1
|
Koysombat K, Tsoutsouki J, Patel AH, Comninos AN, Dhillo WS, Abbara A. Kisspeptin and neurokinin B: roles in reproductive health. Physiol Rev 2025; 105:707-764. [PMID: 39813600 DOI: 10.1152/physrev.00015.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which coexpress NKB, regulate the activity of gonadotropin-releasing hormone (GnRH) neurons and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health. Over the last two decades, research findings have considerably enhanced our understanding of the physiological regulation of the hypothalamic-pituitary-gonadal (HPG) axis and identified potential therapeutic applications. For example, recognition of the role of kisspeptin as the natural inductor of ovulation has led to research investigating its use as a safer, more physiological trigger of oocyte maturation in in vitro fertilization (IVF) treatment. Moreover, the key role of NKB in the pathophysiology of menopausal hot flashes has led to the development of pharmacological antagonism of this pathway. Indeed, fezolinetant, a neurokinin 3 receptor antagonist, has recently received Food and Drug Administration (FDA) approval for clinical use to treat menopausal vasomotor symptoms. Here, we discuss the roles of kisspeptin and NKB in human physiology, including in the regulation of puberty, menstrual cyclicity, reproductive behavior, pregnancy, menopause, and bone homeostasis. We describe how perturbations of these key physiological processes can result in disease states and consider how kisspeptin and NKB could be exploited diagnostically as well as therapeutically to treat reproductive disorders.
Collapse
Affiliation(s)
- Kanyada Koysombat
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jovanna Tsoutsouki
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Aaran H Patel
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alexander N Comninos
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S Dhillo
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ali Abbara
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
2
|
Yang Q, Jia S, Tao J, Zhang J, Fan Z. Multiple effects of kisspeptin on neuroendocrine, reproduction, and metabolism in polycystic ovary syndrome. J Neuroendocrinol 2025; 37:e13482. [PMID: 39694850 DOI: 10.1111/jne.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a highly prevalent and heterogeneous disease characterized by a combination of reproductive and endocrine abnormalities, often associated with metabolic and mental health disorders. The etiology and pathogenesis of PCOS remain unclear, but recent research has increasingly focused on the upstream mechanisms underlying its development. Among these, kisspeptin (KISS) signaling has emerged as a pivotal component in the regulation of the hypothalamic-pituitary-gonadal axis, with significant roles in reproductive function, energy regulation, and metabolism. Women with PCOS commonly exhibit disruptions in gonadotropin secretion, including elevated luteinizing hormone (LH) levels, imbalanced LH/follicle-stimulating hormone (FSH) ratios, and increased androgen levels, all of which are usually parallel with abnormal KISS signaling. Furthermore, alterations in the KISS/KISS1R system within the central and circulatory systems, as well as peripheral tissues, have been implicated in the development of PCOS. These changes affect multiple pathophysiological domains, including reproductive function, energy regulation, metabolic homeostasis, inflammatory response, and emotional disorders, and are further influenced by lifestyle and environmental factors. This review aims to comprehensively summarize the existing experimental and clinical evidence supporting these roles of KISS in PCOS, with the goal of establishing a foundation for future research and potential clinical applications.
Collapse
Affiliation(s)
- Qiaorui Yang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengxiao Jia
- Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Jing Tao
- Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Jinfu Zhang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gynecology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Zhenliang Fan
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
3
|
Salmeri N, Viganò P, Cavoretto P, Marci R, Candiani M. The kisspeptin system in and beyond reproduction: exploring intricate pathways and potential links between endometriosis and polycystic ovary syndrome. Rev Endocr Metab Disord 2024; 25:239-257. [PMID: 37505370 DOI: 10.1007/s11154-023-09826-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Endometriosis and polycystic ovary syndrome (PCOS) are two common female reproductive disorders with a significant impact on the health and quality of life of women affected. A novel hypothesis by evolutionary biologists suggested that these two diseases are inversely related to one another, representing a pair of diametrical diseases in terms of opposite alterations in reproductive physiological processes but also contrasting phenotypic traits. However, to fully explain the phenotypic features observed in women with these conditions, we need to establish a potential nexus system between the reproductive system and general biological functions. The recent discovery of kisspeptin as pivotal mediator of internal and external inputs on the hypothalamic-pituitary-gonadal axis has led to a new understanding of the neuroendocrine upstream regulation of the human reproductive system. In this review, we summarize the current knowledge on the physiological roles of kisspeptin in human reproduction, as well as its involvement in complex biological functions such as metabolism, inflammation and pain sensitivity. Importantly, these functions are known to be dysregulated in both PCOS and endometriosis. Within the evolving scientific field of "kisspeptinology", we critically discuss the clinical relevance of these discoveries and their potential translational applications in endometriosis and PCOS. By exploring the possibilities of manipulating this complex signaling system, we aim to pave the way for novel targeted therapies in these reproductive diseases.
Collapse
Affiliation(s)
- Noemi Salmeri
- Gynecology and Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Paola Viganò
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via M. Fanti 6, 20122, Milan, Italy.
| | - Paolo Cavoretto
- Gynecology and Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Roberto Marci
- Gynecology & Obstetrics, University of Ferrara, 44121, Ferrara, Italy
| | - Massimo Candiani
- Gynecology and Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| |
Collapse
|
4
|
Moreira MV, Vale-Fernandes E, Albergaria IC, Alves MG, Monteiro MP. Follicular fluid composition and reproductive outcomes of women with polycystic ovary syndrome undergoing in vitro fertilization: A systematic review. Rev Endocr Metab Disord 2023; 24:1045-1073. [PMID: 37493841 PMCID: PMC10697886 DOI: 10.1007/s11154-023-09819-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
Polycystic ovary syndrome (PCOS) is recognized as one of the most prevalent endocrinopathy in women at reproductive age. As affected women tend to have poorer assisted reproductive technology (ART) outcomes, PCOS has been suggested to endanger oocyte quality and competence development. The aim of this systematic review was to summarize the available evidence on how the follicular fluid (FF) profile of women with PCOS undergoing in vitro fertilization (IVF) treatment differs from the FF of normo-ovulatory women. For that, an electronic search in PubMed and Web of Science databases was conducted (up to December 2021). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA guidelines were followed, and the Newcastle-Ottawa Scale was used to assess the risk of bias in the included studies. Data retrieved from papers included (n=42), revealed that the FF composition of women with PCOS compared to those without PCOS predominantly diverged at the following molecular classes: oxidative stress, inflammatory biomarkers, growth factors and hormones. Among those biomarkers, some were proposed as being closely related to pathophysiological processes, strengthening the hypothesis that low-grade inflammation and oxidative stress play a critical role in the pathogenesis of PCOS. Notwithstanding, it should be noticed that the available data on PCOS FF fingerprints derives from a limited number of studies conducted in a relatively small number of subjects. Furthermore, phenotypic heterogeneity of PCOS hampers wider comparisons and weakens putative conclusions. Therefore, future studies should be focused at comparing well characterized patient subgroups according to phenotypes.
Collapse
Affiliation(s)
- Mafalda V Moreira
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal
- ITR- Laboratory for Integrative, Translational Research in Population Health, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Emídio Vale-Fernandes
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal
- ITR- Laboratory for Integrative, Translational Research in Population Health, Porto, Portugal
- Centre for Medically Assisted Procreation / Public Gamete Bank, Gynaecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Centro Hospitalar Universitário de Santo António (CHUdSA), 4099-001, Porto, Portugal
| | - Inês C Albergaria
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal
| | - Marco G Alves
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal
- ITR- Laboratory for Integrative, Translational Research in Population Health, Porto, Portugal
| | - Mariana P Monteiro
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal.
- ITR- Laboratory for Integrative, Translational Research in Population Health, Porto, Portugal.
| |
Collapse
|
5
|
Chen S, Guo Z, Yu Q. Genetic evidence for the causal association between type 1 diabetes and the risk of polycystic ovary syndrome. Hum Genomics 2023; 17:100. [PMID: 37957681 PMCID: PMC10641977 DOI: 10.1186/s40246-023-00550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Accumulating observational studies have identified associations between type 1 diabetes (T1D) and polycystic ovary syndrome (PCOS). Still, the evidence about the causal effect of this association is uncertain. METHODS We performed a two-sample Mendelian randomization (MR) analysis to test for the causal association between T1D and PCOS using data from a large-scale biopsy-confirmed genome-wide association study (GWAS) in European ancestries. We innovatively divided T1D into nine subgroups to be analyzed separately, including: type1 diabetes wide definition, type1 diabetes early onset, type 1 diabetes with coma, type 1 diabetes with ketoacidosis, type 1 diabetes with neurological complications, type 1 diabetes with ophthalmic complications, type 1 diabetes with peripheral circulatory complications, type 1 diabetes with renal complications, and type 1 diabetes with other specified/multiple/unspecified complications. GWAS data for PCOS were obtained from a large-scale GWAS (10,074 cases and 103,164 controls) for primary analysis and the IEU consortium for replication and meta-analysis. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. RESULTS Following rigorous instrument selection steps, the number of SNPs finally used for T1D nine subgroups varying from 6 to 36 was retained in MR estimation. However, we did not observe evidence of causal association between type 1 diabetes nine subgroups and PCOS using the IVW analysis, MR-Egger regression, and weighted median approaches, and all P values were > 0.05 with ORs near 1. Subsequent replicates and meta-analyses also yielded consistent results. A number of sensitivity analyses also did not reveal heterogeneity and pleiotropy, including Cochran's Q test, MR-Egger intercept test, MR-PRESSO global test, leave-one-out analysis, and funnel plot analysis. CONCLUSION This is the first MR study to investigate the causal relationship between type 1 diabetes and PCOS. Our findings failed to find substantial causal effect of type 1 diabetes on risk of PCOS. Further randomized controlled studies and MR studies are necessary.
Collapse
Affiliation(s)
- Shuwen Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zaixin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
6
|
Ma Y, Cai J, Liu LW, Hou W, Wei Z, Wang Y, Xu Y. Age at menarche and polycystic ovary syndrome: A Mendelian randomization study. Int J Gynaecol Obstet 2023; 162:1050-1056. [PMID: 37128830 DOI: 10.1002/ijgo.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE The authors aimed to use a large two-sample Mendelian randomization (MR) study to reveal the causality between age at menarche (AAM) and polycystic ovary syndrome (PCOS) incidence. METHODS The authors collected summary statistics from the hitherto largest genome-wide association studies conducted in AAM and PCOS in the same ancestry. MR with inverse variance weighting was conducted as the main analysis method, while weighted median and MR-Egger regression were used for comprehensive analysis. As for pleiotropy detection, inverse variance weighting, MR-Egger regression, Mendelian Randomization Pleiotropy Residual Sum and Outlier, as well as leave-one-out analysis were used to detect pleiotropy. Risk factor analysis was conducted to investigate the underlying mechanisms linking AAM to PCOS. RESULTS Each standard deviation increment in AAM was associated with a significantly lower incidence of PCOS (odds ratio, 0.86 [95% confidence interval, 0.75-0.98]). After adjustment in horizontal pleiotropy by eliminating four outliers, this pathogenic association was still statistically detected. All pleiotropy indexes were without statistical differences, which suggested the conclusions were robust. It showed the causal association between later AAM and lower body mass index, lower fasting insulin level and insulin resistance. CONCLUSION Our MR analysis verified that a slightly later onset age (15 to 18 years) at menarche could reduce the risk of PCOS. A more comprehensive investigation in a prospective setting is strongly advised.
Collapse
Affiliation(s)
- Yuanlin Ma
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sun University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
- Clinical Research Center for Obstetrical and Gynecological Diseases of Guangdong Province, Guangzhou, China
| | - Jiahao Cai
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lok-Wan Liu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sun University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
- Clinical Research Center for Obstetrical and Gynecological Diseases of Guangdong Province, Guangzhou, China
| | - Wenhui Hou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sun University, Guangzhou, China
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zixin Wei
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yizi Wang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sun University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
- Clinical Research Center for Obstetrical and Gynecological Diseases of Guangdong Province, Guangzhou, China
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sun University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
- Clinical Research Center for Obstetrical and Gynecological Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
7
|
Aasif A, Alam R, Ahsan H, Khan MM, Khan A, Khan S. The role of kisspeptin in the pathogenesis of a polycystic ovary syndrome. Endocr Regul 2023; 57:292-303. [PMID: 38127687 DOI: 10.2478/enr-2023-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Hypothalamic-pituitary gonadal (HPG) axis is responsible for the development and regulation of the female reproductive system. In polycystic ovary syndrome (PCOS), there is a disturbance in the HPG axis. Kisspeptin, a neuropeptide produced by the KISS1 gene, plays a vital role in the regulation of HPG axis by binding with its receptors KISS1R/GPR54, and stimulates gonadotropin secretion from the hypothalamus into pituitary to release luteinizing hormone (LH) and follicle stimulating hormone (FSH). Polymorphisms or mutations in the KISS1 gene can cause disturbance in the kisspeptin signaling pathway and is thought to disrupt HPG axis. Altered signaling of kisspeptin can cause abnormal secretion of GnRH pulse, which leads to increased LH/FSH ratio, thereby affecting androgen levels and ovulation. The increased levels of androgen worsen the symptoms of PCOS. In the present article, we review the molecular physiology and pathology of kisspeptin and how it is responsible for the development of PCOS. The goal of this review article is to provide an overview and metabolic profile of kisspeptin in PCOS patients and the expression of kisspeptin in PCOS animal models. In the present article, we also review the molecular physiology and pathology of kisspeptin and how it is responsible for the development of PCOS.
Collapse
Affiliation(s)
- Adiba Aasif
- 1Department of Biochemistry, Integral Institute of Medical Sciences and Research, Lucknow, India
| | - Roshan Alam
- 1Department of Biochemistry, Integral Institute of Medical Sciences and Research, Lucknow, India
| | - Haseeb Ahsan
- 2Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Mustufa Khan
- 3Department of Basic Medical Sciences, Integral Institute of Allied Health Sciences and Research, Integral University, Lucknow, India
| | - Arshiya Khan
- 4Department of Obstetrics and Gynecology, Integral Institute of Medical Sciences and Research, Lucknow, India
| | - Saba Khan
- 1Department of Biochemistry, Integral Institute of Medical Sciences and Research, Lucknow, India
| |
Collapse
|
8
|
Garg A, Patel B, Abbara A, Dhillo WS. Treatments targeting neuroendocrine dysfunction in polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 2022; 97:156-164. [PMID: 35262967 DOI: 10.1111/cen.14704] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age and is the leading cause of anovulatory subfertility. Increased gonadotrophin releasing hormone (GnRH) pulsatility in the hypothalamus results in preferential luteinizing hormone (LH) secretion from the pituitary gland, leading to ovarian hyperandrogenism and oligo/anovulation. The resultant hyperandrogenism reduces negative feedback from sex steroids such as oestradiol and progesterone to the hypothalamus, and thus perpetuates the increase in GnRH pulsatility. GnRH neurons do not have receptors for oestrogen, progesterone, or androgens, and thus the disrupted feedback is hypothesized to occur via upstream neurons. Likely candidates for these upstream regulators of GnRH neuronal pulsatility are Kisspeptin, Neurokinin B (NKB), and Dynorphin neurons (termed KNDy neurons). Growing insight into the neuroendocrine dysfunction underpinning the heightened GnRH pulsatility seen in PCOS has led to research on the use of pharmaceutical agents that specifically target the activity of these KNDy neurons to attenuate symptoms of PCOS. This review aims to highlight the neuroendocrine abnormalities that lead to increased GnRH pulsatility in PCOS, and outline data on recent therapeutic advancements that could potentially be used to treat PCOS. Emerging evidence has investigated the use of neurokinin 3 receptor (NK3R) antagonists as a method of reducing GnRH pulsatility and alleviating features of PCOS such as hyperandrogenism. We also consider other potential mechanisms by which increased GnRH pulsatility is controlled, which could form the basis of future avenues of research.
Collapse
Affiliation(s)
- Akanksha Garg
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Bijal Patel
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Ali Abbara
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
9
|
Khan HL, Bhatti S, Sehole Z, Younas H, Nathaniel S, Abbas S, Kaloglu C, Ziders R, Yildiz A, Isa AM. Putative Role of the Kisspeptin/Kiss1R System in Promoting Hypothalamic GnRH Release, Pubertal Maturation, and Regulation of Ovulation Considering the Central Reproductive Axis. FERTILITY & REPRODUCTION 2022. [DOI: 10.1142/s2661318222500062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kisspeptin is a class of neuropeptides that are the product of the Kiss1 gene. These neuropeptides play an important role in maintaining gonadotropin-releasing hormone (GnRH) levels and their release through hypothalamic neurons. Subsequently, they also play an important role in maintaining gonadotropin levels, as GnRH levels stimulate the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which allow induction of gametogenesis of pubertal maturation. The importance of the Kiss1 gene in reproduction became evident when natural mutations in this gene were discovered, which were associated with hypothalamic hypogonadism (HH) and delayed puberty. Kisspeptin and its KISS1R receptors are expressed in the mammalian ovary. The putative role of the Kisspeptin system in the ovary directly controls oocyte maturation, follicular development, and ovulation in an autocrine and paracrine fashion. These essential facts of kisspeptin and its receptor are necessary to maintain the central reproductive axis.
Collapse
Affiliation(s)
- Haroon Latif Khan
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, Lahore, Pakistan
| | - Shahzad Bhatti
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, Lahore, Pakistan
| | - Zirva Sehole
- Department of Biochemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Sammar Nathaniel
- Department of Biochemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Sana Abbas
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, Lahore, Pakistan
| | - Celal Kaloglu
- Department of Histology and Embryology, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | - Rachel Ziders
- You Family Fertility Buffalo-Niagara Falls Area, University at Buffalo, Buffalo, NY, USA
| | - Aysegul Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Kotekli, Mugla, Turkey
| | - Ahmed M. Isa
- Assisted Conception Unit, Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Erel CT, Ozcivit IB, Inan D, Mut A, Karakus Hatipoglu B, Konukoglu D. Serum kisspeptin levels along reproductive period in women: is it a marker for aging? Gynecol Endocrinol 2022; 38:267-272. [PMID: 35049415 DOI: 10.1080/09513590.2022.2028768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE To demonstrate the change in serum kisspeptin levels during the reproductive period in healthy women and to investigate the relationship with other reproductive hormones. METHODS One hundred thirty-one healthy women with normal menstrual history were included and serum kisspeptin, follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH), estradiol (E2), and anti-Müllerian hormone (AMH) levels were determined on cycle day 3. The data were analyzed in 5-year age groups. RESULTS Serum kisspeptin levels of all women were found to be significantly and negatively correlated with age (r= -0.458). The kisspeptin levels were the highest in the group of women aged between 20 and 24 years compared to other age groups above 25 years (p < .01, p < .001, p < .0005, p < .0005). There was not any significant correlation between serum kisspeptin levels and AMH, FSH, LH, TSH, E2, and body-mass index (BMI), respectively. The Scatter and Violin plots showed that most of the women over 35 years of age had serum kisspeptin levels under the level of 500 pg/ml. The kisspeptin levels of women over 35 years of age clustered closely as opposed to the kisspeptin levels of those below the age of 35, which were scattered. The median serum kisspeptin levels were found to be high in women below the age of 35 (p < .0005). CONCLUSION In healthy women, serum kisspeptin level is the highest in the group of women aged between 20 and 24 years and declines with age. It tends to be below the level of 500 pg/ml in women over the age of 35.
Collapse
Affiliation(s)
- C Tamer Erel
- Department of Obstetrics and Gynecology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ipek Betul Ozcivit
- Department of Obstetrics and Gynecology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Deniz Inan
- Department of Statistics, Marmara University, Istanbul, Turkey
| | - Aysegül Mut
- Department of Obstetrics and Gynecology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Burçin Karakus Hatipoglu
- Department of Obstetrics and Gynecology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Dildar Konukoglu
- Department of Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
11
|
Koloda YA, Denisova YV, Podzolkova NM. Genetic polymorphisms of reproductive hormones and their receptors in assisted reproduction technology for patients with polycystic ovary syndrome. Drug Metab Pers Ther 2021; 37:111-122. [PMID: 34851566 DOI: 10.1515/dmpt-2021-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies in women of childbearing, which is defined by the accumulation of multiple, small fluid-filled ovarian cysts without the selection of a single dominant follicle. Most PCOS phenotypes are characterized by the absence of spontaneous ovulation, resistance toward ovulation inductors, the production of a large immature oocytes number, and the high prevalence of ovarian hyperstimulation syndrome, resulting in reduced assisted reproductive technologies (ART) programs effectiveness. The review analyses current data about the relationship between polymorphism genotypes of KISS genes, follicle stimulating hormone (FSH), luteinizing hormone (LH), anti-Müllerian hormone (AMH) and their receptors genes, gonadotropin-releasing hormone (GnRH), estrogen, and progesterone receptors genes, the PCOS risk and the features of ovarian response to stimulation during ART cycles. The use of single nucleotide polymorphisms (SNPs) as prognostic markers of ART programs outcomes would provide a personalized approach to the drugs and doses choice for ovarian stimulation and significantly increase the chance of pregnancy.
Collapse
Affiliation(s)
- Yulia A Koloda
- Department of Obstetrics and Gynecology, Pediatric Faculty, FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - Yulia V Denisova
- Department of Obstetrics and Gynecology, Pediatric Faculty, FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - Natalia M Podzolkova
- Department of Obstetrics and Gynecology, Pediatric Faculty, FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
12
|
Mut A, Erel CT, İnan D, Öner YÖ. Serum kisspeptin levels correlated with anti-mullerian hormone levels in women with and without polycystic ovarian syndrome. Gynecol Endocrinol 2021; 37:462-466. [PMID: 32964765 DOI: 10.1080/09513590.2020.1825670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MATERIALS AND METHODS This was a prospective, cross-sectional, comparative study that included 70 women with PCOS and 58 non PCOS controls. PCOS patients were diagnosed according to the Rotterdam criteria. Age, body mass index (BMI), number of menstrual cycles per year, and the Ferriman-Gallwey Score were determined for each woman. Serum levels of kisspeptin, follicle stimulating hormone (FSH), luteinizing hormone (LH), thyroid stimulating hormone (TSH), estradiol, total testosterone, dehydroepiandrosterone sulfate (DHEA-S), AMH, fasting glucose and insulin were determined. RESULTS Women with PCOS were younger (p < .001), with higher BMI (p = .027) and glucose values (p < .001); while displaying less number of menstrual cycles per year (p < .001). Although serum kisspeptin levels were similar in both groups, age was negatively (r= -0.33, p = .00018) and serum AMH levels were positively correlated (r = 0.25, p = .0039) with the serum kisspeptin levels in women with the PCOS. After adjusting for age, serum kisspeptin levels were comparable in both groups (p > .05). Serum LH, AMH, DHEA-S and total testosterone glucose, insulin levels and HOMA-IR values were significantly higher in women with PCOS as compared to controls (all p < .05). CONCLUSIONS Serum kisspeptin levels were similar in women with and without PCOS but positively correlated with AMH serum levels in PCOS women.
Collapse
Affiliation(s)
- Ayşegül Mut
- Department of Obstetrics and Gynecology, Istanbul University-Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
| | - Cemal Tamer Erel
- Department of Obstetrics and Gynecology, Istanbul University-Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
| | - Deniz İnan
- Department of Statistics, Marmara University, Istanbul, Turkey
| | - Yahya Özgün Öner
- Department of Obstetrics and Gynecology, Istanbul University-Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
13
|
Pérez-López FR, Ornat L, López-Baena MT, Santabárbara J, Savirón-Cornudella R, Pérez-Roncero GR. Circulating kisspeptin and anti-müllerian hormone levels, and insulin resistance in women with polycystic ovary syndrome: A systematic review, meta-analysis, and meta-regression. Eur J Obstet Gynecol Reprod Biol 2021; 260:85-98. [PMID: 33744505 DOI: 10.1016/j.ejogrb.2021.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This systematic review and meta-analysis aimed to summarize the available evidence regarding circulating kisspeptin and anti-müllerian hormone (AMH) and the homeostasis model assessment of insulin resistance (HOMA-IR) index in adolescents and women with and without polycystic ovary syndrome (PCOS). METHOD We performed a comprehensive literature search in Medline, Embase, Cochrane, Scopus, and Web of Science for studies evaluating circulating kisspeptin levels in women with and without PCOS published until September 24th, 2020. Co-primary outcomes were the HOMA-IR index and AMH. The quality of included studies was assessed using the Newcastle-Ottawa Scale. Random-effects models were used to estimate outcomes, and effects reported as mean difference (MD) or standardized MD (SMD) and their 95 % confidence interval (CI). The systematic review and meta-analysis was registered in the International Prospective Register of Systematic Reviews (PROSPERO) as number CRD42020205030. RESULTS We evaluated 18 studies including, 1282 PCOS cases and 977 controls. Participants with PCOS were younger (MD = -2.38 years, 95 %CI -4.32 to -0.44), with higher BMI (MD = 1.16, 95 % CI 0.54-1.78), waist-to-hip ratio (MD = 0.04, 95 %CI 0.02 to 0.05), circulating kisspeptin (SMD = 1.15, 95 %CI 0.68-1.62), luteinizing hormone (SMD = 1.29, 95 %CI 0.76-1.83), AMH (SMD = 0.97, 95 %CI 0.60-1,34), total testosterone (SMD = 2.48, 95 %CI 1.73-3.23), free testosterone (SMD = 1.37, 95 %CI 0.56-2.17), and dehydroepiandrosterone sulphate (SMD = 0.72, 95 %CI 0.32-1.13) levels, and Ferriman-Gallwey score (SMD = 5.08, 95 %CI 2.76-7.39), and lower sex hormone-binding globulin level (SMD = -1.34, 95 %CI -2.15 to -0.52). Besides, participants with PCOS had higher HOMA-IR index (SMD = 0.76, 95 %CI 0.35-1.17), and circulating insulin (SMD = 0.75, 95 %CI 0.30-1.19), leptin (SMD = 2.82, 95 %CI 1.35-4.29), and triglycerides (SMD = 2.15, 95 %CI 1.08-3.23) levels than participants without the syndrome. The meta-regression did not identify significant factors influencing circulating kisspeptin. CONCLUSION Patients with PCOS showed higher kisspeptin, LH, insulin, AMH, and androgen levels and HOMA-IR index, and lower sex hormone-binding globulin levels than those without the syndrome.
Collapse
Affiliation(s)
- Faustino R Pérez-López
- Department of Obstetrics and Gynecology, University of Zaragoza Faculty of Medicine, Zaragoza, 50009, Spain; Aragón Health Research Institute, Zaragoza, 50009, Spain.
| | - Lía Ornat
- Department of Obstetrics and Gynecology, University of Zaragoza Faculty of Medicine, Zaragoza, 50009, Spain
| | | | - Javier Santabárbara
- Aragón Health Research Institute, Zaragoza, 50009, Spain; Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza Faculty of Medicine, Zaragoza, 50009, Spain
| | | | | |
Collapse
|
14
|
D’Occhio MJ, Campanile G, Baruselli PS. Peripheral action of kisspeptin at reproductive tissues-role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review. Biol Reprod 2020; 103:1157-1170. [PMID: 32776148 PMCID: PMC7711897 DOI: 10.1093/biolre/ioaa135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles (granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte maturation, trophoblast development, and implantation and placentation. In some studies, KISS1 was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast attachment, and implantation and pregnancy. A deeper understanding of the direct action of KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and improvement in the efficiency of assisted reproductive technology.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Min Z, Long X, Zhao H, Zhen X, Li R, Li M, Fan Y, Yu Y, Zhao Y, Qiao J. Protein Lysine Acetylation in Ovarian Granulosa Cells Affects Metabolic Homeostasis and Clinical Presentations of Women With Polycystic Ovary Syndrome. Front Cell Dev Biol 2020; 8:567028. [PMID: 33043000 PMCID: PMC7518144 DOI: 10.3389/fcell.2020.567028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders accompanied by obvious metabolic abnormalities. Lower-quality oocytes and embryos are often found in PCOS women during assisted reproductive technology treatment. However, there is still no clarity about the mechanism of ovarian metabolic disorders and the impact on oocyte maturation in PCOS. The aim of this study was to understand the potential effect of the posttranslational modification on ovarian metabolic homeostasis and oocyte development potential in women with PCOS. A quantitative analysis of acetylated proteomics in ovarian granulosa cells of PCOS and control groups was carried out by mass spectrometry. There was widespread lysine acetylation of proteins, of which 265 proteins had increased levels of acetylation and 68 proteins had decreased levels of acetylation in the PCOS group. Most notably, differentially acetylated proteins were significantly enriched in the metabolic pathways of glycolysis, fatty acid degradation, TCA cycle, tryptophan metabolism, and branched-chain amino acid degradation. Acetyl-CoA acetyltransferase 1 (ACAT1) was an enzyme central to these metabolic pathways with increased acetylation level in the PCOS group, and there was a negative correlation of ACAT1 acetylation levels in PCOS granulosa cells with oocyte quality and embryo development efficiency in the clinic. Lysine acetylation changes of key enzymes in PCOS granulosa cells might attenuate their activities and alter metabolic homeostasis of follicular microenvironment for oocyte maturation and embryo development.
Collapse
Affiliation(s)
- Zheying Min
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Hongcui Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiumei Zhen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Beijing, China
| |
Collapse
|
16
|
Shen Y, Jia Y, Li Y, Gu X, Wan G, Zhang P, Zhang Y, Jiang L. Genetic determinants of gestational diabetes mellitus: a case-control study in two independent populations. Acta Diabetol 2020; 57:843-852. [PMID: 32114639 DOI: 10.1007/s00592-020-01485-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/17/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Genetic risk score (GRS) is more informative to identify the complicated associations between variants of genes and disease. Considering similar pathogenesis and shared genetic predispositions between gestational diabetes mellitus (GDM) and type 2 diabetes/obesity, we conducted this study to explore whether the GRS model integrating variants related to type 2 diabetes/obesity is also associated with GDM risk. METHODS A population-based case-control study that included 1429 subjects was conducted to investigate the association between the GRS model and GDM risk, which were analyzed employing stratified logistic regression analysis with the adjustment for age, BMI, parity and family history of diabetes. RESULTS We have screened 23 SNPs and further filtered six SNPs that were significantly associated with the risk of GDM: four risk SNPs (MTNR1B: rs10830963, rs1387153, rs2166706; MC4R: rs2229616) and two protective SNPs (MTNR1B: rs1447352 and rs4753426). The GRS model with a higher score indicated a higher genetic predisposition to develop GDM, especially in the highest quartile of GRS (all P < 0.001) and the strata of advanced maternal age (all P < 0.001) and obesity (all P = 0.005). CONCLUSION In this study, six SNPs were explored and further identified to be associated with GDM risk, which suggested GRSs including these polymorphisms might participate in facilitating GDM risk. These findings offer the potential to improve our understanding of the etiology of GDM.
Collapse
Affiliation(s)
- Yi Shen
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Yulong Jia
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Yuandong Li
- School of Management, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Xuefeng Gu
- Shanghai Key Laboratory for Molecular Imaging, University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Guoqing Wan
- Shanghai Key Laboratory for Molecular Imaging, University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Peng Zhang
- School of Clinical Medicine, University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Yafeng Zhang
- Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province, People's Republic of China.
| | - Liying Jiang
- Shanghai Key Laboratory for Molecular Imaging, University of Medicine and Health Sciences, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Martins Trevisan C, Naslavsky MS, Monfardini F, Wang J, Zatz M, Peluso C, Pellegrino R, Mafra F, Hakonarson H, Ferreira FM, Nakaya H, Christofolini DM, Montagna E, Crandall KA, Barbosa CP, Bianco B. Variants in the Kisspeptin-GnRH Pathway Modulate the Hormonal Profile and Reproductive Outcomes. DNA Cell Biol 2020; 39:1012-1022. [PMID: 32352843 DOI: 10.1089/dna.2019.5165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kisspeptin has been identified as a key regulatory protein in the release of gonadotropin-releasing hormone (GnRH), which subsequently increases gonadotropin secretion during puberty to establish reproductive function and regulate the hypothalamic-pituitary-gonadal axis. The effects of variants in the KISS1, KISS1R, and GNRHR genes and their possible association with assisted reproduction outcomes remain to be elucidated. In this study, we used next-generation sequencing to investigate the associations of the genetic diversity at the candidate loci for KISS1, KISS1R, and GNRHR with the hormonal profiles and reproductive outcomes in 86 women who underwent in vitro fertilization treatments. Variants in the KISS1 and KISS1R genes were associated with luteinizing hormone (rs35431622:T>C), anti-Mullerian hormone (rs71745629delT), follicle-stimulating hormone (rs73507529:C>A), and estradiol (rs73507527:G>A, rs350130:A>G, and rs73507529:C>A) levels, as well as with reproductive outcomes such as the number of oocytes retrieved (s35431622:T>C), metaphasis II oocytes (rs35431622:T>C), and embryos (rs1132506:G>C). Additionally, variants in the GNRHR UTR3' (rs1038426:C>A, rs12508464:A>C, rs13150734:C>A, rs17635850:A>G, rs35683646:G>A, rs35610027:C>G, rs35845954:T>C, rs17635749:C>T, and rs7666201:C>T) were associated with low prolactin levels. A conjoint analysis of clinical, hormonal, and genetic variables using a generalized linear model identified two variants of the KISS1 gene (rs71745629delT and rs1132506:G>C) that were significantly associated with hormonal variations and reproductive outcomes. The findings suggest that variants in KISS1, KISS1R, and GNRHR genes can modulate hormone levels and reproductive outcomes.
Collapse
Affiliation(s)
- Camila Martins Trevisan
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Centro Universitário Saúde ABC, FMABC, Santo André, São Paulo, Brazil
| | - Michel Satya Naslavsky
- Human Genome and Stem Cell Research Center, Biosciences Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Frederico Monfardini
- Human Genome and Stem Cell Research Center, Biosciences Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Jaqueline Wang
- Human Genome and Stem Cell Research Center, Biosciences Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Biosciences Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Carla Peluso
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Centro Universitário Saúde ABC, FMABC, Santo André, São Paulo, Brazil
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Fernanda Mafra
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frederico Moraes Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Helder Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Denise Maria Christofolini
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Centro Universitário Saúde ABC, FMABC, Santo André, São Paulo, Brazil
| | - Erik Montagna
- Postgraduation Program in Health Sciences, Research and Innovation, Centro Universitário Saúde ABC, FMABC, Santo André, São Paulo, Brazil
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| | - Caio Parente Barbosa
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Centro Universitário Saúde ABC, FMABC, Santo André, São Paulo, Brazil
| | - Bianca Bianco
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Centro Universitário Saúde ABC, FMABC, Santo André, São Paulo, Brazil
| |
Collapse
|
18
|
Single-Cell Transcriptomic Atlas of Primate Ovarian Aging. Cell 2020; 180:585-600.e19. [PMID: 32004457 DOI: 10.1016/j.cell.2020.01.009] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Molecular mechanisms of ovarian aging and female age-related fertility decline remain unclear. We surveyed the single-cell transcriptomic landscape of ovaries from young and aged non-human primates (NHPs) and identified seven ovarian cell types with distinct gene-expression signatures, including oocyte and six types of ovarian somatic cells. In-depth dissection of gene-expression dynamics of oocytes revealed four subtypes at sequential and stepwise developmental stages. Further analysis of cell-type-specific aging-associated transcriptional changes uncovered the disturbance of antioxidant signaling specific to early-stage oocytes and granulosa cells, indicative of oxidative damage as a crucial factor in ovarian functional decline with age. Additionally, inactivated antioxidative pathways, increased reactive oxygen species, and apoptosis were observed in granulosa cells from aged women. This study provides a comprehensive understanding of the cell-type-specific mechanisms underlying primate ovarian aging at single-cell resolution, revealing new diagnostic biomarkers and potential therapeutic targets for age-related human ovarian disorders.
Collapse
|
19
|
Xin X, Li Z, Zhong Y, Li Q, Wang J, Zhang H, Yuan X, Li J, Zhang Z. KISS1 Suppresses Apoptosis and Stimulates the Synthesis of E2 in Porcine Ovarian Granulosa Cells. Animals (Basel) 2019; 9:ani9020054. [PMID: 30759773 PMCID: PMC6406274 DOI: 10.3390/ani9020054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/27/2022] Open
Abstract
Previous studies have strongly recommended that KISS-1 metastasis suppressor (KISS1) plays an essential gatekeeper of the initiation of reproductive maturation in mammals. However, KISS1 has been recently reported to highly express in ovarian granulosa cells (GCs). But the biological functionalities of KISS1 on cell apoptosis, cell cycle, and synthesis of estradiol-17β (E2) have not been explored in GCs. In this study, using porcine GCs as a cellular model, the overexpression plasmid of KISS1 was built to explore the biological effects of KISS1 on the PI3K signaling pathway, estrogen signaling pathway, cell apoptosis, cell cycle, and E2 secretion. We found that mRNA of KISS1 highly expressed in the ovary and significantly increased from immature to mature follicles in gilts. Overexpression of KISS1 could significantly increase the mRNA expression of PIK3CG, PIK3C1, and PDK1, and significantly decreased the mRNA levels of FOXO3, TSC2, and BAD of PI3K signaling pathway. Furthermore, results of the flow cytometry showed that overexpression of KISS1 significantly inhibited the apoptosis of GCs and decreased the percentage of GCs at G0/G1 phase of the cell cycle. Additionally, overexpression of KISS1 could increase the mRNA levels of Star, CYP17, 3B-HSD, 17B-HSD of estrogen synthesis signaling pathway, significantly increase the concentration of E2 in the supernatant of the cultured GCs, and up-regulate the mRNA expression levels of ESR1 and ESR2. These results suggested that KISS1 might suppress cell apoptosis through activating the PI3K signaling pathway and stimulate synthesis of E2 via boosting the estrogen synthesis signaling pathway. This study would be of great interests for exploring the biological functionalities of KISS1 in the folliculogenesis and sex steroid production of the ovaries in mammals.
Collapse
Affiliation(s)
- Xiaoping Xin
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Zhonghui Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yuyi Zhong
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Qingqing Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jiaying Wang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|