technology Society, Burlingame, CA, USA
| | | | | | - Johan H. Jendle
- School of Medicine and Health, Institute of Medical Sciences, Örebro University, Örebro, Sweden
| | | | - Eda Cengiz
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Kong Y. Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | | | - Halis K. Akturk
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | - Carol J. Levy
- Division of Endocrinology, Diabetes, and Metabolism, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | | | - Alan H. B. Wu
- University of California, San Francisco, San Francisco, CA, USA
| | - Elias K. Spanakis
- Baltimore VA Medical Center and School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | - Jane Jeffrie Seley
- Division of Endocrinology, Diabetes & Metabolism, Weill Cornell Medicine, New York City, NY, USA
| | - David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
3
|
Cay G, Finco M, Garcia J, McNitt-Gray JL, Armstrong DG, Najafi B. Towards a Remote Patient Monitoring Platform for Comprehensive Risk Evaluations for People with Diabetic Foot Ulcers. SENSORS (BASEL, SWITZERLAND) 2024; 24:2979. [PMID: 38793835 PMCID: PMC11124849 DOI: 10.3390/s24102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Diabetic foot ulcers (DFUs) significantly affect the lives of patients and increase the risk of hospital stays and amputation. We suggest a remote monitoring platform for better DFU care. This system uses digital health metrics (scaled from 0 to 10, where higher scores indicate a greater risk of slow healing) to provide a comprehensive overview through a visual interface. The platform features smart offloading devices that capture behavioral metrics such as offloading adherence, daily steps, and cadence. Coupled with remotely measurable frailty and phenotypic metrics, it offers an in-depth patient profile. Additional demographic data, characteristics of the wound, and clinical parameters, such as cognitive function, were integrated, contributing to a comprehensive risk factor profile. We evaluated the feasibility of this platform with 124 DFU patients over 12 weeks; 39% experienced unfavorable outcomes such as dropout, adverse events, or non-healing. Digital biomarkers were benchmarked (0-10); categorized as low, medium, and high risk for unfavorable outcomes; and visually represented using color-coded radar plots. The initial results of the case reports illustrate the value of this holistic visualization to pinpoint the underlying risk factors for unfavorable outcomes, including a high number of steps, poor adherence, and cognitive impairment. Although future studies are needed to validate the effectiveness of this visualization in personalizing care and improving wound outcomes, early results in identifying risk factors for unfavorable outcomes are promising.
Collapse
Affiliation(s)
- Gozde Cay
- Digital Health and Access Center (DiHAC), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (G.C.)
| | - M.G. Finco
- Digital Health and Access Center (DiHAC), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (G.C.)
| | - Jason Garcia
- Southwestern Academic Limb Salvage Alliance (SALSA), Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Jill L. McNitt-Gray
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90007, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - David G. Armstrong
- Southwestern Academic Limb Salvage Alliance (SALSA), Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Bijan Najafi
- Digital Health and Access Center (DiHAC), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (G.C.)
| |
Collapse
|
4
|
Mishra RK, Najafi B, Hamad A, Bara R, Lee M, Ibrahim R, Mathew M, Talal T, Al-Ali F. Intradialytic plantar electrical nerve stimulation to improve mobility and plantar sensation among adults with diabetes undergoing hemodialysis: a randomized double-blind trial. J Nephrol 2023:10.1007/s40620-023-01625-9. [PMID: 37326952 DOI: 10.1007/s40620-023-01625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/08/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Impaired mobility is a debilitating consequence of hemodialysis. We examined the efficacy of intradialytic-plantar-electrical-nerve-stimulation (iPENS) to promote mobility among diabetes patients undergoing hemodialysis.. METHODS Adults with diabetes undergoing hemodialysis received either 1-h active iPENS, (Intervention-Group) or non-functional iPENS (Control-Group) during routine hemodialysis for 12 weeks (3 sessions/week). Participants and care-providers were blinded. Mobility (assessed using a validated pendant-sensor) and neuropathy (quantified by vibration-perception-threshold test) outcomes were assessed at baseline and 12 weeks. RESULTS Among 77 enrolled subjects (56.2 ± 2.6 years old), 39 were randomly assigned to the intervention group, while 38 were assigned to the control group. No study-related adverse events and dropouts were reported in the intervention group. Compared to the control group, significant improvements with medium to large effect sizes were observed in the intervention group at 12 weeks for mobility-performance metrics, including active-behavior, sedentary-behavior, daily step counts, and sit-to-stand duration variability (p < 0.05), Cohen's d effect size (d = 0.63-0.84). The magnitude of improvement in active-behavior was correlated with improvement in the vibration-perception-threshold test in the intervention group (r = - 0.33, p = 0.048). A subgroup with severe-neuropathy (vibration-perception-threshold > 25 V) showed a significant reduction in plantar numbness at 12 weeks compared to baseline (p = 0.03, d = 1.1). CONCLUSIONS This study supports feasibility, acceptability, and effectiveness of iPENS to improve mobility and potentially reduce plantar numbness in people with diabetes undergoing hemodialysis. Considering that exercise programs are not widely used in hemodialysis clinical practice, iPENS may serve as a practical, alternative solution to reduce hemodialysis-acquired weakness and promote mobility.
Collapse
Affiliation(s)
- Ram Kinker Mishra
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, MS: BCM390, Houston, TX, 77030, USA
| | - Bijan Najafi
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, MS: BCM390, Houston, TX, 77030, USA.
| | - Abdullah Hamad
- Department of Nephrology, Hamad General Hospital, Doha, Qatar
| | - Rasha Bara
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, MS: BCM390, Houston, TX, 77030, USA
| | - Myeounggon Lee
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, MS: BCM390, Houston, TX, 77030, USA
| | - Rania Ibrahim
- Department of Nephrology, Hamad General Hospital, Doha, Qatar
| | - Mincy Mathew
- Department of Nephrology, Hamad General Hospital, Doha, Qatar
| | - Talal Talal
- Diabetic Foot and Wound Clinic, Hamad Medical Co, Doha, Qatar
| | - Fadwa Al-Ali
- Department of Nephrology, Hamad General Hospital, Doha, Qatar
| |
Collapse
|
5
|
Freytag J, Mishra RK, Street RL, Catic A, Dindo L, Kiefer L, Najafi B, Naik AD. Using Wearable Sensors to Measure Goal Achievement in Older Veterans with Dementia. SENSORS (BASEL, SWITZERLAND) 2022; 22:9923. [PMID: 36560290 PMCID: PMC9782012 DOI: 10.3390/s22249923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Aligning treatment with patients' self-determined goals and health priorities is challenging in dementia care. Wearable-based remote health monitoring may facilitate determining the active participation of individuals with dementia towards achieving the determined goals. The present study aimed to demonstrate the feasibility of using wearables to assess healthcare goals set by older adults with cognitive impairment. We present four specific cases that assess (1) the feasibility of using wearables to monitor healthcare goals, (2) differences in function after goal-setting visits, and (3) goal achievement. Older veterans (n = 17) with cognitive impairment completed self-report assessments of mobility, then had an audio-recorded encounter with a geriatrician and wore a pendant sensor for 48 h. Follow-up was conducted at 4-6 months. Data obtained by wearables augments self-reported data and assessed function over time. Four patient cases illustrate the utility of combining sensors, self-report, notes from electronic health records, and visit transcripts at baseline and follow-up to assess goal achievement. Using data from multiple sources, we showed that the use of wearable devices could support clinical communication, mainly when patients, clinicians, and caregivers work to align care with the patient's priorities.
Collapse
Affiliation(s)
- Jennifer Freytag
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Ram Kinker Mishra
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- BioSensics, Boston, MA 02458, USA
| | - Richard L. Street
- Department of Communications, Texas A&M University, College Station, TX 77843, USA
| | - Angela Catic
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lilian Dindo
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lea Kiefer
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bijan Najafi
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aanand D. Naik
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
- Department of Management, Policy and Community Health, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
- UTHealth Consortium on Aging, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Mohammadi-Ghazi R, Nguyen H, Mishra RK, Enriquez A, Najafi B, Stephen CD, Gupta AS, Schmahmann JD, Vaziri A. Objective Assessment of Upper-Extremity Motor Functions in Spinocerebellar Ataxia Using Wearable Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:7993. [PMID: 36298343 PMCID: PMC9609238 DOI: 10.3390/s22207993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The study presents a novel approach to objectively assessing the upper-extremity motor symptoms in spinocerebellar ataxia (SCA) using data collected via a wearable sensor worn on the patient's wrist during upper-extremity tasks associated with the Assessment and Rating of Ataxia (SARA). First, we developed an algorithm for detecting/extracting the cycles of the finger-to-nose test (FNT). We extracted multiple features from the detected cycles and identified features and parameters correlated with the SARA scores. Additionally, we developed models to predict the severity of symptoms based on the FNT. The proposed technique was validated on a dataset comprising the seventeen (n = 17) participants' assessments. The cycle detection technique showed an accuracy of 97.6% in a Bland-Altman analysis and a 94% accuracy (F1-score of 0.93) in predicting the severity of the FNT. Furthermore, the dependency of the upper-extremity tests was investigated through statistical analysis, and the results confirm dependency and potential redundancies in the upper-extremity SARA assessments. Our findings pave the way to enhance the utility of objective measures of SCA assessments. The proposed wearable-based platform has the potential to eliminate subjectivity and inter-rater variabilities in assessing ataxia.
Collapse
Affiliation(s)
| | - Hung Nguyen
- BioSensics LLC, 57 Chapel St, Newton, MA 02458, USA
| | | | - Ana Enriquez
- BioSensics LLC, 57 Chapel St, Newton, MA 02458, USA
| | - Bijan Najafi
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher D. Stephen
- Ataxia Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 100 Cambridge St, Boston, MA 02115, USA
| | - Anoopum S. Gupta
- Ataxia Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 100 Cambridge St, Boston, MA 02115, USA
| | - Jeremy D. Schmahmann
- Ataxia Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 100 Cambridge St, Boston, MA 02115, USA
| | | |
Collapse
|
7
|
Herrera Montano I, Presencio Lafuente E, Breñosa Martínez J, Ortega Mansilla A, Torre Díez IDL, Río-Solá MLD. Systematic Review of Telemedicine and eHealth Systems Applied to Vascular Surgery. J Med Syst 2022; 46:104. [PMID: 36471095 PMCID: PMC9734958 DOI: 10.1007/s10916-022-01895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The objective of this paper is to review and analyze the current state of telemedicine and ehealth in the field of vascular surgery. METHODS This paper collects the relevant information obtained after reviewing the articles related to telemedicine in vascular surgery, published from 2012 to 2022 contained in scientific databases. In addition, the results obtained are statistically studied based on various factors, such as the year of publication or the search engine. In this way, we obtain a complete vision of the current state of telemedicine in the field of vascular surgery. RESULTS After performing this search and applying selection criteria, 29 articles were obtained for subsequent study and discussion, of which 20 were published in the second half of the decade, representing 70% of the results. In the analysis carried out according to the search criteria used, it can be seen that using the word telemedicine we obtained 69% of the articles while with the criteria mHealth and eHealth we only obtained 22% and 9% of the results, respectively. It can be seen that the filter with the most potential content articles was "vascular surgery AND telemedicine". In the analysis performed according to the search engine, it was observed that the Google Scholar database contains 93% of the articles found in the massive search and the relevant articles contained therein represent 52% of the total. CONCLUSION An upward trend has been observed in recent years, with a clear increase in the number of publications and much lower figures in the first years. One aspect to highlight is that 47.8% of the articles analyzed focus only on postoperative treatment, which may be due to the help provided by telemedicine in detecting surgical site infections by sending images and videos, this being one of the most common postoperative complications. The analyzed works show the importance of telemedicine in vascular surgery and identify possible future lines of research. In the analysis carried out on the origin of the selected relevant papers, an important interest of the US in this topic is demonstrated since more than 50% of the research contains authors from this country, it is also observed that there is no research from Spain, so this research would be an initial step to determine the weaknesses of telemedicine in this field of medicine and a good opportunity to open a research gap in this branch.
Collapse
Affiliation(s)
- Isabel Herrera Montano
- grid.5239.d0000 0001 2286 5329Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Elena Presencio Lafuente
- grid.5239.d0000 0001 2286 5329Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Jose Breñosa Martínez
- grid.512306.30000 0004 4681 9396Universidad Europea del Atlántico, C / Isabel Torres, 21, 39011 Santander, Spain
| | - Arturo Ortega Mansilla
- grid.512306.30000 0004 4681 9396Universidad Europea del Atlántico, C / Isabel Torres, 21, 39011 Santander, Spain ,grid.441061.60000 0004 1786 8906Universidad Internacional Iberoamericana, Calle 15 Num. 36, between 10 and 12 IMI III, 24560 - Campeche, Mexico City, Mexico
| | - Isabel de la Torre Díez
- grid.5239.d0000 0001 2286 5329Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - María Lourdes Del Río-Solá
- grid.411057.60000 0000 9274 367XVascular Surgery Department, Hospital Clínico Universitario de Valladolid, Ramón y Cajal Ave, nº 3, 47003 Valladolid, Spain
| |
Collapse
|