1
|
Cevik EC, Taylor HS. Mood lability and depression limit oral contraceptive therapy in endometriosis. Fertil Steril 2025; 123:838-845. [PMID: 39672361 DOI: 10.1016/j.fertnstert.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE To determine the impact of oral contraceptive (OC)-induced mood lability/depression on treatment maintenance in women with endometriosis. DESIGN Women with endometriosis were retrospectively identified through International Classification of Diseases, 10th Revision, codes, and then a comprehensive electronic medical record review was conducted, identifying mood lability/depression as a reason for treatment discontinuation with the use of combined or progestin-only OCs (POCs). SUBJECTS A total of 2,682 women with endometriosis, between the ages of 18 and 45 years treated in a university-affiliated hospital between 2012 and 2024. EXPOSURE Use of combined or POCs in patients with endometriosis. MAIN OUTCOME MEASURES The primary outcome was OC discontinuation due to mood lability/depression in women with endometriosis. The secondary outcome assessed whether patients with a documented diagnosis of depression were more prone to discontinuing OC use due to mood lability. RESULTS Mood lability/depression as a side effect of OC use was more common in women with endometriosis and increased the likelihood of discontinuing OCs. Overall, 44.2% of women with endometriosis and treated with OCs discontinued their use. The depression prevalence in our study cohort was 33.6%. Among those who discontinued, 33.9% attributed their discontinuation to mood lability/depression. Of those who discontinued OC use due to mood lability, 52.7% had a diagnosis of depression, a higher rate than those who discontinued OC use for other reasons or did not stop using OCs. There was no difference in OC discontinuation due to side effects comparing combination OCs with POCs. Similarly, the type of progestin prescribed did not influence the OC discontinuation among those who experienced mood lability/depression. CONCLUSION Women with endometriosis had an increased incidence of depression and a greater likelihood of discontinuing OCs when they experienced mood lability or depression. Mood lability played a significant role in OC discontinuation. The effect of OC on mood lability/depression did not differ by the type of progestin. In patients with endometriosis at risk of depression or who develop mood changes on OCs, other therapies that are typically considered second line should be considered early in the course of treatment.
Collapse
Affiliation(s)
- E Cansu Cevik
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.
| | - Hugh S Taylor
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Mamillapalli R, Slutzky R, Mangla A, Gawde N, Taylor HS. Effect of endometriosis-linked microRNAs on hepatic gene expression. F&S SCIENCE 2025:S2666-335X(25)00015-1. [PMID: 39971156 DOI: 10.1016/j.xfss.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE To determine if microRNAs that are altered in the circulation of women with endometriosis affect metabolic gene expression in hepatic cells. DESIGN In vitro study. SUBJECTS Deidentified tissue from women with endometriosis. INTERVENTION MicroRNAs were used to induce or suppress target genes in hepatic cells. MAIN OUTCOME MEASURES Effect of the microRNAs that are aberrantly expressed in endometriosis on hepatic cell gene expression using quantitative polymerase chain reaction. RESULTS Prior microarray studies on the serum of women with endometriosis showed differential expression of microRNAs miR-Let-7b, miR-125b-5p, miR-150-5p, and miR-3613-5p. Bioinformatic analyses revealed that these microRNAs have predicted binding sites in multiple genes involved in liver metabolism. Transfection of these miRs in HepG2 cells followed by real-time quantitative polymerase chain reaction showed that miR-Let-7b mimic increased the expression of Igfbp1 by 8-fold and reduced the expression of Mrc1 by 3.2-fold, whereas its inhibitor reduced Igfbp1 by 2.8-fold and increased Mrc1 by 5.2-fold. MiR-3613-5p mimic reduced the expression of Cyp2r1 by 2.2-fold and Mrc1 by 4-fold. MiR-125b-5p mimic increased the expression of Fabp4 by 4.1-fold, whereas miR-150-5p mimic increased the expression of Mrc1 by 1.8-fold and Cyp2r1 by 2.5-fold. Inhibitors of both miR-125b-5p and miR-150-5p did not show any effect on any of the genes. CONCLUSION Circulating microRNAs, known to be aberrant in endometriosis-regulated hepatic gene expression, likely contribute to the metabolic defects seen in this disease. Treatment with miR-Let-7b and miR-3613-5p, which are downregulated in endometriosis, reversed the effect of endometriosis on the expression of IGFBP1, MRC1, and CYP2r1 genes. Therefore, miR-Let-7b and miR-3613-5p may be novel candidate therapies for endometriosis, potentially correcting the metabolic changes seen in patients with endometriosis.
Collapse
Affiliation(s)
- Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.
| | - Rebecca Slutzky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Anjali Mangla
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Nimisha Gawde
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
3
|
TANG W, LIU K, FAN X, ZHU L, ZENG Z, SUN J, SHI J, ZHANG Z, GUI T, WAN G. Bushen Huoxue decoction improves the reproduction of endometriosis-associated infertility by regulating Homeobox A10 and αlpha(v)beta(3) integrin expression. J TRADIT CHIN MED 2024; 44:1137-1145. [PMID: 39617699 PMCID: PMC11589544 DOI: 10.19852/j.cnki.jtcm.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/27/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To investigate the mechanism of Bushen Huoxue decoction (, BSHXD) to treat endometriosis-induced infertility. MEDHODS The main compounds of BSHXD were determined by high performance liquid chromatography-mass spectrometry (HPLC-MS/MS). The effect of BSHXD on Homeobox A10 (HOXA10) and alpha(v)beta(3) (αvβ3) integrin expression of Ishikawa cells, mouse model, and endometriosis-associated infertility women was evaluated by using Western blot analysis, immunohistochemistry and Real-Time quantitative polymerase chain reaction (RT-qPCR). The efficacy of BSHXD on embryo attachment were examined by using the BeWo spheroid and mouse embryo attachment assay. HOXA10 concentration in uterine flushing fluid of endometriosis-associated infertility women treated with BSHXD was measured by Enzyme-Linked immunosorbent assay (ELISA). RESULTS BSHXD improved BeWo spheroid and mice blastocysts attachment to Ishikawa cells and increased embryo implantation rates in mice and pregnancy rates in women with endometriosis-associated infertility. BSHXD enhanced HOXA10 and αvβ3 integrin expression in Ishikawa cell, endometriosis mouse model, and endometriosis-associated infertility women, which potentially improved endometrial receptivity. CONCLUSIONS BSHXD could improve endometrial receptivity of endometriosis-associated infertility in a dose-dependent manner by regulating HOXA10 and αvβ3 integrin expression.
Collapse
Affiliation(s)
- Weiwei TANG
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Kaili LIU
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Xumei FAN
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Li ZHU
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Zheng ZENG
- 2 Department of Pathology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jiali SUN
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jie SHI
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Zhenzhen ZHANG
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Tao GUI
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Guiping WAN
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
4
|
Yin W, Li X, Liu P, Li Y, Liu J, Yu S, Tai S. Digestive system deep infiltrating endometriosis: What do we know. J Cell Mol Med 2023; 27:3649-3661. [PMID: 37632165 PMCID: PMC10718155 DOI: 10.1111/jcmm.17921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Digestive system infiltrating endometriosis (DSIE) is an uncommon form of endometriosis in the digestive system. DSIE often occurs in the intestines (especially the sigmoid rectum), liver, gallbladder and pancreas. Clinically, DSIE presents with the same symptoms as endometriosis, including cyclic pain, bleeding and infertility, in addition to specific biliary/intestinal obstruction and gastrointestinal bleeding. Compared to general endometriosis, DSIE has unique biological behaviour and pathophysiological mechanisms. Most DSIEs are deep invasive endometrioses, characterized by metastasis to the lymph nodes and lymphatic vessels, angiogenesis, peripheral nerve recruitment, fibrosis and invasion of surrounding tissues. DSIE-related peripheral angiogenesis is divided into three patterns: angiogenesis, vasculogenesis and inosculation. These patterns are regulated by interactions between multiple hypoxia-hormone cytokines. The nerve growth factors regulate the extensive neurofibril recruitment in DSIE lesions, which accounts for severe symptoms of deep pain. They are also associated with fibrosis and the aggressiveness of DSIE. Cyclic changes in DSIE lesions, recurrent inflammation and oxidative stress promote repeated tissue injury and repair (ReTIAR) mechanisms in the lesions, accelerating fibril formation and cancer-related mutations. Similar to malignant tumours, DSIE can also exhibit aggressiveness derived from collective cell migration mediated by E-cadherin and N-cadherin. This often makes DSIE misdiagnosed as a malignant tumour of the digestive system in clinical practice. In addition to surgery, novel treatments are urgently required to effectively eradicate this lesion.
Collapse
Affiliation(s)
- Wenze Yin
- Department of Hepatic SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaoqing Li
- Department of PathologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Peng Liu
- Laboratory of Medical GeneticsHarbin Medical UniversityHarbinChina
| | - Yingjie Li
- Department of PathologySix Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jin Liu
- Department of PathologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shan Yu
- Department of PathologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Sheng Tai
- Department of Hepatic SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
5
|
Lv SJ, Sun JN, Gan L, Sun J. Identification of molecular subtypes and immune infiltration in endometriosis: a novel bioinformatics analysis and In vitro validation. Front Immunol 2023; 14:1130738. [PMID: 37662927 PMCID: PMC10471803 DOI: 10.3389/fimmu.2023.1130738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Endometriosis is a worldwide gynacological diseases, affecting in 6-10% of women of reproductive age. The aim of this study was to investigate the gene network and potential signatures of immune infiltration in endometriosis. Methods The expression profiles of GSE51981, GSE6364, and GSE7305 were obtained from the Gene Expression Omnibus (GEO) database. Core modules and central genes related to immune characteristics were identified using a weighted gene coexpression network analysis. Bioinformatics analysis was performed to identify central genes in immune infiltration. Protein-protein interaction (PPI) network was used to identify the hub genes. We then constructed subtypes of endometriosis samples and calculated their correlation with hub genes. qRTPCR and Western blotting were used to verify our findings. Results We identified 10 candidate hub genes (GZMB, PRF1, KIR2DL1, KIR2DL3, KIR3DL1, KIR2DL4, FGB, IGFBP1, RBP4, and PROK1) that were significantly correlated with immune infiltration. Our study established a detailed immune network and systematically elucidated the molecular mechanism underlying endometriosis from the aspect of immune infiltration. Discussion Our study provides comprehensive insights into the immunology involved in endometriosis and might contribute to the development of immunotherapy for endometriosis. Furthermore, our study sheds light on the underlying molecular mechanism of endometriosis and might help improve the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Si-ji Lv
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-ni Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Gan
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Jing Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Habiba M, Benagiano G, Guo SW. An Appraisal of the Tissue Injury and Repair (TIAR) Theory on the Pathogenesis of Endometriosis and Adenomyosis. Biomolecules 2023; 13:975. [PMID: 37371555 DOI: 10.3390/biom13060975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
As understanding their pathogenesis remains elusive, both endometriosis and adenomyosis are often referred to as "enigmatic diseases". The uncertainty and heightened interest are reflected in the range of expressed views and opinions. There is a sense of urgency because of the entailed patient suffering. The plethora of opinions calls for a critical analysis of proposed theories, both old and new. A series of papers published since 2009 proposed that both endometriosis and adenomyosis originate from the same aberrations occurring within the uterus. This came to be recognized as the tissue injury and repair theory, and the newly coined term "archimetrosis" posits that the two diseases share the same origin. While the theory opens an interesting channel for exploration, its claim as a unifying theory necessitates a critical appraisal. We, thus, undertook this review of the theory and analyzed its underpinnings based on a comprehensive review of the literature. Our appraisal indicates that the theory is open to a range of criticisms. Chief among these is the need for confirmatory evidence of features of abnormal uterine contractility and the lack of data addressing the question of causality. In addition, the theory has, as yet, no supporting epidemiological evidence, which is a major weakness. The theory suffers as it is not open to the test of falsifiability, and it lacks the ability to make useful predictions. It has not addressed the questions, such as why only a small percentage of women develop adenomyosis or endometriosis, given the ubiquity of uterine peristalsis. On the other hand, the triggers and prevention of hyper- or dys-peristalsis become critical to a theory of causation. We conclude that additional supportive evidence is required for the theory to be accepted.
Collapse
Affiliation(s)
- Marwan Habiba
- Department of Health Sciences, University of Leicester and University Hospitals of Leicester, Leicester LE1 5WW, UK
| | - Giuseppe Benagiano
- Faculty of Medicine and Dentistry, Sapienza, University of Rome, 00161 Rome, Italy
| | - Sun-Wei Guo
- Research Institute, Shanghai Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, China
| |
Collapse
|
7
|
From Retrograde Menstruation to Endometrial Determinism and a Brave New World of "Root Treatment" of Endometriosis: Destiny or a Fanciful Utopia? Biomolecules 2023; 13:biom13020336. [PMID: 36830705 PMCID: PMC9953699 DOI: 10.3390/biom13020336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Practically unknown outside of China, the "endometrial determinism" theory was proposed to account for the apparent gap between the relatively low prevalence of endometriosis and nearly universal retrograde menstruation. Attracting uncritical advocacy, the theory culminates in a recent consensus by elite Chinese gynecologists in favor of "root treatment", intended to nip endometriosis in the bud. Correcting endometrial "defects" can gain further momentum by the presence of cancer-driver mutations such as KRAS mutations in the endometrium of women with endometriosis and the recent introduction of therapeutics aiming to rectify the effect of these mutations for cancer treatment. We provide a critical appraisal of evidence for endometrial aberrations in endometriosis and relevant experimental evidence. All available evidence of endometrial "defect" is invariably post hoc and may well be secondary to induced endometriosis. We propose that the theory of "endometrial determinism" needs to demonstrate a clear causal and a phylogenetic relationship between endometrial aberrations and endometriosis. We argue that while it is highly likely that endometriosis is a consequence of retrograde menstruation, the case that molecular aberrations as a sole or a necessary determinant remains to be proven. "Root treatment" is a worthy ambition but as of now it is close to a fanciful Utopia.
Collapse
|
8
|
Krishnamoorthy SP, Kalimuthu V, Chandran Manimegalai S, Arulanandu AM, Thiyagarajan R, Balamuthu K. Evaluation of the potential role of diethylstilbestrol on the induction of endometriosis in a rat model - An alternative approach. Biochem Biophys Res Commun 2022; 617:18-24. [PMID: 35689838 DOI: 10.1016/j.bbrc.2022.05.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 11/02/2022]
Abstract
Endometriosis is known to be a gynaecological condition characterised by persistent inflammation and abnormal development of endometrial stroma and glands. Researchers require a rodent model to analyse the disease environment. Animal models are the best option for investigating the etiology and effective treatment of debilitating illnesses in women since rodents, like humans, menstruate. In order to develop the model system, diethylstilbestrol (DES) was examined for its ability to induce endometriosis in rats by investigating its effect on the estrus cycle, hormones, and key markers. The results demonstrated that animals given DES had an erratic estrus cycle and aberrant hormone levels. Histomorphology revealed the development of an endometriosis environment with degenerative epithelium and enlarged glandular cells after DES induction. The higher levels of estrogen, progesterone, and MCP-1 were shown in the endometriosis induced animals. Endometriosis-induced groups had decreased levels of HOXA10 and HOXA11 and increased levels of VEGF and COX-2. Finally, the DES demonstrated endometriosis induction efficacy, implying that it might be a viable replacement for endometriosis induction.
Collapse
Affiliation(s)
| | - Vignesh Kalimuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | | | - Angel Mary Arulanandu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Kadalmani Balamuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
9
|
Neuhausser WM, Faure-Kumar E, Mahurkar-Joshi S, Iliopoulos D, Sakkas D. Identification of miR-34-3p as a candidate follicular phase serum marker for endometriosis: a pilot study. F&S SCIENCE 2022; 3:269-278. [PMID: 35977804 DOI: 10.1016/j.xfss.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To identify early follicular phase microribonucleic acids (miRNAs) that are altered in serum of women with endometriosis. DESIGN Case-control study. SETTING Large university-affiliated in vitro fertilization center. PATIENT(S) Women with (n = 21) and without (n = 24) endometriosis. INTERVENTION(S) Serum samples were obtained from laparoscopy-confirmed patients with endometriosis. MAIN OUTCOME MEASURE(S) The differential expression of serum miRNAs relative to controls was measured using the NanoString nCounter technology and validated by quantitative real-time polymerase chain reaction in an independent cohort of 27 patients with endometriosis and controls (n = 24). Microribonucleic acid target signaling pathways and genes were analyzed bioinformatically. A chemically modified stable miR-34-3p oligonucleotide was used to examine the effect on proliferation of VK2E6/E7 endometrial cells in vitro. RESULT(S) Eighteen miRNAs were significantly up-regulated, and 1 miRNA (hsa-miR-34c-3p) was significantly down-regulated in the follicular phase of patients with endometriosis. The analysis of target signaling pathways using TargetScan predicted regulation of the mitogen-activated protein kinase, phosphoinositide 3-kinase/protein kinase B, Hippo, adenosine monophosphate-activated protein kinase, transforming growth factor beta, and endometrial cancer pathways, which have been implicated in the pathogenesis of endometriosis, by these miRNAs. The analysis of sequence complementarity identified prostaglandin E2 receptor 4, interleukin 6 signal transducer, and polo-like kinase 4 genes as possible direct targets of hsa-miR-34-3p. DSDI-1, a chemically modified stable miR-34-3p oligonucleotide, reduced cell proliferation in VK2E6/E7 endometrial cells in vitro. CONCLUSION(S) The follicular phase miRNA levels are altered in serum of women with endometriosis and may be useful as reproducible detection biomarkers for early diagnosis of endometriosis. hsa-miR-34-3p is significantly down-regulated in endometriosis, targets endometriosis genes, and reduces endometrial cell proliferation in vitro. These results support hsa-miR-34-3p as a potential therapeutic target in endometriosis.
Collapse
Affiliation(s)
- Werner Maria Neuhausser
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| | - Emmanuelle Faure-Kumar
- UCLA Center for Systems Biomedicine, David Geffen School of Medicine, Los Angeles, California
| | - Swapna Mahurkar-Joshi
- UCLA Center for Systems Biomedicine, David Geffen School of Medicine, Los Angeles, California
| | - Dimitrios Iliopoulos
- UCLA Center for Systems Biomedicine, David Geffen School of Medicine, Los Angeles, California
| | | |
Collapse
|
10
|
Zafari N, Tarafdari AM, Izadi P, Noruzinia M, Yekaninejad MS, Bahramy A, Mohebalian A. A Panel of Plasma miRNAs 199b-3p, 224-5p and Let-7d-3p as Non-Invasive Diagnostic Biomarkers for Endometriosis. Reprod Sci 2021; 28:991-999. [PMID: 33398851 DOI: 10.1007/s43032-020-00415-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022]
Abstract
The objective of this study was to investigate whether the combination of miR-224-5p, miR-199-3p, and let-7d-3p is a suitable diagnostic panel for endometriosis. Twenty-five women with endometriosis (case) and twenty-five women without any sign of endometriosis (controls) were included. Peripheral blood specimens were collected from all these women who were a proper candidate for laparoscopy before surgery. Total RNA was isolated to synthesize complementary DNA. Expression of miR-199b-3p, miR-224-5p, and let-7d-3p was analyzed by RT-qPCR. To estimate the performance of the identified miRNAs for endometriosis diagnosis, we performed ROC curves analysis. There was an upregulation of miRNAs 199b-3p (P value < 0.001) and down-regulation of 224-5p (P value < 0.001) and miRNA let-7d-3p (P value < 0.05) in women with endometriosis compared to non-endometriosis women. The diagnostic accuracy of miRNAs 199b-3p, 224-5p, and let-7d-3p was measured by AUC which was 0.843 (sensitivity = 96% and specificity = 80%), 0.914 (sensitivity = 84% and specificity = 80%), and 0.696 (sensitivity = 80% and specificity = 56%) for miRNAs 199b-3p, 224-5p, and let-7d-3p, respectively. In combination, they showed the highest accuracy with the AUC 0.992 (sensitivity = 96% and specificity = 100%). In conclusion(s) the levels of miRNAs 199b-3p, 224-5p, and Let-7d-3p in plasma are potential diagnostic biomarkers for endometriosis patients.
Collapse
Affiliation(s)
- Narges Zafari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Manshadi Tarafdari
- Department of Gynecology and Obstetrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Noruzinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mir Saead Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohebalian
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Vignali M, Pisoni S, Gentilini D, Spada E, Solima E, Viganò P, Candiani M, Busacca M, DI Blasio AM. Hormonal therapy potentiates the effect of surgery on gene expression profile of peripheral blood mononuclear cells in patients affected by endometriosis. Minerva Endocrinol (Torino) 2020; 46:90-98. [PMID: 33269572 DOI: 10.23736/s2724-6507.20.03298-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Combined oral contraceptives (COCs) represent a common pharmacological approach for endometriosis. They have been demonstrated to mitigate painful symptoms in patients and are considered the first line therapy for symptomatic disease. The goal of this study was to evaluate whether the presence of pelvic endometriotic lesions can exert a systemic effect on PBMC gene expression and to investigate whether hormonal treatment may restore a normal gene expression profile. METHODS Forty women, with endometriosis at stage III-IV, were enrolled in the study. After surgery, 20, randomly chosen, were treated with COC for six months and 20 did not receive hormonal therapy. Blood samples were obtained few days before surgery and six months after surgery. Gene expression profile of PBMC was studied by microarray. Gene expression levels before surgery and post-surgery, in presence and absence of COC, were compared. RESULTS Nine genes previously reported to be overexpressed by endometriosis, were confirmed to be significantly downregulated after surgery. COC treatment lead to a greater down-regulation of these genes and to a significant down-regulation of 3 additional genes. 145 genes resulted downregulated and 28 upregulated by comparing gene expression before surgery with that 6 months after surgery in the presence of COC therapy. CONCLUSIONS Results support the concept that a systemic chronic inflammatory status is among the mechanisms underlying endometriosis. Moreover, they shed light into the mechanisms of action of COCs and strength the rationale for their use to improve quality of life of women affected by the disease.
Collapse
Affiliation(s)
- Michele Vignali
- Department of Biomedical Health Sciences, M. Melloni Hospital, University of Milan, Milan, Italy
| | - Serena Pisoni
- Laboratory of Molecular Biology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Davide Gentilini
- Laboratory of Molecular Biology, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Elena Spada
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Paola Viganò
- Division of Genetics and Cell Biology, Laboratory of Reproductive Sciences, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Candiani
- Unit of Obstetrics and Gynecology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Mauro Busacca
- Department of Biomedical Health Sciences, M. Melloni Hospital, University of Milan, Milan, Italy
| | - Anna M DI Blasio
- Laboratory of Molecular Biology, IRCCS Istituto Auxologico Italiano, Milan, Italy -
| |
Collapse
|
12
|
Guo SW. Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology. Hum Reprod Update 2020; 26:423-449. [PMID: 32154564 DOI: 10.1093/humupd/dmz047] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disease. Thus, it came as a complete surprise when it was reported recently that the majority of deep endometriosis lesions harbour somatic mutations and a sizeable portion of them contain known cancer-associated mutations (CAMs). Four more studies have since been published, all demonstrating the existence of CAMs in different subtypes of endometriosis. While the field is still evolving, the confirmation of CAMs has raised many questions that were previously overlooked. OBJECTIVE AND RATIONALE A comprehensive overview of CAMs in endometriosis has been produced. In addition, with the recently emerged understanding of the natural history of endometriotic lesions as well as CAMs in normal and apparently healthy tissues, this review attempts to address the following questions: Why has there been such a wild discrepancy in reported mutation frequencies? Why does ectopic endometrium have a higher mutation rate than that of eutopic endometrium? Would the presence of CAMs in endometriotic lesions increase the risk of cancer to the bearers? Why do endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart? What clinical implications, if any, do the CAMs have for the bearers? Do these CAMs tell us anything about the pathogenesis and/or pathophysiology of endometriosis? SEARCH METHODS The PubMed database was searched, from its inception to September 2019, for all papers in English using the term 'endometriosis and CAM', 'endometriosis and cancer-driver mutation', 'somatic mutations', 'fibrosis', 'fibrosis and epigenetic', 'CAMs and tumorigenesis', 'somatic mutation and normal tissues', 'oestrogen receptor and fibrosis', 'oxidative stress and fibrosis', 'ARID1A mutation', and 'Kirsten rat sarcoma mutation and therapeutics'. All retrieved papers were read and, when relevant, incorporated into the review results. OUTCOMES Seven papers that identified CAMs in endometriosis using various sequencing methods were retrieved, and their results were somewhat different. Yet, it is apparent that those using microdissection techniques and more accurate sequencing methods found more CAMs, echoing recent discoveries that apparently healthy tissues also harbour CAMs as a result of the replicative aging process. Hence endometriotic lesions, irrespective of subtype, if left intact, would generate CAMs as part of replicative aging, oxidative stress and perhaps other factors yet to be identified and, in some rare cases, develop cancer. The published data still are unable to paint a clear picture on pathogenesis of endometriosis. However, since endometriotic epithelial cells have a higher turnover than their stromal counterpart due to cyclic bleeding, and since the endometriotic stromal component can be formed by refresh influx of mesenchymal cells through epithelial-mesenchymal transition, endothelial-mesenchymal transition, mesothelial-mesenchymal transition and other processes as well as recruitment of bone-marrow-derived stem cells and outflow due to smooth muscle metaplasia, endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart. The epithelial and stromal cellular components develop in a dependent and co-evolving manner. Genes involved in CAMs are likely to be active players in lesional fibrogenesis, and hyperestrogenism and oxidative stress are likely drivers of both CAMs and fibrogenesis. Finally, endometriotic lesions harbouring CAMs would conceivably be more refractory to medical treatment, due, in no small part, to their high fibrotic content and reduced vascularity and cellularity. WIDER IMPLICATIONS The accumulating data on CAMs in endometriosis have shed new light on the pathogenesis and pathophysiology of endometriosis. They also suggest new challenges in management. The distinct yet co-evolving developmental trajectories of endometriotic stroma and epithelium underscore the importance of the lesional microenvironment and ever-changing cellular identity. Mutational profiling of normal endometrium from women of different ages and reproductive history is needed in order to gain a deeper understanding of the pathogenesis. Moreover, one area that has conspicuously received scant attention is the epigenetic landscape of ectopic, eutopic and normal endometrium.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| |
Collapse
|
13
|
Bjorkman S, Taylor HS. MicroRNAs in endometriosis: biological function and emerging biomarker candidates†. Biol Reprod 2020; 100:1135-1146. [PMID: 30721951 DOI: 10.1093/biolre/ioz014] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/21/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNA molecules, have been recognized as key post-transcriptional regulators associated with a multitude of human diseases. Global expression profiling studies have uncovered hundreds of miRNAs that are dysregulated in several diseases, and yielded many candidate biomarkers. This review will focus on miRNAs in endometriosis, a common chronic disease affecting nearly 10% of reproductive-aged women, which can cause pelvic pain, infertility, and a myriad of other symptoms. Endometriosis has delayed time to diagnosis when compared to other chronic diseases, as there is no current accurate, easily accessible, and noninvasive tool for diagnosis. Specific miRNAs have been identified as potential biomarkers for this disease in multiple studies. These and other miRNAs have been linked to target genes and functional pathways in disease-specific pathophysiology. Highlighting investigations into the roles of tissue and circulating miRNAs in endometriosis, published through June 2018, this review summarizes new connections between miRNA expression and the pathophysiology of endometriosis, including impacts on fertility. Future applications of miRNA biomarkers for precision medicine in diagnosing and managing endometriosis treatment are also discussed.
Collapse
Affiliation(s)
- Sarah Bjorkman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Chen S, Luo Y, Cui L, Yang Q. miR-96-5p regulated TGF-β/SMAD signaling pathway and suppressed endometrial cell viability and migration via targeting TGFBR1. Cell Cycle 2020; 19:1740-1753. [PMID: 32635855 PMCID: PMC7469441 DOI: 10.1080/15384101.2020.1777804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
We previously performed high throughput RNA-seq in paired eutopic and ectopic endometrial specimen of endometriosis patients, and validated the results by qRT-PCR in endometriosis endometrial tissues. MiR-96-5p was significantly downregulated in ectopic endometrial tissues compared to eutopic tissues. In order to identify the role of miR-96-5p in endometriosis and endometrial cells, and investigate the underlying mechanisms, the Ishikawa and End1/E6E7 cell lines were transfected with miR-96-5p mimics, miR-96-5p inhibitors or TGFBR1 siRNA. The expression of TGF-β/SMAD signaling pathway components and epithelial-mesenchymal transition (EMT) markers were examined by qRT-PCR and western blot, and cell viability and migration were determined by CCK-8, transwell and wound healing assays, respectively. We discovered miR-96-5p to be significantly downregulated while TGFBR1 was distinctly up-regulated in endometriosis. Overexpression of miR-96-5p inhibited endometrial cells viability and migration, while inhibition of miR-96-5p had opposite effect. Furthermore, we confirmed TGFBR1 was a direct target of miR-96-5p. Overexpression of miR-96-5p could block the TGF-β/SMAD signaling pathway via targeting TGFBR1 and reverse the TGF-β1 induced EMT in endometrial cell lines. In conclusion, we demonstrated that miR-96-5p interacted with TGF-β/SMAD signaling pathway and blocked the TGF-β1 induced EMT in endometrial cells via directly targeting TGFBR1.
Collapse
Affiliation(s)
- Silei Chen
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yajuan Luo
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liangyi Cui
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Petracco R, Dias ACDO, Taylor H, Petracco Á, Badalotti M, Michelon JDR, Marinowic DR, Hentschke M, Azevedo PND, Zanirati G, Machado DC. Evaluation of miR-135a/b expression in endometriosis lesions. Biomed Rep 2019; 11:181-187. [PMID: 31565224 DOI: 10.3892/br.2019.1237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
The pathogenesis of endometriosis is not clear; however, microRNAs (miRNAs/miRs) are involved in the pathogenesis. miRNAs are short noncoding RNAs involved in post-transcriptional regulation of gene expression by silencing the expression of target genes. The expression of miR-135a/b is associated with endometrial receptivity and implantation; the expression is also associated with the expression of certain genes, including homeobox protein Hox-A10 (HOXA-10). The present study investigated the expression of miR-135a/b in eutopic and ectopic endometrium tissues throughout the different phases of the menstrual cycle. Samples of ectopic endometriosis lesions and eutopic endometrium tissue from 23 patients who underwent laparoscopic surgery were obtained and analyzed. miRNA was extracted and the expression levels of miR-135a/b were determined by reverse transcription quantitative polymerase chain reaction assays using U6 as a housekeeping control. The expression levels of miR-135a and miR-135b in endometriosis lesions were decreased compared with the levels in endometrium tissue. However, miR-135a/b expression levels were increased in the secretory phase compared with the proliferative phase in endometriosis lesions. The increased expression of miR-135a/b during the secretory phase compared with the proliferative phase suggested that these genes serve a determinant role in the homeostasis of reproductive tissue. Therefore, the expression of genes may affect endometrial functioning, impairing embryo implantation.
Collapse
Affiliation(s)
- Rafaella Petracco
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Fertilitat Center of Reproductive Medicine, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | | | - Hugh Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06520-8063, USA
| | - Álvaro Petracco
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Fertilitat Center of Reproductive Medicine, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Mariângela Badalotti
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Fertilitat Center of Reproductive Medicine, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - João Da Rosa Michelon
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Fertilitat Center of Reproductive Medicine, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Daniel Rodrigo Marinowic
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Fertilitat Center of Reproductive Medicine, Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Marta Hentschke
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Fertilitat Center of Reproductive Medicine, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Pamella Nunes De Azevedo
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Gabriele Zanirati
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Denise Cantarelli Machado
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| |
Collapse
|
16
|
As-Sanie S, Black R, Giudice LC, Gray Valbrun T, Gupta J, Jones B, Laufer MR, Milspaw AT, Missmer SA, Norman A, Taylor RN, Wallace K, Williams Z, Yong PJ, Nebel RA. Assessing research gaps and unmet needs in endometriosis. Am J Obstet Gynecol 2019; 221:86-94. [PMID: 30790565 DOI: 10.1016/j.ajog.2019.02.033] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/29/2022]
Abstract
Endometriosis, a systemic disease that is often painful and chronic, affects ∼10% of reproductive-age women. The disease can have a negative impact on a patient's physical and emotional well-being, quality of life, and productivity. Endometriosis also places significant economic and social burden on patients, their families, and society as a whole. Despite its high prevalence and cost, endometriosis remains underfunded and underresearched, greatly limiting our understanding of the disease and slowing much-needed innovation in diagnostic and treatment options. Due in part to the societal normalization of women's pain and stigma around menstrual issues, there is also a lack of disease awareness among patients, health care providers, and the public. The Society for Women's Health Research convened an interdisciplinary group of expert researchers, clinicians, and patients for a roundtable meeting to review the current state of the science on endometriosis and identify areas of need to improve a woman's diagnosis, treatment, and access to quality care. Comprehensive and interdisciplinary approaches to disease management and increased education and disease awareness for patients, health care providers, and the public are needed to remove stigma, increase timely and accurate diagnosis and treatment, and allow for new advancements.
Collapse
|
17
|
Rosa-E-Silva ACJS, Rosa-E-Silva JC, Mamillapalli R, Taylor HS. Dose-Dependent Decreased Fertility in Response to the Burden of Endometriosis in a Murine Model. Reprod Sci 2019; 26:1395-1400. [PMID: 31274059 DOI: 10.1177/1933719119859438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endometriosis is a gynecological disease caused by the growth of endometrial cells outside the uterus leading to inflammation, pelvic pain, and infertility. The relationship between the amount of ectopic uterine tissue growth and the severity of symptoms is still unclear. The presence or degree of pain and infertility does not correlate with the stage of disease as currently defined. Here, we report a clear dose-response relationship between the amount of ectopic tissue transplanted and the reproductive outcomes in a murine model of endometriosis. Endometriosis was induced in mice using various amounts of transplanted uterine tissue. Four groups of mice consisted of a sham surgery control or those transplanted with 1, 2, or 4 endometrial segments of 5 mm each. Pregnancy rates were significantly lower in those transplanted with 2 or 4 segments compared to sham or the 1 segment groups. We demonstrate that infertility does correlate with the extent of active disease. Current clinical staging systems do not account for disease activity and may inappropriately weight sequela of disease. Early recognition and treatment in women may help to minimize the effect of endometriosis on fertility. Here, we describe a mouse model of endometriosis and infertility that may be useful to elucidate the mechanisms of infertility in endometriosis.
Collapse
Affiliation(s)
- Ana C J S Rosa-E-Silva
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA. Ana C. J. S. Rosa-e-Silva and Julio C. Rosa-e-Silva are now with Department of Obstetrics and Gynecology, School of Medicine of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Julio C Rosa-E-Silva
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA. Ana C. J. S. Rosa-e-Silva and Julio C. Rosa-e-Silva are now with Department of Obstetrics and Gynecology, School of Medicine of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA. Ana C. J. S. Rosa-e-Silva and Julio C. Rosa-e-Silva are now with Department of Obstetrics and Gynecology, School of Medicine of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA. Ana C. J. S. Rosa-e-Silva and Julio C. Rosa-e-Silva are now with Department of Obstetrics and Gynecology, School of Medicine of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Hu Z, Mamillapalli R, Taylor HS. Increased circulating miR-370-3p regulates steroidogenic factor 1 in endometriosis. Am J Physiol Endocrinol Metab 2019; 316:E373-E382. [PMID: 30576245 PMCID: PMC6459299 DOI: 10.1152/ajpendo.00244.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endometriosis is a gynecologic disease common among reproductive-aged women caused by the growth of endometrial tissue outside the uterus. Altered expression of numerous genes and microRNAs has been reported in endometriosis. Steroidogenic factor 1 (SF-1), an essential transcriptional regulator of multiple genes involved in estrogen biosynthesis, is aberrantly increased and plays an important role in the pathogenesis of endometriosis. Here, we show the expression of SF-1 in endometriosis is regulated by miR-370-3p. Sera and tissue were collected from 20 women surgically diagnosed with endometriosis and 26 women without endometriosis. We found that miR-370-3p levels were decreased in the serum of patients with endometriosis while SF-1 mRNA levels were inversely upregulated in endometriotic lesions compared with respective controls. Transfection of primary endometriotic cells with miR-370-3p mimic or inhibitor resulted in the altered expression of SF-1 and SF-1 downstream target genes steroidogenic acute regulatory protein (StAR) and CYP19A1. Overexpression of miR-370-3p inhibited cell proliferation and induced apoptosis in endometriotic cells. This study reveals that miR-370-3p functions as a negative regulator of SF-1 and cell proliferation in endometriotic cells. We suggest a novel therapeutic strategy for controlling SF-1 in endometriosis.
Collapse
Affiliation(s)
- Zhuoying Hu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine , New Haven, Connecticut
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine , New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine , New Haven, Connecticut
| |
Collapse
|
19
|
Long Q, Zheng H, Liu X, Guo SW. Perioperative Intervention by β-Blockade and NF-κB Suppression Reduces the Recurrence Risk of Endometriosis in Mice Due to Incomplete Excision. Reprod Sci 2019; 26:697-708. [DOI: 10.1177/1933719119828066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiqi Long
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, Peoples Republic of China
| | - Hanxi Zheng
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, Peoples Republic of China
| | - Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, Peoples Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, Peoples Republic of China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, Peoples Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, Peoples Republic of China
| |
Collapse
|
20
|
Panir K, Schjenken JE, Robertson SA, Hull ML. Non-coding RNAs in endometriosis: a narrative review. Hum Reprod Update 2019; 24:497-515. [PMID: 29697794 DOI: 10.1093/humupd/dmy014] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/05/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disorder, which affects 10% of reproductive-aged women and is characterized by endometrial cells from the lining of the uterus being found outside the uterine cavity. However, the pathophysiological mechanisms causing the development of this heterogeneous disease remain enigmatic, and a lack of effective biomarkers necessitates surgical intervention for diagnosis. There is international recognition that accurate non-invasive diagnostic tests and more effective therapies are urgently needed. Non-coding RNA (ncRNA) molecules, which are important regulators of cellular function, have been implicated in many chronic conditions. In endometriosis, transcriptome profiling of tissue samples and functional in vivo and in vitro studies demonstrate that ncRNAs are key contributors to the disease process. OBJECTIVE AND RATIONALE In this review, we outline the biogenesis of various ncRNAs relevant to endometriosis and then summarize the evidence indicating their roles in regulatory pathways that govern disease establishment and progression. SEARCH METHODS Articles from 2000 to 2016 were selected for relevance, validity and quality, from results obtained in PubMed, MEDLINE and Google Scholar using the following search terms: ncRNA and reproduction; ncRNA and endometriosis; miRNA and endometriosis; lncRNA and endometriosis; siRNA and endometriosis; endometriosis; endometrial; cervical; ovary; uterus; reproductive tract. All articles were independently screened for eligibility by the authors. OUTCOMES This review integrates extensive information from all relevant published studies focusing on microRNAs, long ncRNAs and short inhibitory RNAs in endometriosis. We outline the biological function and synthesis of microRNAs, long ncRNAs and short inhibitory RNAs and provide detailed findings from human research as well as functional studies carried out both in vitro and in vivo, including animal models. Although variability in findings between individual studies exists, collectively, the extant literature justifies the conclusion that dysregulated ncRNAs are a significant element of the endometriosis condition. WIDER IMPLICATIONS There is a compelling case that microRNAs, long non-coding RNAs and short inhibitory RNAs have the potential to influence endometriosis development and persistence through modulating inflammation, proliferation, angiogenesis and tissue remodelling. Rapid advances in ncRNA biomarker discovery and therapeutics relevant to endometriosis are emerging. Unravelling the significance of ncRNAs in endometriosis will pave the way for new diagnostic tests and identify new therapeutic targets and treatment approaches that have the potential to improve clinical options for women with this disabling condition.
Collapse
Affiliation(s)
- Kavita Panir
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - M Louise Hull
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Fertility SA, Adelaide, South Australia, Australia.,Department of Obstetrics and Gynaecology, Women's and Children's Hospital Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Yang P, Wu Z, Ma C, Pan N, Wang Y, Yan L. Endometrial miR-543 Is Downregulated During the Implantation Window in Women With Endometriosis-Related Infertility. Reprod Sci 2018; 26:900-908. [PMID: 30231774 DOI: 10.1177/1933719118799199] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Differentially expressed microRNAs (miRNAs) and their target mRNAs may lead to alterations in normal physiological status of the tissues and initiate pathological processes. The aim of this study was to investigate the expression of the most relevant miRNAs in the eutopic endometrial tissue during the window of implantation in women with endometriosis-related infertility. METHODS In the study, 76 infertile women with a regular menstrual cycle were recruited from the Center for Reproductive Medicine, Peking University Third Hospital between January 2014 and June 2016. We performed a combined messenger RNA and miRNA microarray and bioinformatics analysis of eutopic endometrium in 6 women with and without endometriosis-related infertility at the time of implantation window. Quantitative real-time polymerase chain reaction arrays were utilized to examine the expression levels of selected miRNAs (from 35 patients with endometriosis and 35 disease-free individuals at different menstrual stages). RESULTS Five differentially expressed miRNAs (miR-142-5p, miR-146a-5p, miR-1281, miR-940, and miR-4634) were significantly upregulated, whereas miR-543 was significantly downregulated in the eutopic endometrium during the window of implantation in patients with endometriosis. Further analysis showed that miR-543 was significantly upregulated at the peri-implantation phase compared with that at proliferative phase in the endometrium of disease-free patients (P < .05). However, the expression level of miR-543 was significantly decreased in patients with endometriosis (P < .05), especially downregulated at the window of implantation phase (P < .05). CONCLUSIONS miR-543 plays an important role during embryo implantation process and is associated with endometrial receptivity. Downregulation of miR-543 may affect embryo implantation, resulting in the pathogenesis of endometriosis-related infertility.
Collapse
Affiliation(s)
- Puyu Yang
- Center for Reproductive Medicine, Reproductive Medicine Center Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, North Garden Road, No. 49, Beijing, 100191, People's Republic of China
| | - Zhangxin Wu
- Center for Reproductive Medicine, Reproductive Medicine Center Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, North Garden Road, No. 49, Beijing, 100191, People's Republic of China
| | - Caihong Ma
- Center for Reproductive Medicine, Reproductive Medicine Center Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, North Garden Road, No. 49, Beijing, 100191, People's Republic of China.
| | - Ningning Pan
- Center for Reproductive Medicine, Reproductive Medicine Center Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, North Garden Road, No. 49, Beijing, 100191, People's Republic of China
| | - Yang Wang
- Center for Reproductive Medicine, Reproductive Medicine Center Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, North Garden Road, No. 49, Beijing, 100191, People's Republic of China
| | - Liying Yan
- Center for Reproductive Medicine, Reproductive Medicine Center Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, North Garden Road, No. 49, Beijing, 100191, People's Republic of China
| |
Collapse
|
22
|
Krikun G. The CXL12/CXCR4/CXCR7 axis in female reproductive tract disease: Review. Am J Reprod Immunol 2018; 80:e13028. [PMID: 30106199 DOI: 10.1111/aji.13028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/21/2022] Open
Abstract
Initial studies on the chemokine stromal derived factor 1 (now referred to as CXCL12) were proposed to be enhanced in several diseases including those which affect the female reproductive tract. These include endometriosis, Asherman's syndrome, endometrial cancers, and ovarian cancers. Additionally, recent studies from our laboratory suggest that CXCL12 signaling is involved in leiomyomas (fibroids). These diseases present an inflammatory/hypoxic environment which further promotes pathology. At first, studies focused on signaling by CXCL12 via its well-known receptor, CXCR4. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in endometrial disease and cancer progression has questioned the potential of "selective blockade"' of CXCR4 to treat these ailments. This review will focus on the signaling and effects of the potent chemokine CXCL12, and its long-known G protein-coupled receptor CXCR4, as well as the alternate receptor CXCR7 on the female reproductive tract and related diseases such as endometriosis, Asherman's syndrome, leiomyomas, endometrial cancer, and ovarian cancer. Although several other mechanisms are inherent to these diseases such as gene mutations, differential expression of miRNAs and epigenetics, for this review, we will focus on the CXCL12/CXCR4/CXCR7 axis as a novel target.
Collapse
Affiliation(s)
- Graciela Krikun
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
23
|
Pluchino N, Mamillapalli R, Moridi I, Tal R, Taylor HS. G-Protein-Coupled Receptor CXCR7 Is Overexpressed in Human and Murine Endometriosis. Reprod Sci 2018; 25:1168-1174. [PMID: 29587613 DOI: 10.1177/1933719118766256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endometriosis is a chronic inflammatory disease. Dysfunctional regulation of chemokines and chemokine receptors is a crucial aspect of endometriosis pathogenesis. Chemokine G-protein-coupled receptors (GPCRs) are important drug targets that regulate inflammation and immunity. Recently, CXCR7, a C-X-C motif containing GPCR, has been identified as a receptor for chemokine ligand CXCL12, one of the best characterized chemokines for cell trafficking, angiogenesis, and cell proliferation in cancer and inflammation. Here, we investigated the expression and localization of CXCR7 in human endometriosis and a murine model of the disease. Normal endometrial epithelium and stroma showed undetectable or very low expression of CXCR7, without any significant changes across phases of the menstrual cycle in humans. CXCR7 is significantly upregulated in endometriosis, showing higher staining in glands and in associated vessels. The mouse model recapitulated the human findings. In conclusion, overexpression of CXCR7 in different cellular populations of endometriosis microenvironment may play a role in the pathogenesis and represent a novel target for treatment.
Collapse
Affiliation(s)
- Nicola Pluchino
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ramanaiah Mamillapalli
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Irene Moridi
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Reshef Tal
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Agrawal S, Tapmeier T, Rahmioglu N, Kirtley S, Zondervan K, Becker C. The miRNA Mirage: How Close Are We to Finding a Non-Invasive Diagnostic Biomarker in Endometriosis? A Systematic Review. Int J Mol Sci 2018; 19:ijms19020599. [PMID: 29463003 PMCID: PMC5855821 DOI: 10.3390/ijms19020599] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/27/2022] Open
Abstract
Background: Endometriosis is a common disorder of the reproductive age group, characterised by the presence of ectopic endometrial tissue. The disease not only causes enormous suffering to the affected women, but also brings a tremendous medical and economic burden to bear on society. There is a long lag phase between the onset and diagnosis of the disease, mainly due to its non-specific symptoms and the lack of a non-invasive test. Endometriosis can only be diagnosed invasively by laparoscopy. A specific, non-invasive test to diagnose endometriosis is an unmet clinical need. The recent discovery of microRNAs (miRNAs) as modulators of gene expression, and their stability and specificity, make them an attractive candidate biomarker. Various studies on miRNAs in endometriosis have identified their cardinal role in the pathogenesis of the disease, and have proposed them as potential biomarkers in endometriosis. Rationale/Objectives: The aims of this review were to study the role of circulatory miRNAs in endometriosis, and bring to light whether circulatory miRNAs could be potential non-invasive biomarkers to diagnose the disease. Search methods: Three databases, PubMed, EMBASE, and BIOSIS were searched, using a combination of Mesh or Emtree headings and free-text terms, to identify literature relating to circulating miRNAs in endometriosis published from 1996 to 31 December 2017. Only peer-reviewed, full-text original research articles in English were included in the current review. The studies meeting the inclusion criteria were critically assessed and checked using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool. The dysregulated miRNAs were assessed regarding the concordance between the various studies and their role in the disease. Outcomes: Nine studies were critically analysed, and 42 different miRNAs were found to be dysregulated in them, with only one common miRNA (miR-20a) differentially expressed in more than one study. miR-17-5p/20a, miR-200, miR-199a, miR-143, and miR-145 were explored for their pivotal role in the aetiopathogenesis of endometriosis. Wider implications: It is emerging that miRNAs play a central role in the pathogenesis of endometriosis and have the potential of being promising biomarkers. Circulating miRNAs as a non-invasive diagnostic tool may shorten the delay in the diagnosis of the disease, thus alleviating the suffering of women and reducing the burden on health care systems. However, despite numerous studies on circulating miRNAs in endometriosis, no single miRNA or any panel of them seems to meet the criteria of a diagnostic biomarker. The disagreement between the various studies upholds the demand of larger, well-controlled systematic validation studies with uniformity in the research approaches and involving diverse populations.
Collapse
Affiliation(s)
- Swati Agrawal
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;.
| | - Thomas Tapmeier
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;.
| | - Nilufer Rahmioglu
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK.
| | - Shona Kirtley
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX1 2JD, UK.
| | - Krina Zondervan
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;.
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK.
| | - Christian Becker
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;.
| |
Collapse
|
25
|
Nematian SE, Mamillapalli R, Kadakia TS, Majidi Zolbin M, Moustafa S, Taylor HS. Systemic Inflammation Induced by microRNAs: Endometriosis-Derived Alterations in Circulating microRNA 125b-5p and Let-7b-5p Regulate Macrophage Cytokine Production. J Clin Endocrinol Metab 2018; 103:64-74. [PMID: 29040578 DOI: 10.1210/jc.2017-01199] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/03/2017] [Indexed: 02/05/2023]
Abstract
CONTEXT Endometriosis is characterized by aberrant inflammation. We previously reported increased levels of microRNA (miRNA) 125b-5p and decreased levels of miRNA Let-7b-5p in serum of patients with endometriosis. OBJECTIVE Determine the regulatory function of miRNAs 125b-5p and Let-7b-5p on production of proinflammatory cytokines in endometriosis. DESIGN Case-control study. SETTING University hospital. PATIENTS Women with (20) and without (26) endometriosis; human U937 macrophage cell line. INTERVENTION Sera were collected from surgically diagnosed patients and differentiated U937 cells that were transfected with miRNAs 125b-5p and Let-7b-5p mimics and inhibitor. MAIN OUTCOME MEASURES Enzyme-linked immunosorbent assay for tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and IL-1β levels and quantitative real-time polymerase chain reaction for expression of miRNAs 125b-5p and Let-7b-5p in sera of patients with and without endometriosis. Transfected macrophages were evaluated for expression of inflammatory cytokines, intracellular production, and secretion of these cytokines. RESULTS We noted substantial elevation of TNF-α, IL-1β, and IL-6, marked upregulation of miRNA 125b, and considerable downregulation of Let-7b in sera of patients with endometriosis vs control. There was a positive correlation between miRNA 125b levels and TNF-α, IL-1β, and IL-6 and a negative correlation between miRNA Let-7b levels and TNF-α in sera of patients with endometriosis. Transfection experiments showed a noteworthy upregulation of TNF-α, IL-1β, IL-6, and IL-8 in macrophages transfected with miRNA 125b mimic or Let-7b inhibitor. The secreted cytokine protein levels and intracellular imaging studies closely correlate with the messenger RNA changes. CONCLUSIONS Endometriosis-derived miRNAs regulate macrophage cytokine production that contributes to inflammation associated with this condition.
Collapse
Affiliation(s)
- Sepide E Nematian
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Ramanaiah Mamillapalli
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Trisha S Kadakia
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Obstetrics & Gynecology, Mount Sinai Beth Israel Medical Center, New York, New York
| | - Masoumeh Majidi Zolbin
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Sarah Moustafa
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
26
|
Sultana S, Kajihara T, Mizuno Y, Sato T, Oguro T, Kimura M, Akita M, Ishihara O. Overexpression of microRNA-542-3p attenuates the differentiating capacity of endometriotic stromal cells. Reprod Med Biol 2017; 16:170-178. [PMID: 29259466 PMCID: PMC5661816 DOI: 10.1002/rmb2.12028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022] Open
Abstract
Aim Endometriosis is defined as the presence of endometrial glandular and stromal cells outside of the uterine cavity. A previous study reported that microRNA (miR)‐542‐3p plays a critical role in eutopic endometrial decidualization. This study aims to clarify the potential role of miR‐542‐3p and the target gene, IGFBP‐1 (insulin‐like growth factor‐binding protein 1), in the impairment of the decidualizing capacity of human ectopic endometrial stromal cells (HEcESCs). Methods In vitro analysis of primary undifferentiated and decidualizing human eutopic endometrial stromal cells (HEuESCs) and HEcESCs was conducted. The primary HEuESCs or HEcESCs were expanded in culture and decidualized with 8‐bromo‐cyclic adenosine monophosphate (8‐bromo‐cAMP) and medroxyprogesterone acetate (MPA). Results The morphological and biological differentiating capacities of the HEcESCs were markedly impaired. In contrast to the HEuESCs, the HEcESCs that were treated with the decidual stimulus retained the mesenchymal phenotype and capacity for migration. The down‐regulation of miR‐542‐3p in the HEcESCs treatment with 8‐bromo‐cAMP and MPA was much weaker than that of the HEuESCs. High expression of miR‐542‐3p led to a significant decrease in the expression of IGFBP1 in the HEcESCs. Conclusion Impairment of the differentiating capacity by the overexpression of miR‐542‐3p could influence the capacity for migration and invasion of endometriotic cells in an ectopic environment.
Collapse
Affiliation(s)
- Shamima Sultana
- Department of Obstetrics and Gynecology Saitama Medical University Moroyama Japan
| | - Takeshi Kajihara
- Department of Obstetrics and Gynecology Saitama Medical University Moroyama Japan
| | - Yumi Mizuno
- Department of Obstetrics and Gynecology Saitama Medical University Moroyama Japan
| | - Tomomi Sato
- Department of Obstetrics and Gynecology Saitama Medical University Moroyama Japan.,Department of Anatomy Saitama Medical University Moroyama Japan
| | - Tatsuo Oguro
- Division of Morphological and Biomolecular Research Nippon Medical School Tokyo Japan
| | - Machiko Kimura
- Department of Obstetrics and Gynecology Saitama Medical University Moroyama Japan
| | - Masumi Akita
- Division of Morphological Science Faculty of Medicine Biomedical Research Center Saitama Medical University Moroyama Japan
| | - Osamu Ishihara
- Department of Obstetrics and Gynecology Saitama Medical University Moroyama Japan
| |
Collapse
|
27
|
Joshi NR, Miyadahira EH, Afshar Y, Jeong JW, Young SL, Lessey BA, Serafini PC, Fazleabas AT. Progesterone Resistance in Endometriosis Is Modulated by the Altered Expression of MicroRNA-29c and FKBP4. J Clin Endocrinol Metab 2017; 102:141-149. [PMID: 27778641 PMCID: PMC5413101 DOI: 10.1210/jc.2016-2076] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/21/2016] [Indexed: 01/21/2023]
Abstract
CONTEXT Endometriosis results in aberrant gene expression in the eutopic endometrium (EuE) and subsequent progesterone resistance. MicroRNA (miR) microarray data in a baboon model of endometriosis showed an increased expression of miR-29c. OBJECTIVES To explore the role of miR-29c in progesterone resistance in a subset of women with endometriosis. DESIGN MiR-29c expression was analyzed in the endometrium of baboons and women with or without endometriosis. The role in progesterone resistance and decidualization was analyzed by transfecting human uterine fibroblast cells with miR-29c. PATIENTS Subjects diagnosed with deep infiltrative endometriosis (DIE) by transvaginal ultrasound with bowel preparation underwent surgical excision of endometriosis. Eutopic secretory endometrium was collected pre- and postoperatively. Women with normal EuE and without DIE served as controls. RESULTS Quantitative reverse transcription polymerase chain reaction demonstrated that miR-29c expression increased, while the transcript levels of its target, FK506-binding protein 4 (FKBP4), decreased in the EuE of baboons following the induction of endometriosis. FKBP4 messenger RNA and decidual markers were statistically significantly decreased in decidualized human uterine fibroblast cells transfected with a miR-29c mimic compared with controls. Human data corroborated our baboon data and demonstrated higher expression of miR-29c in endometriosis EuE compared with normal EuE. MiR-29c was significantly decreased in endometriosis EuE postoperatively compared with preoperative tissues, and FKBP4 showed an inverse trend following radical laparoscopic resection surgery. CONCLUSIONS We demonstrate that miR-29c expression is increased in EuE of baboons and women with endometriosis, which might contribute to a compromised progesterone response by diminishing the levels of FKBP4. Resection of DIE is likely to reverse the progesterone resistance associated with endometriosis in women.
Collapse
Affiliation(s)
- Niraj R. Joshi
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan 49503;
| | | | - Yalda Afshar
- Department of Obstetrics and Gynecology, University of California, Los Angeles, California 90095;
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan 49503;
| | - Steven L. Young
- Department of Obstetrics and Gynecology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | - Bruce A. Lessey
- Greenville Hospital System, University of South Carolina School of Medicine, Greenville, South Carolina 29605; and
| | - Paulo C. Serafini
- Discipline of Gynecology, Department of Obstetrics and Gynecology, Hospital das clinicas, faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan 49503;
| |
Collapse
|
28
|
Goetz TG, Mamillapalli R, Taylor HS. Low Body Mass Index in Endometriosis Is Promoted by Hepatic Metabolic Gene Dysregulation in Mice. Biol Reprod 2016; 95:115. [PMID: 27628219 PMCID: PMC5315422 DOI: 10.1095/biolreprod.116.142877] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/26/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
The gynecological disease endometriosis is characterized by the deposition and proliferation of endometrial cells outside the uterus and clinically is linked to low body mass index (BMI). Gene expression in the liver of these women has not been reported. We hypothesized that endometriosis may impact hepatic gene expression, promoting a low BMI. To determine the effect of endometriosis on liver gene expression, we induced endometriosis in female mice by suturing donor mouse endometrium into the peritoneal cavity and measuring the weight of these mice. Dual-energy X-ray absorptiometry (DEXA) scanning of these mice showed lower body weight and lower total body fat than controls. Microarray analysis identified 26 genes differentially regulated in the livers of mice with endometriosis. Six of 26 genes were involved in metabolism. Four of six genes were upregulated and were related to weight loss, whereas two genes were downregulated and linked to obesity. Expression levels of Cyp2r1, Fabp4, Mrc1, and Rock2 were increased, whereas Igfbp1 and Mmd2 expression levels were decreased. Lep and Pparg, key metabolic genes in the pathways of the six genes identified from the microarray, were also upregulated. This dysregulation was specific to metabolic pathways. Here we demonstrate that endometriosis causes reduced body weight and body fat and disrupts expression of liver genes. We suggest that altered metabolism mediated by the liver contributes to the clinically observed low BMI that is characteristic of women with endometriosis. These findings reveal the systemic and multiorgan nature of endometriosis.
Collapse
Affiliation(s)
- Teddy G Goetz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
29
|
Lou Y, Hu M, Mao L, Zheng Y, Jin F. Involvement of serum glucocorticoid-regulated kinase 1 in reproductive success. FASEB J 2016; 31:447-456. [PMID: 27871060 DOI: 10.1096/fj.201600760r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
Reproductive processes, in particular events that concern pregnancy, are fine-tuned to produce offspring. Reproductive success is of prime importance for the survival of every species. The highly conserved and ubiquitously expressed serum glucocorticoid-regulated kinase 1 (SGK1) was first implicated in infertility as a regulator of a Na+ channel. In this review, we emphasize the prominent role of SGK1 during early pregnancy: 1) balancing uterine luminal fluid secretion and reabsorption to aid blastocyst adhesion and to import nutrients and energy; 2) transducing signals from the blastocyst to the receptive endometrium; 3) inducing multiple genes that are involved in uterine receptivity and trophoblast invasion; 4) regulating cell differentiation and antioxidant defenses at the fetomaternal interface; and 5) contributing to the proliferation and survival of decidual stromal cells. Accordingly, SGK1 coordinates many cellular processes that are crucial to reproductive activities. Aberrant expression or function of SGK1 results in implantation failure and early pregnancy loss. Further investigation of the molecular mechanisms of the function of SGK1 might provide novel diagnostic tools and interventions for reproductive complications.-Lou, Y., Hu, M., Mao, L., Zheng, Y., Jin, F. Involvement of serum glucocorticoid-regulated kinase 1 in reproductive success.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China.,Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Luna Mao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yingming Zheng
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China; .,Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Zhejiang, China.,Key Laboratory of Reproductive Genetics, National Ministry of Education, Zhejiang University, Zhejiang, China.,Women's Reproductive Health Laboratory of Zhejiang Province, National Ministry of Education, Zhejiang University, Zhejiang, China
| |
Collapse
|
30
|
Houshdaran S, Nezhat CR, Vo KC, Zelenko Z, Irwin JC, Giudice LC. Aberrant Endometrial DNA Methylome and Associated Gene Expression in Women with Endometriosis. Biol Reprod 2016; 95:93. [PMID: 27535958 PMCID: PMC5178151 DOI: 10.1095/biolreprod.116.140434] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/10/2016] [Indexed: 12/17/2022] Open
Abstract
Endometriosis is an estrogen-dependent, progesterone-resistant disorder largely derived from retrograde transplantation of menstrual tissue/cells into the pelvis, eliciting an inflammatory response, pelvic pain, and infertility. Eutopic endometrium (within the uterus), giving rise to pelvic disease, displays cycle-dependent transcriptomic, proteomic, and signaling abnormalities, and although its DNA methylation profiles dynamically change across the cycle in healthy women, studies in endometriosis are limited. Herein, we investigated the DNA methylome and associated gene expression in three phases of the cycle in eutopic endometrium of women with severe endometriosis versus controls, matched for ethnicity, medications, smoking, and no recent contraceptive steroid use. Genome-wide DNA methylation and gene expression were coassessed in each sample. Cycle phase was determined by histology, serum hormone levels, and unsupervised principal component and hierarchical cluster analyses of microarray data. Altered endometrial DNA methylation in endometriosis was most prominent in the midsecretory phase (peak progesterone), with disruption of the normal pattern of cycle-dependent DNA methylation changes, including a bias toward methylation of CpG islands, suggesting wide-range abnormalities of the chromatin remodeling machinery in endometriosis. DNA methylation changes were associated with altered gene expression relevant to endometrial function/dysfunction, including cell proliferation, inflammation/immune response, angiogenesis, and steroid hormone response. The data provide insight into epigenetic reprogramming and steroid hormone actions in endometrium contributing to the pathogenesis and pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Sahar Houshdaran
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California
| | - Camran R Nezhat
- Center for Special Minimally Invasive and Robotic Surgery, Palo Alto, California
| | - Kim Chi Vo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California
| | - Zara Zelenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California
| | - Juan C Irwin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California
| |
Collapse
|
31
|
Cosar E, Mamillapalli R, Ersoy GS, Cho S, Seifer B, Taylor HS. Serum microRNAs as diagnostic markers of endometriosis: a comprehensive array-based analysis. Fertil Steril 2016; 106:402-9. [PMID: 27179784 DOI: 10.1016/j.fertnstert.2016.04.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate serum microRNAs (miRNAs) in women with endometriosis. DESIGN Case-control study. SETTING University hospital. PATIENT(S) Women with (n = 24) and without (n = 24) endometriosis. INTERVENTION(S) Serum samples were obtained from surgically diagnosed subjects. MAIN OUTCOME MEASURE(S) miRNA from women with without endometriosis were used for microarray profiling and confirmed by means of quantitative real-time polymerase chain reaction (qRT-PCR). Receiver operating characteristic (ROC) analysis was performed on differentially expressed miRNAs. RESULT(S) miR-3613-5p, miR-6755-3p were down-regulated and miR-125b-5p, miR-150-5p, miR-342-3p, miR-143-3p, miR-145-5p, miR-500a-3p, miR-451a, miR-18a-5p were up-regulated more than 10-fold in the microarray. These results were confirmed with the use of qRT-PCR. Among the differentially expressed miRNAs, miR-125b-5p expression levels had the highest area under the ROC curve (AUC). The maximum AUC score of 1.000 was achieved when combining miR-125b-5p, miR-451a, and miR-3613-5p with the use of a logistic regression model. CONCLUSION(S) We identified several miRNAs in serum that distinguished subjects with endometriosis from those without. miR-125b-5p had the greatest potential as a single diagnostic biomarker. A combination of that miRNA with miR-451a and miR-3613-5p further improved diagnostic performance.
Collapse
Affiliation(s)
- Emine Cosar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.
| | - Gulcin Sahin Ersoy
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - SihYun Cho
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Benjamin Seifer
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|