1
|
Zhang L, Liu K, Liu Z, Tao H, Fu X, Hou J, Jia G, Hou Y. In pre-clinical study fetal hypoxia caused autophagy and mitochondrial impairment in ovary granulosa cells mitigated by melatonin supplement. J Adv Res 2024; 64:15-30. [PMID: 37956860 PMCID: PMC11464463 DOI: 10.1016/j.jare.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Fetal hypoxia has long-term effects on postnatal reproductive functions and the mitochondrial impairments of ovarian granulosa cells may be one of the causes. Melatonin applied to mitigate mitochondrial dysfunction and autophagy in mammalian cells has been reported. However, the potential mechanisms by which fetal hypoxia damages reproductive function in neonatal female mice and the melatonin effects on this problem remain unclear. OBJECTIVES This research aimed to explore the mechanism that fetal hypoxia damages reproductive function in neonatal female mice and attempt to improve the reproductive function by treating with melatonin in vivo and in vitro. METHODS We established a fetal hypoxia model and confirmed that fetal hypoxia affects ovarian function by inducing GC excessive autophagy. Transcriptomic analysis, gene interference, cell immunofluorescence, immunohistochemistry and western blot were conducted to explore and verify the underlying mechanisms in mice GCs and KGN cells. Finally, melatonin treatment was executed on hypoxia-treated mice GCs and KGN cells and melatonin injection to fetal-hypoxia-treated mice to determine its effect. RESULTS The results of in vitro experiments found that fetal hypoxia led to mitochondrial dysfunction in ovarian GCs causing autophagic cell death. And the PI3K/Akt/FoxO pathway mediated the occurrence of this process by transcriptome analysis of ovarian GCs from normal and fetal hypoxia mice, which was further verified in mice GCs and KGN cells. Additionally, melatonin administration prevented autophagic injuries and mitochondrial impairments in hypoxia-treated mice GCs and KGN cells. Meanwhile, in vivo experiments by melatonin injection ameliorated oxidative stress of ovary in fetal-hypoxia-treated mice and improved their low fertility. CONCLUSION Our data found that fetal hypoxia causes ovarian GCs excessive autophagy leading to low fertility in neonatal female mice and mitigated by melatonin. These results provide a potential therapy for hypoxic stress-related reproductive disorders.
Collapse
Affiliation(s)
- Luyao Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Kexiong Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiqiang Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haiping Tao
- University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jian Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gongxue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Monnin N, Fattet AJ, Koscinski I. Endometriosis: Update of Pathophysiology, (Epi) Genetic and Environmental Involvement. Biomedicines 2023; 11:biomedicines11030978. [PMID: 36979957 PMCID: PMC10046867 DOI: 10.3390/biomedicines11030978] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Endometriosis is a chronic disease caused by ectopic endometrial tissue. Endometriotic implants induce inflammation, leading to chronic pain and impaired fertility. Characterized by their dependence on estradiol (via estrogen receptor β (ESRβ)) and their resistance to progesterone, endometriotic implants produce their own source of estradiol through active aromatase. Steroidogenic factor-1 (SF1) is a key transcription factor that promotes aromatase synthesis. The expression of SF1 and ESRβ is enhanced by the demethylation of their promoter in progenitor cells of the female reproductive system. High local concentrations of estrogen are involved in the chronic inflammatory environment favoring the implantation and development of endometriotic implants. Similar local conditions can promote, directly and indirectly, the appearance and development of genital cancer. Recently, certain components of the microbiota have been identified as potentially promoting a high level of estrogen in the blood. Many environmental factors are also suspected of increasing the estrogen concentration, especially prenatal exposure to estrogen-like endocrine disruptors such as DES and bisphenol A. Phthalates are also suspected of promoting endometriosis but throughmeans other than binding to estradiol receptors. The impact of dioxin or tobacco seems to be more controversial.
Collapse
Affiliation(s)
- Nicolas Monnin
- Majorelle Clinic, Atoutbio Laboratory, Laboratory of Biology of Reproduction, 54000 Nancy, France
| | - Anne Julie Fattet
- Majorelle Clinic, Atoutbio Laboratory, Laboratory of Biology of Reproduction, 54000 Nancy, France
| | - Isabelle Koscinski
- Laboratory of Biology of Reproduction, Hospital Saint Joseph, 13008 Marseille, France
- NGERE Inserm 1256, 54505 Vandoeuvre les Nancy, France
| |
Collapse
|
3
|
Muacevic A, Adler JR. Effects of Pollution on Pregnancy and Infants. Cureus 2023; 15:e33906. [PMID: 36819435 PMCID: PMC9937639 DOI: 10.7759/cureus.33906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
The fetus is particularly susceptible to environmental contaminants as it is developing at the time of pregnancy and is, therefore, more susceptible to their effects. Pregnancy loss, which includes stillbirth and spontaneous abortion (miscarriage), preterm labor and delivery, and neonatal death, is the worst pregnancy outcome. Stunting and its related health and developmental effects are particularly common in populations living in underdeveloped countries or those exposed to high levels of particle pollution. Several environmental toxins can affect an embryo, fetus, or infant as they are developing. This study explores the following questions: What part do pesticides, heavy metals, dioxin derivatives, and polychlorinated diphenyl compounds play as macroenvironmental pollutants in mutagenesis and teratogenesis? What effects do substances that exposed persons have considerable control over, such as alcohol, narcotics, and tobacco smoke, have on the microenvironment? What consequences should practitioners be aware of these toxins in terms of ethics and the law? This study seeks to assess pertinent primary scientific studies on how pollution affects the health of the fetus and newborn during pregnancy.
Collapse
|
4
|
Talwar C, Singh V, Kommagani R. The Gut Microbiota: A Double Edge Sword in Endometriosis. Biol Reprod 2022; 107:881-901. [PMID: 35878972 PMCID: PMC9562115 DOI: 10.1093/biolre/ioac147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Endometriosis that afflicts 1 in 10 women of reproductive age is characterized by growth of endometrial tissue in the extra-uterine sites and encompasses metabolic-, immunologic- and endocrine-disruption. Importantly, several comorbidities are associated with endometriosis, especially autoimmune disorders such as inflammatory bowel disease. Primarily thought of as a condition arising from retrograde menstruation, emerging evidence uncovered a functional link between the gut microbiota and endometriosis. Specifically, recent findings revealed altered gut microbiota profiles in endometriosis and in turn this altered microbiota appears to be causal in the disease progression, implying a bi-directional crosstalk. In this review, we discuss the complex etiology and pathogenesis of endometriosis emphasizing on this recently recognized role of gut microbiome. We review the gut microbiome structure and functions and its complex network of interactions with the host for maintenance of homeostasis that is crucial for disease prevention. We highlight the underlying mechanisms on how some bacteria promotes disease progression and others protects against endometriosis. Further, we highlight the areas that require future emphases in the gut microbiome-endometriosis nexus and the potential microbiome-based therapies for amelioration of endometriosis.
Collapse
Affiliation(s)
- Chandni Talwar
- Department of Pathology and Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vertika Singh
- Department of Pathology and Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Environmental Factors and Endometriosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111025. [PMID: 34769544 PMCID: PMC8582818 DOI: 10.3390/ijerph182111025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Endometriosis is a common disease, affecting up to 60-80% of women, with pelvic pain or/and infertility. Despite years of studies, its pathogenesis still remains enigmatic. Genetic, hormonal, environmental, and lifestyle-related factors may be involved in its pathogenesis. Thus, the design of the review was to discuss the possible role of environmental factors in the development of endometriosis. The results of individual studies greatly differ, making it very difficult to draw any definite conclusions. There is no reasonable consistency in the role of environmental factors in endometriosis etiopathogenesis.
Collapse
|
6
|
Brassica Bioactives Could Ameliorate the Chronic Inflammatory Condition of Endometriosis. Int J Mol Sci 2020; 21:ijms21249397. [PMID: 33321760 PMCID: PMC7763502 DOI: 10.3390/ijms21249397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic, inflammatory, hormone-dependent disease characterized by histological lesions produced by the presence of endometrial tissue outside the uterine cavity. Despite the fact that an estimated 176 million women are affected worldwide by this gynecological disorder, risk factors that cause endometriosis have not been properly defined and current treatments are not efficient. Although the interaction between diet and human health has been the focus of many studies, little information about the correlation of foods and their bioactive derivates with endometriosis is available. In this framework, Brassica crops have emerged as potential candidates for ameliorating the chronic inflammatory condition of endometriosis, due to their abundant content of health-promoting compounds such as glucosinolates and their hydrolysis products, isothiocyanates. Several inflammation-related signaling pathways have been included among the known targets of isothiocyanates, but those involving aquaporin water channels have an important role in endometriosis. Therefore, the aim of this review is to highlight the promising effects of the phytochemicals present in Brassica spp. as major candidates for inclusion in a dietary approach aiming to improve the inflammatory condition of women affected with endometriosis. This review points out the potential roles of glucosinolates and isothiocyanates from Brassicas as anti-inflammatory compounds, which might contribute to a reduction in endometriosis symptoms. In view of these promising results, further investigation of the effect of glucosinolates on chronic inflammatory diseases, either as diet coadjuvants or as therapeutic molecules, should be performed. In addition, we highlight the involvement of aquaporins in the maintenance of immune homeostasis. In brief, glucosinolates and the modulation of cellular water by aquaporins could shed light on new approaches to improve the quality of life for women with endometriosis.
Collapse
|
7
|
García-Peñarrubia P, Ruiz-Alcaraz AJ, Martínez-Esparza M, Marín P, Machado-Linde F. Hypothetical roadmap towards endometriosis: prenatal endocrine-disrupting chemical pollutant exposure, anogenital distance, gut-genital microbiota and subclinical infections. Hum Reprod Update 2020; 26:214-246. [PMID: 32108227 DOI: 10.1093/humupd/dmz044] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometriosis is a gynaecological hormone-dependent disorder that is defined by histological lesions generated by the growth of endometrial-like tissue out of the uterus cavity, most commonly engrafted within the peritoneal cavity, although these lesions can also be located in distant organs. Endometriosis affects ~10% of women of reproductive age, frequently producing severe and, sometimes, incapacitating symptoms, including chronic pelvic pain, dysmenorrhea and dyspareunia, among others. Furthermore, endometriosis causes infertility in ~30% of affected women. Despite intense research on the mechanisms involved in the initial development and later progression of endometriosis, many questions remain unanswered and its aetiology remains unknown. Recent studies have demonstrated the critical role played by the relationship between the microbiome and mucosal immunology in preventing sexually transmitted diseases (HIV), infertility and several gynaecologic diseases. OBJECTIVE AND RATIONALE In this review, we sought to respond to the main research question related to the aetiology of endometriosis. We provide a model pointing out several risk factors that could explain the development of endometriosis. The hypothesis arises from bringing together current findings from large distinct areas, linking high prenatal exposure to environmental endocrine-disrupting chemicals with a short anogenital distance, female genital tract contamination with the faecal microbiota and the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. SEARCH METHODS We performed a search of the scientific literature published until 2019 in the PubMed database. The search strategy included the following keywords in various combinations: endometriosis, anogenital distance, chemical pollutants, endocrine-disrupting chemicals, prenatal exposure to endocrine-disrupting chemicals, the microbiome of the female reproductive tract, microbiota and genital tract, bacterial vaginosis, endometritis, oestrogens and microbiota and microbiota-immune system interactions. OUTCOMES On searching the corresponding bibliography, we found frequent associations between environmental endocrine-disrupting chemicals and endometriosis risk. Likewise, recent evidence and hypotheses have suggested the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. Hence, we can envisage a direct relationship between higher prenatal exposure to oestrogens or estrogenic endocrine-disrupting compounds (phthalates, bisphenols, organochlorine pesticides and others) and a shorter anogenital distance, which could favour frequent postnatal episodes of faecal microbiota contamination of the vulva and vagina, producing cervicovaginal microbiota dysbiosis. This relationship would disrupt local antimicrobial defences, subverting the homeostasis state and inducing a subclinical inflammatory response that could evolve into a sustained immune dysregulation, closing the vicious cycle responsible for the development of endometriosis. WIDER IMPLICATIONS Determining the aetiology of endometriosis is a challenging issue. Posing a new hypothesis on this subject provides the initial tool necessary to design future experimental, clinical and epidemiological research that could allow for a better understanding of the origin of this disease. Furthermore, advances in the understanding of its aetiology would allow the identification of new therapeutics and preventive actions.
Collapse
Affiliation(s)
- Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Pilar Marín
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB, Murcia, Spain
| | - Francisco Machado-Linde
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Reina Sofía, CARM, Murcia, Spain
| |
Collapse
|
8
|
Filby CE, Rombauts L, Montgomery GW, Giudice LC, Gargett CE. Cellular Origins of Endometriosis: Towards Novel Diagnostics and Therapeutics. Semin Reprod Med 2020; 38:201-215. [DOI: 10.1055/s-0040-1713429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractEndometriosis remains an enigmatic disease of unknown etiology, with delayed diagnosis and poor therapeutic options. This review will discuss the cellular, physiological, and genomic evidence of Sampson's hypothesis of retrograde menstruation as a cause of pelvic endometriosis and as the basis of phenotypic heterogeneity of the disease. We postulate that collaborative research at the single cell level focused on unlocking the cellular, physiological, and genomic mechanisms of endometriosis will be accompanied by advances in personalized diagnosis and therapies that target unique subtypes of endometriosis disease. These advances will address the clinical conundrums of endometriosis clinical care—including diagnostic delay, suboptimal treatments, disease recurrence, infertility, chronic pelvic pain, and quality of life. There is an urgent need to improve outcomes for women with endometriosis. To achieve this, it is imperative that we understand which cells form the lesions, how they arrive at distant sites, and what factors govern their ability to survive and invade at ectopic locations. This review proposes new research avenues to address these basic questions of endometriosis pathobiology that will lay the foundations for new diagnostic tools and treatment pathways.
Collapse
Affiliation(s)
- Caitlin E. Filby
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Luk Rombauts
- Department of Obstetrics and Gynaecology, Monash University, Reproductive Medicine at Women's Health, Monash Health, Monash IVF, Melbourne, Victoria, Australia
| | - Grant W. Montgomery
- UQ Genome Innovation Hub, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Linda C. Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, California
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Horton J, Sterrenburg M, Lane S, Maheshwari A, Li TC, Cheong Y. Reproductive, obstetric, and perinatal outcomes of women with adenomyosis and endometriosis: a systematic review and meta-analysis. Hum Reprod Update 2020; 25:592-632. [PMID: 31318420 DOI: 10.1093/humupd/dmz012] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/02/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The reproductive impact of adenomyosis and endometriosis is widely researched but the extent of these impacts remains elusive. It has been demonstrated that endometriosis, in particular, is known to result in subfertility but endometriosis and adenomyosis are increasingly linked to late pregnancy complications such as those caused by placental insufficiency. At the molecular level, the presence of ectopic endometrium perturbs the endometrial hormonal, cellular, and immunological milieu, negatively influencing decidualization, placentation, and developmental programming of the embryo. It is unclear if and how such early aberrant reproductive development relates to pregnancy outcomes in endometriosis and adenomyosis. OBJECTIVE AND RATIONALE The aims of this systematic review and meta-analysis were to (i) investigate the association of adenomyosis and endometriosis with fertility, obstetric, and neonatal outcomes of women through both assisted reproduction and natural conception and (ii) determine whether endometriosis disease subtypes have specific impacts on different stages of the reproductive process. SEARCH METHODS A systematic literature review of NHS evidence electronic databases and the Cochrane database identified all comparative and observational studies between 1980 and December 2018 in any language on adenomyosis and endometriosis with fertility, obstetric, and neonatal outcomes (23 search terms used). A total of 104 papers were selected for data extraction and meta-analysis, with use of Downs and Black standardized checklist to evaluate quality and bias. OUTCOMES We found that endometriosis consistently leads to reduced oocyte yield and a reduced fertilization rate (FR), in line with current evidence. Milder forms of endometriosis were most likely to affect the fertilization (FR OR 0.77, CI 0.63-0.93) and earlier implantation processes (implantation rate OR 0.76, CI 0.62-0.93). The more severe disease by American Society for Reproductive Medicine staging (ASRM III and IV) influenced all stages of reproduction. Ovarian endometriosis negatively affects the oocyte yield (MD -1.22, CI -1.96, -0.49) and number of mature oocytes (MD -2.24, CI -3.4, -1.09). We found an increased risk of miscarriage in both adenomyosis and endometriosis (OR 3.40, CI 1.41-8.65 and OR 1.30, CI 1.25-1.35, respectively), and endometriosis can be associated with a range of obstetric and fetal complications including preterm delivery (OR 1.38, CI 1.01-1.89), caesarean section delivery (OR 1.98 CI 1.64-2.38), and neonatal unit admission following delivery (OR 1.29, CI 1.07-1.55). WIDER IMPLICATIONS Adenomyosis and the subtypes of endometriosis may have specific complication profiles though further evidence is needed to be able to draw conclusions. Several known pregnancy complications are likely to be associated with these conditions. The complications are possibly caused by dysfunctional uterine changes leading to implantation and placentation issues and therefore could potentially have far-reaching consequences as suggested by Barker's hypothesis. Our findings would suggest that women with these conditions should ideally receive pre-natal counselling and should be considered higher risk in pregnancy and at delivery, until evidence to the contrary is available. In order to expand our knowledge of these conditions and better advise on future management of these patients in reproductive and maternal medicine, a more unified approach to studying fertility and reproductive outcomes with longer term follow-up of the offspring and attention to the subtype of disease is necessary.
Collapse
Affiliation(s)
- Joanne Horton
- University of Southampton, Human Development and Health, Southampton, UK.,University of Southampton, Complete Fertility, Princess Anne Hospital, Southampton, UK
| | - Monique Sterrenburg
- University of Sheffield, Academic Unit of Medical, Sheffield, UK.,University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Obstetrics and Gynaecology, Sheffield, UK
| | - Simon Lane
- University of Southampton, Institute for Life Sciences, Southampton, UK
| | - Abha Maheshwari
- University of Aberdeen, Obstetrics and Gynaecology, Aberdeen, UK
| | - Tin Chiu Li
- Chinese University of Hong Kong, Department of Obstetrics and Gynaecology, Shatin, Hong Kong
| | - Ying Cheong
- University of Southampton, Human Development and Health, Southampton, UK.,University of Southampton, Complete Fertility, Princess Anne Hospital, Southampton, UK
| |
Collapse
|
10
|
Pivonello C, Muscogiuri G, Nardone A, Garifalos F, Provvisiero DP, Verde N, de Angelis C, Conforti A, Piscopo M, Auriemma RS, Colao A, Pivonello R. Bisphenol A: an emerging threat to female fertility. Reprod Biol Endocrinol 2020; 18:22. [PMID: 32171313 PMCID: PMC7071611 DOI: 10.1186/s12958-019-0558-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Bisphenol-A (BPA) has been reported to be associated to female infertility. Indeed, BPA has been found to be more frequently detected in infertile women thus leading to hypothesize a possible effect of BPA on natural conception and spontaneous fecundity. In addition, in procedures of medically assisted reproduction BPA exposure has been found to be negatively associated with peak serum estradiol levels during gonadotropin stimulation, number of retrieved oocytes, number of normally fertilized oocytes and implantation. BPA deleterious effects are more critical during perinatal exposure, causing dysregulation of hypothalamic-pituitary-ovarian axis in pups and adults, with a precocious maturation of the axis through a damage of GnRH pulsatility, gonadotropin signaling and sex steroid hormone production. Further, BPA exposure during early lifestage may have a transgenerational effect predisposing the subsequent generations to the risk of developing BPA related disease. Experimental studies suggested that prenatal, perinatal and postnatal exposure to BPA can impair several steps of ovarian development, induce ovarian morphology rearrangement and impair ovarian function, particularly folliculogenesis, as well as can impair uterus morphology and function, in female adult animal and offspring. Finally, studies carried out in animal models have been reported the occurrence of endometriosis-like lesions after BPA exposure. Moreover, BPA exposure has been described to encourage the genesis of PCOS-like abnormalities through the impairment of the secretion of sex hormones affecting ovarian morphology and functions, particularly folliculogenesis. The current manuscript summarizes the evidence regarding the association between BPA exposure and female infertility, reviewing both clinical and preclinical studies.
Collapse
Affiliation(s)
- Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy.
| | - Antonio Nardone
- Dipartimento di Sanità Pubblica, Università "Federico II" di Napoli, Naples, Italy
| | - Francesco Garifalos
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
| | - Donatella Paola Provvisiero
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- Dipartimento di Sanità Pubblica, Università "Federico II" di Napoli, Naples, Italy
- I.O.S. & COLEMAN Srl, Naples, Italy
| | - Nunzia Verde
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
| | - Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- Dipartimento di Sanità Pubblica, Università "Federico II" di Napoli, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- I.O.S. & COLEMAN Srl, Naples, Italy
| | - Alessandro Conforti
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università "Federico II" di Napoli, Naples, Italy
| | - Mariangela Piscopo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- Laboratory of Seminology-sperm bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", Università "Federico II" di Napoli, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", Università "Federico II" di Napoli, Naples, Italy
| |
Collapse
|
11
|
Liu S, Cui H, Zhang Q, Hua K. Influence of early-life factors on the development of endometriosis. EUR J CONTRACEP REPR 2019; 24:216-221. [PMID: 31055972 DOI: 10.1080/13625187.2019.1602723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Our aim was to study the association between early-life factors and the development of endometriosis. Methods: This case-control study included 440 women with surgically confirmed endometriosis (cases) and 880 women without endometriosis (controls). Information on early-life factors was ascertained retrospectively by in-person interviews with participants and their mothers. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between endometriosis and maternal and paternal characteristics and foetal and infant exposures were estimated using unconditional logistic regression, adjusting for frequency matching and confounding variables. Results: We observed that women who were not breastfed as infants had twice the risk of endometriosis compared with women who were breastfed (adjusted OR 2.0; 95% CI 1.6, 4.5). Our data suggested an increased endometriosis risk with neonatal vaginal bleeding (adjusted OR 1.9; 95% CI 1.2, 4.3) and paternal smoking (adjusted OR 1.8; 95% CI 1.1, 4.9). Although the CIs included the null hypothesis value, caesarean section (adjusted OR 1.7; 95% CI 1.0, 3.5) and prematurity (adjusted OR 1.4; 95% CI 0.8, 3.7) were probably associated with the incidence of endometriosis. Conclusions: Some early-life factors including breastfeeding, neonatal vaginal bleeding and paternal smoking were associated with subsequent, surgically confirmed endometriosis in this cohort of Chinese women.
Collapse
Affiliation(s)
- Songping Liu
- a Department of Obstetrics and Gynaecology , Zhenjiang Maternal and Child Health Hospital , Zhenjiang , China.,b Department of Gynaecology , Obstetrics and Gynaecology Hospital of Fudan University , Shanghai , China
| | - Hongyan Cui
- a Department of Obstetrics and Gynaecology , Zhenjiang Maternal and Child Health Hospital , Zhenjiang , China
| | - Qiong Zhang
- a Department of Obstetrics and Gynaecology , Zhenjiang Maternal and Child Health Hospital , Zhenjiang , China
| | - Keqin Hua
- b Department of Gynaecology , Obstetrics and Gynaecology Hospital of Fudan University , Shanghai , China
| |
Collapse
|
12
|
Yao M, Hu T, Wang Y, Du Y, Hu C, Wu R. Polychlorinated biphenyls and its potential role in endometriosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:837-845. [PMID: 28774553 DOI: 10.1016/j.envpol.2017.06.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
With the progress of global industrialization and environmental deterioration, the relationship between human health and the living environment has become an increasing focus of attention. Polychlorinated biphenyls (PCBs, including dioxin-like polychlorinated biphenyls and non-dioxin-like polychlorinated biphenyls), as part of the organic chlorine contaminants, have been suspected as playing a role in the etiopathogenesis of endometriosis. Several population-based studies have proposed that exposure to PCBs may increase the risk of developing endometriosis, while some epidemiological studies have failed to find any association between PCBs and endometriosis. The purpose of this review is to discuss the potential pathophysiological relationship between endometriosis and PCBs with a focus on both dioxin-like polychlorinated biphenyls and non-dioxin-like polychlorinated biphenyls.
Collapse
Affiliation(s)
- Mengyun Yao
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Tingting Hu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Yinfeng Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Yongjiang Du
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Changchang Hu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Ruijin Wu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China.
| |
Collapse
|
13
|
Maduro MR. In the Spotlight. Reprod Sci 2017. [DOI: 10.1177/1933719117710357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|