1
|
Tang Y, Luo J, Qin L, Tang C, Qiu C, Li J, Qin L. Network Pharmacology and Molecular Docking-Based Screening of Immunotherapeutic Targets for HuaChanSu Against Breast Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01305-4. [PMID: 39565543 DOI: 10.1007/s12033-024-01305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024]
Abstract
Breast cancer has emerged as the primary cause of mortality stemming from malignancies among women. HuaChanSu has demonstrated efficacy in suppressing the progression of various malignancies. However, the specific immune targets and pathways influenced by HuaChanSu within mammary tumors remain elusive. This study is designed to uncover potent monomers and pivotal targets associated with HuaChanSu's anti-breast cancer Immunotherapy. The genes pertinent to HuaChanSu and breast cancer were acquired individually from publicly available databases. Interaction analysis using Cytoscape was conducted on common genes to determine the most suitable targets and crucial constituents of HuaChanSu's Immunotherapy against breast cancer. Following this, molecular docking was employed to validate ligand and receptor binding interactions. Lastly, the identified core genes underwent assessment of immune infiltration. The intersection of HuaChanSu and BC targets yielded a total of 49 differentially expressed genes. Bufalin emerged as the most potent constituent in Immunotherapy. Immunoassay data demonstrated significant correlations (r > 0.03, p < 0.05) between S100B, MMP9, FOS, EGFR, KIT, MME, and immune infiltration within BC. Molecular docking further corroborated the effective binding of Bufalin with immune-related genes. Through network pharmacological validation, we propose the extraction of Bufalin, a monomeric constituent of Huachansu, to exert immunomodulatory effects aimed at inhibiting the progression of breast cancer. Most of the target genes (S100B, BIRC5, MMP9, FOS, EGFR, KIT, and MME) are common targets for immunotherapy.
Collapse
Affiliation(s)
- Yujun Tang
- Guangxi Medical University, Nanning, China
| | - Jie Luo
- Guangxi Medical University, Nanning, China
- HengyangMedicaSchool, University of South China, HengYang, China
| | | | | | - Caixin Qiu
- Guangxi Medical University, Nanning, China
| | - Jiehua Li
- Guangxi Medical University, Nanning, China.
| | | |
Collapse
|
2
|
Wang C, Xiong ZM, Cong YQ, Li ZY, Xie Y, Wang YX, Zhou HM, Yang YF, Liu JJ, Wu HZ. Revealing the pharmacological mechanisms of nao-an dropping pill in preventing and treating ischemic stroke via the PI3K/Akt/eNOS and Nrf2/HO-1 pathways. Sci Rep 2024; 14:11240. [PMID: 38755191 PMCID: PMC11099061 DOI: 10.1038/s41598-024-61770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Nao-an Dropping Pill (NADP) is a Chinese patent medicine which commonly used in clinic for ischemic stroke (IS). However, the material basis and mechanism of its prevention or treatment of IS are unclear, then we carried out this study. 52 incoming blood components were resolved by UHPLC-MS/MS from rat serum, including 45 prototype components. The potential active prototype components hydroxysafflor yellow A, ginsenoside F1, quercetin, ferulic acid and caffeic acid screened by network pharmacology showed strongly binding ability with PIK3CA, AKT1, NOS3, NFE2L2 and HMOX1 by molecular docking. In vitro oxygen-glucose deprivation/reperfusion (OGD/R) experimental results showed that NADP protected HA1800 cells from OGD/R-induced apoptosis by affecting the release of LDH, production of NO, and content of SOD and MDA. Meanwhile, NADP could improve behavioral of middle cerebral artery occlusion/reperfusion (MCAO/R) rats, reduce ischemic area of cerebral cortex, decrease brain water and glutamate (Glu) content, and improve oxidative stress response. Immunohistochemical results showed that NADP significantly regulated the expression of PI3K, Akt, p-Akt, eNOS, p-eNOS, Nrf2 and HO-1 in cerebral ischemic tissues. The results suggested that NADP protects brain tissues and ameliorates oxidative stress damage to brain tissues from IS by regulating PI3K/Akt/eNOS and Nrf2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Chen Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhe-Ming Xiong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - You-Quan Cong
- Leiyunshang Pharmaceutical Group Co., Ltd, Suzhou, 215009, China
| | - Zi-Yao Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yi Xie
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ying-Xiao Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Hui-Min Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan-Fang Yang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430065, China.
- Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan, 430065, China.
| | - Jing-Jing Liu
- Leiyunshang Pharmaceutical Group Co., Ltd, Suzhou, 215009, China.
| | - He-Zhen Wu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430065, China.
- Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan, 430065, China.
| |
Collapse
|
3
|
Ji W, Zhuang X, Hu C, Zhang Y. Revealing the Active Compounds and Mechanism of Banxia Xiexin Decoction Against Gastric Ulcer by Network Pharmacology and Molecular Docking. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221118487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gastric ulcer (GU) is a clinically common gastrointestinal disease with a long disease course that frequently reoccurs. Banxia Xiexin decoction (BXD), a traditional Chinese medicine prescription, has a prominent protective effect against GU. Nonetheless, the therapeutic mechanisms of BXD against GU remain elusive. In this study, a rat model of GU was established by gavage with 95% ethanol, and BXD significantly attenuated the inflammatory effect of GU in rats. An “active ingredient–target” interaction and GU protein–protein interaction networks were constructed based on system biology, which could screen out the crucial active ingredients. The target protein–protein interaction network for the BXD treatment of GU was constructed to identify the key target proteins with network topology parameters. The DAVID database was then used to perform Gene Ontology and Kyoto encyclopedia of genes and genomes enrichment analysis on the proteins targeted by BXD in the treatment of GU. Finally, molecular docking technology was used to study the interactions between key active ingredients and core target proteins. A total of 89 active ingredients of BXD were screened and 63 target proteins of BXD in the treatment of GU were identified. Through the analysis of protein–protein interaction and the active ingredient–target protein network diagram, it was found that tumor necrosis factor-α(TNF-α), AKT1, and PTGS2 may play a key role in the treatment of GU by BXD. Molecular docking showed that these 3 core target proteins had a good affinity with the main components of BXD, including baicalein, norwogonin, and skullcapflavone II. The mechanism of BXD against GU may involve the inhibition of inflammatory response and oxidative stress, involving signaling pathways such as TNF, hypoxia-inducible factor-1, and mitogen-activated protein kinase. Network pharmacology and molecular docking technology indicated the key active ingredients, target proteins, and signal pathways that may be the biological basis of BXD in the treatment of GU.
Collapse
Affiliation(s)
- Wanli Ji
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoyu Zhuang
- Science and Technology Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Hu
- Science and Technology Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|