1
|
Brophy RH, Silverman RM, Rai MF. Mechanisms of anterior cruciate ligament injury-induced disruption of joint homeostasis and onset of osteoarthritis. Connect Tissue Res 2025:1-7. [PMID: 40247638 DOI: 10.1080/03008207.2025.2490097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
Osteoarthritis (OA) is a progressive joint disorder that leads to pain and disability for millions of people worldwide. Post-traumatic OA (PTOA), a form of OA, arises secondary to joint injury and often impacts younger individuals. Among the most common joint injuries leading to disrupted joint homeostasis and PTOA is anterior cruciate ligament (ACL) rupture. Even with successful surgical stabilization, the risk of developing PTOA persists due to several factors, including altered biology that contributes to disease progression. Recent research into the biology of ACL injuries has advanced our understanding of the mechanisms by which PTOA develops, including the inflammatory pathways involved, the expression of biomarkers specific to ACL injuries, and their interaction with factors such as the chronicity of the injury. Evidence suggests that homeostatic balance of anabolic and catabolic processes in the knee is disturbed after ACL tears, triggering a catabolic and degenerative phenotype, ultimately leading to premature joint degeneration, pain, and disability. Several key knowledge gaps exist, such as the determinants of the transition from acute to chronic inflammation, inter-patient variability in inflammatory responses, and influence of systemic factors on disease development. PTOA research faces numerous challenges, including protracted nature of the disease, the complexity of joint biology, and difficulties in translating molecular discoveries into clinical practice. Future research should prioritize improving biomarker precision for early detection, developing targeted therapies, and leveraging emerging technologies like machine learning to personalize treatment. This approach will enhance our understanding of the biological basis of PTOA resulting from ACL injuries and identify opportunities to mitigate the long-term consequences of these injuries.
Collapse
Affiliation(s)
- Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard M Silverman
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Farooq Rai
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Saint Louis University School of Science and Engineering, St. Louis, MO, USA
| |
Collapse
|
2
|
Chan J. CSF1R is a promising therapeutic target for posttraumatic osteoarthritis and quadriceps atrophy following ACL injury. J Physiol 2025. [PMID: 40178504 DOI: 10.1113/jp288752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Affiliation(s)
- Josh Chan
- University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Shah YY, Partain BD, Aldrich JL, Strinden M, Dobson J, Rinaldi-Ramos C, Allen KD. Proteomic characterization of particle-protein coronas shows differences between osteoarthritic and contralateral knees in a rat model. Connect Tissue Res 2025; 66:59-72. [PMID: 39988892 DOI: 10.1080/03008207.2025.2459242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/11/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025]
Abstract
OBJECTIVE When synthetic particles are injected into a biofluid, proteins nonspecifically adsorb onto the particle surface and form a protein corona. Protein coronas are known to alter how particles function in blood; however, little is known about protein corona formation in synovial fluid or how these coronas change with osteoarthritis (OA). In this study, protein coronas were characterized on particles incubated within OA-affected or healthy rat knees. DESIGN First, to evaluate particle collection techniques, magnetic polystyrene particles were placed in bovine synovial fluid and separated using either magnetics or centrifugation. In a second experiment, 12 male and 12 female Lewis rats received a simulated medial meniscal injury. At 2, 5, or 8 weeks post-surgery, operated and contralateral limbs were injected with clean magnetic particles (n = 8 per timepoint). After a 4-h incubation, animals were euthanized and particles were magnetically recovered. In both experiments, protein coronas were characterized using an Orbitrap fusion mass spectrometer. RESULTS In the first experiment, the particle separation method affected the identified proteins, likely due to centrifugation forces causing some large proteins to spin-down with the particles. In the OA model, 300-500 proteins were identified in the particle-protein coronas with 35, 59, and 13 proteins differing between the OA-affected and contralateral limbs at 2, 5, and 8 weeks, respectively. In particular, plectin, a serine (or cysteine) proteinase inhibitor, and cathepsin B were more prominent in the particle-protein coronas of OA-affected knees. CONCLUSIONS Synthetic particles nonspecifically adsorb proteins in synovial fluid, and these binding events differ with OA severity.
Collapse
Affiliation(s)
- Yash Y Shah
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Brittany D Partain
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jessica L Aldrich
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michael Strinden
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jon Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Carlos Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Keeble AR, Thomas NT, Balawender PJ, Brightwell CR, Gonzalez-Velez S, O'Daniel MG, Conley CE, Stone AV, Johnson DL, Noehren B, Jacobs CA, Fry CS, Owen AM. CSF1-R inhibition attenuates posttraumatic osteoarthritis and quadriceps atrophy following ligament injury. J Physiol 2024. [PMID: 39709528 DOI: 10.1113/jp286815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
Knee osteoarthritis contributes substantially to worldwide disability. Post-traumatic osteoarthritis (PTOA) develops secondary to joint injury, such as ligament rupture, and there is increasing evidence suggesting a key role for inflammation in the aetiology of PTOA and associated functional deficits. Colony stimulating factor 1 receptor (CSF1-R) has been implicated in the pathogenesis of musculoskeletal degeneration following anterior cruciate ligament (ACL) injury. We sought to assess the efficacy of CSF1-R inhibition to mitigate muscle and joint pathology in a mouse model of PTOA. Four-month-old mice were randomized to receive a CSF1-R inhibitor and studied for 7 or 28 days after joint injury. Additionally, we profiled synovial fluid samples for CSF1-R from patients with injury to their ACL. Transcriptomic analysis of quadriceps muscle and articular cartilage in CSF1-R inhibitor-treated animals at 7 days after injury revealed elevated chondrocyte differentiation within articular cartilage and enhanced metabolic and contractile gene expression within skeletal muscle. At 28 days post-injury, CSF1-R inhibition attenuated PTOA severity and mitigated skeletal muscle atrophy. Patient synovial fluid CSF1-R levels correlated with matrix metalloproteinase 13, a prognostic marker and molecular effector of PTOA. Our findings support an opportunity for CSF1-R targeting to mitigate the severity of PTOA and muscle atrophy after joint injury. KEY POINTS: Posttraumatic osteoarthritis (PTOA) of the knee commonly results from direct injury to the joint, which is characterized by pain, weakness, and disability. Induction of colony stimulating factor one receptor (CSF1-R) is positively associated with knee trauma severity, and the initial acute inflammatory state suppresses muscle recovery and degrades articular cartilage. Skeletal muscle and articular cartilage transcriptomic response following direct joint injury in a murine model of PTOA is rescued by pharmacological inhibition of CSF1-R. CSF1-R inhibition mitigated skeletal muscle atrophy and attenuated PTOA severity and synovitis. Patient synovial fluid CSF1-R levels correlated with matrix metalloproteinase 13, a prognostic marker and molecular effector of PTOA, offering further evidence for CSF1-R as a therapeutic target across musculoskeletal tissues after injury.
Collapse
Affiliation(s)
- Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Sara Gonzalez-Velez
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Caitlin E Conley
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Austin V Stone
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Darren L Johnson
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Cale A Jacobs
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
- Mass General Brigham Sports Medicine, Harvard Medical School, Boston, MA, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Allison M Owen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Chen Y, Liang R, Zheng X, Fang D, Lu WW, Chen Y. Identification of ZNF652 as a Diagnostic and Therapeutic Target in Osteoarthritis Using Machine Learning. J Inflamm Res 2024; 17:10141-10161. [PMID: 39649418 PMCID: PMC11624598 DOI: 10.2147/jir.s488841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/17/2024] [Indexed: 12/10/2024] Open
Abstract
Purpose Osteoarthritis (OA) is the most common degenerative joint disease. However, its etiology remains largely unknown. Zinc Finger Protein 652 (ZNF652) is a transcription factor implicated in various biological processes. Nevertheless, its role in OA has not been elucidated. Methods The search term "osteoarthritis" was utilized to procure transcriptome data relating to OA patients and healthy people from the Gene Expression Omnibus (GEO) database. Then a screening process was initiated to identify differentially expressed genes (DEGs). The DEGs were discerned using three distinct machine learning methods. The accuracy of these DEGs in diagnosing OA was evaluated using the Receiver Operating Characteristic (ROC) Curve. A competitive endogenous RNA (ceRNA) visualization network was established to delve into potential regulatory targets. The ZNF652 expression was confirmed in the cartilage of OA rats using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB) and analyzed using an independent t-test. Results ZNF652 was identified as a DEG and exhibited the highest diagnostic value for OA according to the ROC analysis. The GO and KEGG enrichment analyses suggest that ZNF652 plays a vital role in OA development through processes including nitric oxide anabolism, macrophage proliferation, immune response, and the PI3K/Akt and the MAPK signaling pathways. The increased expression of ZNF652 in OA was validated in qRT-PCR (1.193 ± 0.005 vs 1.000 ± 0.005, p < 0.001) and WB (0.981 ± 0.055 vs 0.856 ± 0.026, p = 0.012) analysis. Conclusion ZNF652 was found to be related to OA pathogenesis and can potentially serve as a diagnostic and therapeutic target of OA. The underlying mechanism is that ZNF652 was related to nitric oxide anabolism, macrophage proliferation, various signaling pathways, and immune cells and their functions in OA. Nevertheless, the findings need to be confirmed in clinical trials and the molecular mechanism requires further study.
Collapse
Affiliation(s)
- Yeping Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Rongyuan Liang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xifan Zheng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Dalang Fang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Youjiang Medical College of Nationalities, Baise, Guangxi, People’s Republic of China
| | - William W Lu
- Department of Orthopedics and Traumatology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Yan Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
6
|
Cruz CA, Pruneski JA, McAllister RN, Riopelle D, Bottoni CR. Fifteen-Year Radiographic Follow-up Comparison of Early Versus Delayed ACL Reconstruction: A Retrospective Review of a Previous Prospective Randomized Clinical Trial. Orthop J Sports Med 2024; 12:23259671241298753. [PMID: 39669710 PMCID: PMC11635895 DOI: 10.1177/23259671241298753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 12/14/2024] Open
Abstract
Background Posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament injury and reconstruction (ACLR) is a prevalent cause of long-term disability. Few studies have compared the effect of ACLR timing on the development of PTOA. Purpose/Hypothesis The purpose of this study was to compare the rate of PTOA at a long-term follow-up between patients who underwent early ACLR (<21 days after injury) versus delayed ACLR (>6 weeks after injury). The authors hypothesized that patients who underwent early ACLR would have lower rates of PTOA compared with the delayed ACLR cohort. Study Design Cohort study; Level of evidence, 2. Methods The authors contacted patients from a previous prospective randomized controlled trial who were randomized to undergo either early (<21 days) or delayed (>6 weeks) ACLR with hamstring tendon autografts. Weightbearing radiographs were obtained at a minimum 15-year follow-up, and radiographic PTOA was evaluated using the Kellgren-Lawrence (K-L) classification system. The prevalence of pathologies was compared between the early and delayed groups using appropriate testing, and logistic regression was used to evaluate for associations with failure-a K-L grade of ≥2 or conversion to total knee arthroplasty (TKA). Results At a mean follow-up of 15.6 years, radiographs were obtained for 58 (28 early, 30 delayed) of the original 69 (84.1%) patients. High rates of PTOA (K-L grade ≥2) were observed in the early (82.1%) and delayed (86.7%) cohorts (P = .634). Two (7.1%) patients in the early cohort converted to TKA compared with 4 (13.3%) patients in the delayed cohort (P = .44). Surgical timing did not affect arthritis severity (P≥ .4), and no factors predicted developing radiographic PTOA in either cohort (P > .2). Increased time from injury decreased the odds of failure in the early ACLR cohort (odds ratio, 0.79; P = .041). Conclusion In this study, >80% of patients who underwent ACLR with hamstring tendon autografts had radiographic evidence of PTOA at a mean 15.6-year follow-up, with no difference in the prevalence or severity of PTOA between the early and delayed groups. In addition, 11% of patients had converted to TKA by the time of the final follow-up, and the conversion rate did not differ according to the timing of ACLR.
Collapse
Affiliation(s)
| | - James A. Pruneski
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Honolulu, Hawaii, USA
| | - Rebecca N. McAllister
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Honolulu, Hawaii, USA
| | - David Riopelle
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, California, USA. Presented at the AOSSM Annual Meeting, Washington, District of Columbia, July 2023
| | - Craig R. Bottoni
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Honolulu, Hawaii, USA
| |
Collapse
|
7
|
Libke ML, Cunningham DJ, Furman BD, Yi JS, Brunger JM, Kraus VB, Guilak F, McNulty AL, Olson SA. Mode of injury and level of synovitis alter inflammatory chondrocyte gene expression and associated pathways. Sci Rep 2024; 14:28917. [PMID: 39572571 PMCID: PMC11582678 DOI: 10.1038/s41598-024-71964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/02/2024] [Indexed: 11/24/2024] Open
Abstract
Although various joint injuries result in post-traumatic osteoarthritis (PTOA), differences in chondrocyte response to specific injuries, such as blunt compression or fracture, are unclear. Furthermore, the role of underlying joint inflammation, or synovitis, is often not considered. We investigated how injury mechanisms and underlying synovitis affect chondrocyte gene expression using osteochondral injury models with synovial co-culture. We hypothesized that the state of synovitis as well as the mechanism of biomechanical cartilage injury differentially alter the gene expression of chondrocytes and that these responses are regulated by the pro-inflammatory cytokine interleukin 1 (IL-1). The mechanism of injury and level of synovial inflammation both significantly regulated chondrocyte gene expression and associated pathways, uncovering distinct characteristics of fracture and compression injury mechanisms. Targeting IL-1 following injury reduced the inflammatory response and could have clinical implications. The results from this study show that crosstalk between biomechanics and inflammation in the context of synovitis and cartilage injury mechanism is an important consideration for PTOA.
Collapse
Affiliation(s)
- Megan L Libke
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- School of Medicine, Indiana University, Indianapolis, USA
| | - Daniel J Cunningham
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
- School of Medicine, Duke University, Durham, NC, USA
| | - Bridgette D Furman
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
- School of Medicine, Duke University, Durham, NC, USA
| | - John S Yi
- Department of Surgery, Duke University, Durham, NC, USA
| | - Jonathan M Brunger
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Virginia B Kraus
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
- School of Medicine, Duke University, Durham, NC, USA
- Department of Medicine, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Farshid Guilak
- Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | - Steven A Olson
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA.
- School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Deng Y, Perry TA, Hulley P, Maciewicz RA, Mitchelmore J, Perry D, Larsson S, Brachat S, Struglics A, Appleton CT, Kluzek S, Arden NK, Felson D, Marsden B, Tom BDM, Bondi L, Kapoor M, Batchelor V, Mackay-Alderson J, Kumar V, Lohmander LS, Welting TJ, Walsh DA, Valdes AM, Vincent TL, Watt FE, Jostins-Dean L. Development of methodology to support molecular endotype discovery from synovial fluid of individuals with knee osteoarthritis: The STEpUP OA consortium. PLoS One 2024; 19:e0309677. [PMID: 39556578 PMCID: PMC11573211 DOI: 10.1371/journal.pone.0309677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/15/2024] [Indexed: 11/20/2024] Open
Abstract
OBJECTIVES To develop a protocol for largescale analysis of synovial fluid proteins, for the identification of biological networks associated with subtypes of osteoarthritis. METHODS Synovial Fluid To detect molecular Endotypes by Unbiased Proteomics in Osteoarthritis (STEpUP OA) is an international consortium utilising clinical data (capturing pain, radiographic severity and demographic features) and knee synovial fluid from 17 participating cohorts. 1746 samples from 1650 individuals comprising OA, joint injury, healthy and inflammatory arthritis controls, divided into discovery (n = 1045) and replication (n = 701) datasets, were analysed by SomaScan Discovery Plex V4.1 (>7000 SOMAmers/proteins). An optimised approach to standardisation was developed. Technical confounders and batch-effects were identified and adjusted for. Poorly performing SOMAmers and samples were excluded. Variance in the data was determined by principal component (PC) analysis. RESULTS A synovial fluid standardised protocol was optimised that had good reliability (<20% co-efficient of variation for >80% of SOMAmers in pooled samples) and overall good correlation with immunoassay. 1720 samples and >6290 SOMAmers met inclusion criteria. 48% of data variance (PC1) was strongly correlated with individual SOMAmer signal intensities, particularly with low abundance proteins (median correlation coefficient 0.70), and was enriched for nuclear and non-secreted proteins. We concluded that this component was predominantly intracellular proteins, and could be adjusted for using an 'intracellular protein score' (IPS). PC2 (7% variance) was attributable to processing batch and was batch-corrected by ComBat. Lesser effects were attributed to other technical confounders. Data visualisation revealed clustering of injury and OA cases in overlapping but distinguishable areas of high-dimensional proteomic space. CONCLUSIONS We have developed a robust method for analysing synovial fluid protein, creating a molecular and clinical dataset of unprecedented scale to explore potential patient subtypes and the molecular pathogenesis of OA. Such methodology underpins the development of new approaches to tackle this disease which remains a huge societal challenge.
Collapse
Affiliation(s)
- Yun Deng
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Thomas A. Perry
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Philippa Hulley
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Rose A. Maciewicz
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | | | - Darryl Perry
- SomaLogic, Boulder, Colorado, United States of America
| | - Staffan Larsson
- Department of Clinical Sciences Lund, Orthopaedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sophie Brachat
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - André Struglics
- Department of Clinical Sciences Lund, Orthopaedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - C. Thomas Appleton
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Stefan Kluzek
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- NIHR Nottingham Biomedical Research Centre and Versus Arthritis Sport, Exercise and Osteoarthritis Centre, University of Nottingham, Nottingham, United Kingdom
| | - Nigel K. Arden
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, University of Oxford, Oxford, United Kingdom
| | - David Felson
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Brian Marsden
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brian D. M. Tom
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Laura Bondi
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Vicky Batchelor
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Jennifer Mackay-Alderson
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Vinod Kumar
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - L. Stefan Lohmander
- Department of Clinical Sciences Lund, Orthopaedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tim J. Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, Netherlands
| | - David A. Walsh
- Pain Centre Versus Arthritis, Advanced Pain Discovery Platform, and the NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Sherwood Forest Hospitals NHS Foundation Trust, Sutton in Ashfield, United Kingdom
| | - Ana M. Valdes
- Pain Centre Versus Arthritis, Advanced Pain Discovery Platform, and the NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | | | - Tonia L. Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Fiona E. Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Luke Jostins-Dean
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Ji Y, Yang S, Wang Y, Guo B, Xu J. Factors influencing clavicular tunnel widening after single bundle coracoclavicular ligament reconstruction. J Orthop Surg Res 2024; 19:735. [PMID: 39506765 PMCID: PMC11542265 DOI: 10.1186/s13018-024-05201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The coracoclavicular ligament reconstruction (CLR) technique for the treatment of acromioclavicular joint (ACJ) dislocation has gained immense clinical popularity. However, this technique also has some limitations including complications such as distal clavicle fractures, coracoid fractures, bone tunnel widening, implant failure, and loss of reduction. A study was conducted to analyse the extent of CTW after single-bundle CLR by measuring radiographic parameters to determine its relationship with clinical variables to reduce the risk of clavicular tunnel widening (CTW), thereby providing important insights for clinical practice. METHODS This retrospective analysis was conducted at Affiliated Fuyang People's Hospital of Bengbu Medical University, and data from 96 patients who underwent single-bundle CLR for type III-VI ACJ dislocation between January 2018 and December 2023 were initially collected. Finally, 84 patients met the inclusion criteria (63 male and 21 female, mean age: 49.5 ± 12.36 years). The clavicle tunnel (CT) width and coracoclavicular distance (CCD) was measured immediately postoperatively and at 6 months follow up using radiographic imaging, and the degree of expansion at 6 months was recorded. Preoperative variables including patient sex, age, injury cause, injury side, body mass index (BMI), Rockwood classification, extent of the CCD after surgery, and the CT location were recorded to analyze their correlation with the extent of CTW at 6 months follow up. RESULTS With an average follow-up duration of 10 months (range: 6-18 months). Both the extent of the CCD and CTW measured at 6 months postoperatively were differently enlarged, compared to early postoperative period (EPO) (P < 0.05). The results showed that there were no statistically significant differences in the CTW at 6 months postoperatively with respect to patients' sex, causes of injury, sides of injury, and Rockwood classification types(P > 0.05). However, the location of CT was significantly associated with the extent of CTW at 6 months postoperatively (P < 0.05). CONCLUSIONS The location of CT drilling is a significant factor that affects tunnel widening. When the drilling site is situated closer to the conoid tubercle, the extent of CTW is greater than when the tunnel is located farther from the conoid tubercle.
Collapse
Affiliation(s)
- Yuncong Ji
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, China
| | - Siqi Yang
- School of Mathematics and Statistics, Fuyang Normal University, Fuyang, China
| | - Yanbo Wang
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, China
| | - Biao Guo
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, China.
| | - Jian Xu
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, China.
| |
Collapse
|
10
|
Morris JL, Letson HL, McEwen PC, Dobson GP. Adenosine, lidocaine, and magnesium therapy augments joint tissue healing following experimental anterior cruciate ligament rupture and reconstruction. Bone Joint Res 2024; 13:279-293. [PMID: 38843878 PMCID: PMC11156504 DOI: 10.1302/2046-3758.136.bjr-2023-0360.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
Aims Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Methods Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed. Results Despite comparable knee function, ALM-treated males had reduced systemic inflammation, synovial fluid angiogenic and pro-inflammatory mediators, synovitis, and fat pad fibrotic changes, compared to controls. Within the ACL graft, ALM-treated males had increased expression of tissue repair markers, decreased inflammation, increased collagen organization, and improved graft-bone healing. In contrast to males, females had no evidence of persistent systemic inflammation. Compared to controls, ALM-treated females had improved knee extension, gait biomechanics, and elevated synovial macrophage inflammatory protein-1 alpha (MIP-1α). Within the ACL graft, ALM-treated females had decreased inflammation, increased collagen organization, and improved graft-bone healing. In articular cartilage of ALM-treated animals, matrix metalloproteinase (MMP)-13 expression was blunted in males, while in females repair markers were increased. Conclusion At 28 days, ALM therapy reduces inflammation, augments tissue repair patterns, and improves joint function in a sex-specific manner. The study supports transition to human safety trials.
Collapse
Affiliation(s)
- Jodie L. Morris
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Hayley L. Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Peter C. McEwen
- Orthopaedic Research Institute of Queensland, Townsville, Australia
| | - Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| |
Collapse
|
11
|
Cantrell WA, Cox CL, Johnson C, Obuchowski N, Strnad G, Swinehart D, Yalcin S, Spindler KP. The Effect of Aspiration and Corticosteroid Injection After ACL Injury on Postoperative Infection Rate. Am J Sports Med 2023; 51:3665-3669. [PMID: 37975540 DOI: 10.1177/03635465231211606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
BACKGROUND Injecting bioactive substances into the knee is common in orthopaedic practice, and recently it has been shown to mitigate risk factors for posttraumatic osteoarthritis. Therefore, understanding the influence of these injections on postoperative infection rate is imperative. HYPOTHESIS Postinjury aspiration and corticosteroid injection (CSI) of the knee before anterior cruciate ligament (ACL) reconstruction (ACLR) would not increase the risk of postoperative infection. STUDY DESIGN Cohort Study; Level of evidence, 3. METHODS All patients between the ages of 10 and 65 years who underwent primary bone-patellar tendon-bone ACLR by 1 fellowship-trained sports medicine orthopaedic surgeon between January 1, 2011, and September 8, 2020, at 1 of 2 major academic centers were evaluated for inclusion. A total of 693 patients were included, with 273 patients receiving postinjury and preoperative aspiration and CSI. A postoperative infection was defined as a patient returning to the operating room for an intra-articular washout. The intervals-measured in days-between the CSI and ACLR and between ACLR and the final follow-up were recorded. To further evaluate the infection risk in each cohort (total cohort; aspiration and injection cohort; no aspiration and injection cohort), the upper 95% confidence bound for the infection risk was calculated for each cohort. RESULTS There were no postoperative infections in the 693 patients included in this study. The upper 95% confidence bounds were 0.4%, 1.1%, and 0.7% for the total cohort, the cohort that underwent aspiration and injection, and the cohort that did not, respectively. The median number of days between the surgical date and that of the aspiration and injection was 34 days, and the mean follow-up for the entire cohort was 337.4 days (95% CI, 307.6-367.3). CONCLUSION Postinjury and preoperative aspiration and CSI is a safe intervention that can be used before ACLR. Future studies with larger sample sizes, longer patient follow-ups, and multiple surgeons would be helpful to both better understand infection risk and better identify the influence of CSI on preventing posttraumatic osteoarthritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kurt P Spindler
- Cleveland Clinic Florida, Sports Medicine, Weston, Florida, USA
| |
Collapse
|
12
|
Li Z, Zhang S, Mao G, Xu Y, Kang Y, Zheng L, Long D, Chen W, Gu M, Zhang Z, Kang Y, Sheng P, Zhang Z. Identification of anterior cruciate ligament fibroblasts and their contribution to knee osteoarthritis progression using single-cell analyses. Int Immunopharmacol 2023; 125:111109. [PMID: 37883816 DOI: 10.1016/j.intimp.2023.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The mechanical properties of the anterior cruciate ligament (ACL) in the knee have been highlighted, but its role in the regulation of the joint microenvironment remains unclear, especially in the progression of Knee Osteoarthritis (KOA). Here, single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) data were integrated to reveal the transcriptional and epigenomic landscape of ACL in normal and OA states. We identified a novel subpopulation of fibroblasts in ACL, which provides new insights into the role of the ACL in knee homeostasis and disease. Degeneration of the ACL during OA mechanically alters the knee joint homeostasis and influences the microenvironment by regulating inflammatory- and osteogenic-related factors, thereby contributing to the progression of KOA. Additionally, the specific mechanism by which these Inflammation-associated Fibroblasts (IAFs) regulate KOA progression was uncovered, providing new foundation for the development of targeted treatments for KOA.
Collapse
Affiliation(s)
- Zhiwen Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shiyong Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guping Mao
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yiyang Xu
- Department of Orthopaedics, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, China
| | - Yunze Kang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Linli Zheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dianbo Long
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weishen Chen
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Minghui Gu
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhiqi Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Yan Kang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Puyi Sheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Ziji Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
13
|
Leite CBG, Merkely G, Charles JF, Lattermann C. From Inflammation to Resolution: Specialized Pro-resolving Mediators in Posttraumatic Osteoarthritis. Curr Osteoporos Rep 2023; 21:758-770. [PMID: 37615856 DOI: 10.1007/s11914-023-00817-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE OF REVIEW To provide a comprehensive overview of the inflammatory response following anterior cruciate ligament (ACL) injury and to highlight the relationship between specialized pro-resolving mediators (SPMs) and inflammatory joint conditions, emphasizing the therapeutic potential of modulating the post-injury resolution of inflammation to prevent posttraumatic osteoarthritis (PTOA). RECENT FINDINGS The inflammatory response triggered after joint injuries such as ACL tear plays a critical role in posttraumatic osteoarthritis development. Inflammation is a necessary process for tissue healing, but unresolved or overactivated inflammation can lead to chronic diseases. SPMs, a family of lipid molecules derived from essential fatty acids, have emerged as active players in the resolution of inflammation and tissue repair. While their role in other inflammatory conditions has been studied, their relationship with PTOA remains underexplored. Proinflammatory mediators contribute to cartilage degradation and PTOA pathogenesis, while anti-inflammatory and pro-resolving mediators may have chondroprotective effects. Therapies aimed at suppressing inflammation in PTOA have limitations, as inflammation is crucial for tissue healing. SPMs offer a pro-resolving response without causing immunosuppression, making them a promising therapeutic option. The known onset date of PTOA makes it amenable to early interventions, and activating pro-resolving pathways may provide new possibilities for preventing PTOA progression. Harnessing the pro-resolving potential of SPMs may hold promise for preventing PTOA and restoring tissue homeostasis and function after joint injuries.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Gergo Merkely
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA.
| |
Collapse
|
14
|
Keller LE, Fortier LA, Lattermann C, Hunt ER, Zhang S, Fu Q, Jacobs CA. Complement system dysregulation in synovial fluid from patients with persistent inflammation following anterior cruciate ligament reconstruction surgery. THE JOURNAL OF CARTILAGE & JOINT PRESERVATION 2023; 3:100114. [PMID: 38343688 PMCID: PMC10853944 DOI: 10.1016/j.jcjp.2023.100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Patients with anterior cruciate ligament injury are at high risk of posttraumatic osteoarthritis and their response to reconstructive surgery and rehabilitation vary. Proteins identified in the orchestration of the acute inflammatory response may be predictive of patient outcomes. OBJECTIVE An unbiased, bottom-up proteomics approach was used to discover novel targets for therapeutics in relation to dysregulation in the orchestration of inflammatory pathways implicated in persistent joint inflammation subsequent to joint trauma. METHODS Synovial fluid was aspirated from patients at 1 week and 4 weeks after anterior cruciate ligament reconstruction (ACLR) and interleukin 6 (IL-6) concentrations were quantified by enzyme-linked immunosorbent assay. Patients were segregated into IL-6low and IL-6high groups based on IL-6 concentrations in synovial fluid at 4-weeks postoperation and proteins in synovial fluid were analyzed using qualitative, bottom-up proteomics. Abundance ratios were calculated for IL-6high and IL-6low groups as 4 weeks postoperation:1 week postoperation. RESULTS A total of 291 proteins were detected in synovial fluid, 34 of which were significantly (P < .05) differentially regulated between groups. Proteins associated with the classical and alternative complement cascade pathways were increased in the IL-6high compared to IL-6low group. Insulin-like growth factor-binding protein 6 (IGFBP-6) was increased by nearly 60-fold in the IL-6low group. CONCLUSIONS Patients segregated by IL-6 concentration in synovial fluid at 4 weeks post-ACLR demonstrated differential regulation of multiple pathways, providing opportunities to investigate novel targets, such as IGFBP-6, and to take advantage of therapeutics already approved for clinical use in other diseases that target inflammatory pathways, including the complement system.
Collapse
Affiliation(s)
- Laura E. Keller
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Christian Lattermann
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Emily R. Hunt
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sheng Zhang
- Biological Resource Center, Cornell University, Ithaca, NY, USA
| | - Qin Fu
- Biological Resource Center, Cornell University, Ithaca, NY, USA
| | - Cale A. Jacobs
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
15
|
Brackin RB, McColgan GE, Pucha SA, Kowalski MA, Drissi H, Doan TN, Patel JM. Improved Cartilage Protection with Low Molecular Weight Hyaluronic Acid Hydrogel. Bioengineering (Basel) 2023; 10:1013. [PMID: 37760116 PMCID: PMC10525634 DOI: 10.3390/bioengineering10091013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic joint injuries are common, leading to progressive tissue degeneration and the development of osteoarthritis. The post-traumatic joint experiences a pro-inflammatory milieu, initiating a subtle but deteriorative process in cartilage tissue. To prevent or even reverse this process, our group previously developed a tissue-penetrating methacrylated hyaluronic acid (MeHA) hydrogel system, crosslinked within cartilage to restore and/or protect the tissue. In the current study, we further optimized this approach by investigating the impact of biomaterial molecular weight (MW; 20, 75, 100 kDa) on its integration within and reinforcement of cartilage, as well as its ability to protect tissue degradation in a catabolic state. Indeed, the low MW MeHA integrated and reinforced cartilage tissue better than the high MW counterparts. Furthermore, in a 2 week IL-1β explant culture model, the 20 kDa MeHA demonstrated the most protection from biphasic mechanical loss, best retention of proteoglycans (Safranin O staining), and least aggrecan breakdown (NITEGE). Thus, the lower MW MeHA gels integrated better into the tissue and provided the greatest protection of the cartilage matrix. Future work will test this formulation in a preclinical model, with the goal of translating this therapeutic approach for cartilage preservation.
Collapse
Affiliation(s)
- Riley B. Brackin
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Gail E. McColgan
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Saitheja A. Pucha
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Michael A. Kowalski
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Hicham Drissi
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Thanh N. Doan
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Jay M. Patel
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| |
Collapse
|
16
|
Rai MF, Cai L, Zhang Q, Townsend RR, Brophy RH. Synovial Fluid Proteomics From Serial Aspirations of ACL-Injured Knees Identifies Candidate Biomarkers. Am J Sports Med 2023:3635465231169526. [PMID: 37191559 DOI: 10.1177/03635465231169526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tears often result in knee effusion and an increased risk for developing knee osteoarthritis (OA) in the long run. The molecular profile of these effusions could be informative regarding initial steps in the development of posttraumatic OA after an ACL tear. HYPOTHESIS The proteomics of knee synovial fluid changes over time after ACL injury. STUDY DESIGN Descriptive laboratory study. METHODS Synovial fluid was collected from patients with an acute traumatic ACL tear presenting to the office for evaluation (18.31 ± 19.07 days from injury) (aspiration 1) and again at the time of surgery (35.41 ± 58.15 days after aspiration 1 (aspiration 2). High-resolution liquid chromatography mass spectrometry was used to assess the quantitative protein profile of synovial fluid, and differences in protein profile between the 2 aspirations were determined computationally. RESULTS A total of 58 synovial fluid samples collected from 29 patients (12 male, 17 female; 12 isolated ACL tear, 17 combined ACL and meniscal tear) with a mean age and body mass index of 27.01 ± 12.78 years and 26.30 ± 4.93, respectively, underwent unbiased proteomics analysis. The levels of 130 proteins in the synovial fluid changed over time (87 high, 43 low). Proteins of interest that were significantly higher in aspiration 2 included CRIP1, S100A11, PLS3, POSTN, and VIM, which represent catabolic/inflammatory activities in the joint. Proteins with a known role in chondroprotection and joint homeostasis such as CHI3L2 (YKL-39), TNFAIP6/TSG6, DEFA1, SPP1, and CILP were lower in aspiration 2. CONCLUSION Synovial fluid from knees with ACL tears exhibits an increased burden of inflammatory (catabolic) proteins relevant to OA with reduced levels of chondroprotective (anabolic) proteins. CLINICAL RELEVANCE This study identified a set of novel proteins that provide new biological insights into the aftermath of ACL tears. Elevated inflammation and decreased chondroprotection could represent initial disruption of homeostasis, potentially initiating the development of OA. Longitudinal follow-up and mechanistic studies are necessary to assess the functional role of these proteins in the joint. Ultimately, these investigations could lead to better approaches to predict and possibly improve patient outcomes.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lei Cai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - R Reid Townsend
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Jacobs CA, Keller LE, Zhang S, Fu Q, Hunt ER, Stone AV, Conley CEW, Lattermann C, Fortier LA. Periostin regulation and cartilage degradation early after anterior cruciate ligament reconstruction. Inflamm Res 2023; 72:387-394. [PMID: 36562795 DOI: 10.1007/s00011-022-01678-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The purpose of this study was to explore pathological processes during the first 4 weeks after anterior cruciate ligament reconstruction (ACLR). SUBJECTS Sixteen ACL-injured patients (8 females/8 males, mean age = 19.1, mean BMI = 28.6). METHODS Arthrocentesis was performed 1 and 4 weeks after ACLR. Proteins in the synovial fluid were identified using nanoLC-ESI-MS/MS. Differentially up- or down-regulated proteins were identified and quantified, and a pathway analysis was performed. All identified proteins were mapped into a protein-protein interaction (PPI) network, and networks of PPIs with a combined score > 0.9 were then visualized. RESULTS Seven pathways were upregulated after ACLR: PI3K-AKT signaling pathway, extracellular matrix (ECM)-receptor interaction, focal adhesion, protein digestion and absorption, ameobiasis, and platelet activation. Network analyses identified 8 proteins that were differentially upregulated with strong PPI interactions (periostin and 7 collagen-related proteins). Increases in periostin moderately correlated with increases in a synovial fluid biomarker of type II cartilage degradation (ρ = 0.51, p = 0.06). CONCLUSION Pro-inflammatory pathways and periostin were upregulated after ACLR. Periostin demonstrated strong network connections with markers of collagen breakdown, and future work is needed to determine whether periostin may offer a biomarker of early cartilage degradation after ACLR and/or play an active role in early post-traumatic osteoarthritis (PTOA) progression.
Collapse
Affiliation(s)
- Cale A Jacobs
- University of Kentucky, 740 S. Limestone, Suite K401, Lexington, KY, 40536-0284, USA.
- Brigham and Women's Hospital, MA, Boston, USA.
- Massachusetts General Brigham Sports Medicine, 20 Patriot Pl, 3rd floor, 02035, Foxborough, MA, USA.
| | | | | | - Qin Fu
- Cornell University, Ithaca, NY, USA
| | | | - Austin V Stone
- University of Kentucky, 740 S. Limestone, Suite K401, Lexington, KY, 40536-0284, USA
| | - Caitlin E W Conley
- University of Kentucky, 740 S. Limestone, Suite K401, Lexington, KY, 40536-0284, USA
| | - Christian Lattermann
- Brigham and Women's Hospital, MA, Boston, USA
- Massachusetts General Brigham Sports Medicine, 20 Patriot Pl, 3rd floor, 02035, Foxborough, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
18
|
Yang S, Wang YP, Li XY, Han PY, Han PF. The association between ADAM12 gene polymorphisms and osteoarthritis: an updated meta-analysis. J Orthop Surg Res 2023; 18:149. [PMID: 36855121 PMCID: PMC9974398 DOI: 10.1186/s13018-023-03626-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Osteoarthritis of the knee is an irreversible disease that causes great pain, and genetic factors play an important role in its occurrence and development. There have been many studies on the correlation between ADAM12 polymorphisms and genetic susceptibility to osteoarthritis, but the results remain inconclusive. METHODS Papers from PubMed, Web of Science, EMbase, Springer, SCOPUS, Google Scholar and other databases were systematically retrieved with a cut-off of January 2022. All case-control studies on ADAM12 rs3740199, rs1871054, rs1044122, and rs1278279 polymorphisms and osteoarthritis were searched. Fixed or random effects models were used for pooled analysis with OR values and 95% confidence intervals (CI), and publication bias was assessed. In addition, the false-positive reporting probability test was used to assess the confidence of a statistically significant association. RESULTS Eleven articles were included, which included 3332 patients with osteoarthritis and 5108 healthy controls. Meta-analysis showed that the rs1871054 polymorphism of ADAM12 was associated with osteoarthritis in dominant, recessive, allelic, and homozygote genetic models [C vs. T: OR = 1.34 95% CI (1.05, 1.71), P < 0.001]. Our subgroup analysis revealed an association between the ADAM12 polymorphism rs1871054 in Asians and osteoarthritis [C vs. T: OR = 1.61, 95% CI (1.25, 2.08), P < 0.001], albeit this was only for three studies. In addition, the ADAM12 polymorphism rs1871054 is associated with osteoarthritis in patients younger than 60 years of age [C vs. T: OR = 1.39, 95% CI (1.01, 1.92), P = 0.289]; however, the ADAM12 gene rs3740199, rs1044122, and rs1278279 site polymorphisms were not significantly. Furthermore, when assessing the confidence of the positive results, the positive results were found to be credible (except for Age < 60). CONCLUSION Polymorphism at the rs1871054 site of ADAM12 is associated with genetic susceptibility to osteoarthritis, but rs3740199, rs1044122, and rs1278279 site polymorphisms are not.
Collapse
Affiliation(s)
- Su Yang
- Department of Orthopedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi China
| | - Yue-peng Wang
- Department of Orthopedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi China
| | - Xi-yong Li
- Department of Graduate School, Changzhi Medical College, Changzhi, Shanxi China
| | - Peng-yong Han
- Department of Graduate School, Changzhi Medical College, Changzhi, Shanxi China
| | - Peng-fei Han
- Department of Graduate School, Changzhi Medical College, Changzhi, Shanxi China
| |
Collapse
|
19
|
Leite CBG, Tavares LP, Leite MS, Demange MK. Revisiting the role of hyperbaric oxygen therapy in knee injuries: Potential benefits and mechanisms. J Cell Physiol 2023; 238:498-512. [PMID: 36649313 DOI: 10.1002/jcp.30947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
Knee injury negatively impacts routine activities and quality of life of millions of people every year. Disruption of tendons, ligaments, and articular cartilage are major causes of knee lesions, leading to social and economic losses. Besides the attempts for an optimal recovery of knee function after surgery, the joint healing process is not always adequate given the nature of intra-articular environment. Based on that, different therapeutic methods attempt to improve healing capacity. Hyperbaric oxygen therapy (HBOT) is an innovative biophysical approach that can be used as an adjuvant treatment post-knee surgery, to potentially prevent chronic disorders that commonly follows knee injuries. Given the well-recognized role of HBOT in improving wound healing, further research is necessary to clarify the benefits of HBOT in damaged musculoskeletal tissues, especially knee disorders. Here, we review important mechanisms of action for HBOT-induced healing including the induction of angiogenesis, modulation of inflammation and extracellular matrix components, and activation of parenchyma cells-key events to restore knee function after injury. This review discusses the basic science of the healing process in knee injuries, the role of oxygen during cicatrization, and shed light on the promising actions of HBOT in treating knee disorders, such as tendon, ligament, and cartilage injuries.
Collapse
Affiliation(s)
- Chilan B G Leite
- Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- Department of Orthopedic Surgery, Center for Cartilage Repair and Sports Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Luciana P Tavares
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Magno S Leite
- Laboratório de Poluição Atmosférica Experimental LIM05, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Marco K Demange
- Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
20
|
Xiao X, Yang X, Ren S, Meng C, Yang Z. Construction and analysis of a lncRNA–miRNA–mRNA competing endogenous RNA network from inflamed and normal synovial tissues after anterior cruciate ligament and/or meniscus injuries. Front Genet 2022; 13:983020. [PMID: 36324509 PMCID: PMC9619217 DOI: 10.3389/fgene.2022.983020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 01/15/2023] Open
Abstract
Background: Despite ample evidence demonstrating that anterior cruciate ligament (ACL) and meniscus tears are associated with posttraumatic osteoarthritis (PTOA) development, the contributing factors remain unknown. Synovial inflammation has recently been recognized as a pivotal factor in the pathogenesis of OA. However, there is a lack of data on synovial profiles after ACL or meniscus injuries, which may contribute to PTOA. Methods: Twelve patients with ACL tears and/or meniscus injuries were recruited. During surgery, synovial tissues were obtained from the injured knees. The inflammation status of the synovium was characterized according to macroscopic criteria and histological synovitis grades. Then the synovial tissues were classified as control group or inflamed group. High-throughput RNA sequencing of the synovial samples (3 vs. 3) was conducted to identify differentially expressed (DE) RNAs. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein–protein interaction (PPI) analyses were performed to investigate DE mRNAs. Next, competing endogenous RNA (ceRNA) networks were constructed based on bioinformatics analyses. Associations of the identified DE genes (DEGs) with infiltrating immune cells were explored using Pearson correlation analysis. Results: The results showed that 2793 mRNAs, 3392 lncRNAs and 211 miRNAs were significantly DE between two groups. The top 3 significantly upregulated GO terms and KEGG pathways were immune response, adaptive immune response and immune system process, systemic lupus erythematosus, haematopoietic cell lineage and cytokine–cytokine receptor interaction, respectively. In PPI networks, the top 10 hub genes were IL6, CCR7, C3, CCR5, CXCR3, CXCL8, IL2, CCR3, CCR2 and CXCL1. Seven mRNAs (EPHA5, GSN, ORC1, TLN2, SOX6, NKD2 and ADAMTS19), 4 lncRNAs (MIR4435-2HG, TNXA, CEROX1 and TMEM92-AS1) and 3 miRNAs (miR-486-5p, miR-199a-3p and miR-21-3p) were validated by quantitative real-time polymerase chain reaction and sub-networks were constructed. In correlation analysis, MMP9 correlated positively with M0 macrophages and plasma cells, NKD2 positively with CD8 T cells, and CCR7 and IL2RB positively with naive B cells. Conclusion: Our study provides foundational synovial inflammation profiles following knee trauma. The ceRNA and PPI networks provide new insight into the biological processes and underlying mechanisms of PTOA. The differential infiltration profiles of immune cells in synovium may contribute to PTOA development. This study also highlights immune-related DEGs as potential PTOA treatment biomarkers.
Collapse
Affiliation(s)
- Xiling Xiao
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunqing Meng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chunqing Meng, ; Zhaohui Yang,
| | - Zhaohui Yang
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chunqing Meng, ; Zhaohui Yang,
| |
Collapse
|
21
|
Brophy RH, Cai L, Zhang Q, Townsend RR, Rai MF. Proteomic Profile Analysis of Synovial Fluid in Patients With Anterior Cruciate Ligament Tears. Am J Sports Med 2022; 50:2935-2943. [PMID: 35969389 DOI: 10.1177/03635465221112652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tears are associated with posttraumatic osteoarthritis, but the early biological changes that initiate joint degeneration after this injury are not well characterized. ACL tears typically result in effusion in the knee, which may provide insight into the initial response of the joint to injuries. HYPOTHESIS Patient- and injury-specific factors are associated with the proteomics of synovial fluid in knees with ACL tears. STUDY DESIGN Descriptive laboratory study. METHODS Synovial fluid was collected from 105 patients (38 male, 67 female) with an acute traumatic ACL tear. Patient- and injury-specific factors such as age, sex, body mass index, time from injury, presence/absence of concomitant meniscal tears, and location of concomitant bone bruises (if present) were recorded. The protein concentration of synovial fluid was measured, followed by benchmarking of samples for multi-affinity high-abundance protein depletion. An isotropically labeled high-resolution nano-liquid chromatography with tandem mass spectrometry-based proteomic approach was used to determine the synovial fluid protein profile. Data were processed, quality controlled, and analyzed computationally for each patient and injury factor. RESULTS The proteomics of synovial fluid from ACL tears was associated with patient sex, injury pattern, and location of bone bruises but not with patient age, body mass index, or time from injury. Knees with an isolated ACL tear had higher glutathione peroxidase 1 (GPX1) and plastin 3 levels than knees with an ACL tear and meniscal tear. A bone bruise on the lateral femoral condyle was associated with elevated leptin and glucose-6-phosphate dehydrogenase (G6PD) levels. A bone bruise on the lateral tibial plateau was associated with decreased GPX1 levels. Male patients had higher matrix metalloproteinase 9 and lower G6PD levels than female patients. CONCLUSION Patient sex, injury pattern, and bone bruise location were important determinants of the proteomic profile of effusion resulting from ACL tears. CLINICAL RELEVANCE Longitudinal follow-ups to see if and how proteomic differences relate to clinical outcomes and mechanistic studies to assess the role that specific proteins play in the joint are warranted. Ultimately, these investigations could lead to better approaches to predict clinical outcomes and identify possible interventions to optimize outcomes in these patients.
Collapse
Affiliation(s)
- Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lei Cai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Qiang Zhang
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - R Reid Townsend
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, Missouri, USA.,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
22
|
Buchanan MW, Furman BD, McNulty AL, Olson SA. Combination of Lidocaine and IL-1Ra Is Effective at Reducing Degradation of Porcine Cartilage Explants. Am J Sports Med 2022; 50:1997-2006. [PMID: 35482438 DOI: 10.1177/03635465221090611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Posttraumatic inflammation after joint injury, ranging from sprains to articular fracture, contributes to the development of arthritis, and the administration of interleukin 1 (IL-1) receptor antagonist (IL-1Ra) is a potential intervention to mitigate this response. Although IL-1Ra mitigates cartilage degenerative changes induced by IL-1, lidocaine is used for local pain management in acute joint injury. Intra-articular delivery of both drugs in combination would be a novel and possibly disease-modifying treatment. However, it is not known whether the interaction with lidocaine at clinical concentrations (1%) would alter the efficacy of IL-1Ra to protect cartilage from the catabolic effects of IL-1. HYPOTHESIS Treatment of articular cartilage with IL-1Ra in combination with a clinically relevant concentration of lidocaine (1%) will inhibit the catabolic effects of IL-1α in a manner similar to treatment with IL-1Ra alone. STUDY DESIGN Controlled laboratory study. METHODS Fresh porcine cartilage explants were harvested, challenged with IL-1α, and incubated for 72 hours with IL-1Ra or a combination of IL-1Ra and lidocaine. The primary outcome was total sulfated glycosaminoglycan (sGAG) release. Additional experiments assessed the effect of storage temperature and premixing of IL-1Ra and lidocaine on sGAG release. All explants were histologically assessed for cartilage degradation using a modified Mankin grading scale. RESULTS The combination of IL-1Ra and lidocaine, premixed at various time points and stored at room temperature or 4°C, was as effective as IL-1Ra alone at inhibiting IL-1α-mediated sGAG release. Mankin histopathology scores supported these findings. CONCLUSION Our hypothesis was supported, and results indicated that the combination of IL-1Ra and lidocaine was as efficacious as IL-1Ra treatment alone in acutely mitigating biological cartilage injury due to IL-1α in an explant model. CLINICAL SIGNIFICANCE The combination of IL-1Ra and lidocaine is stable when reagents are stored in advance of administration at varying temperatures, providing clinically relevant information about storage of medications. The ability to premix and store this drug combination for intra-articular delivery may provide a novel treatment after joint injury to provide pain relief and block inflammation-induced catabolism of joint tissues.
Collapse
Affiliation(s)
- Michael W Buchanan
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bridgette D Furman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Steven A Olson
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
23
|
Morris JL, McEwen P, Letson HL, Dobson GP. Anterior Cruciate Ligament Reconstruction Surgery: Creating a Permissive Healing Phenotype in Military Personnel and Civilians for Faster Recovery. Mil Med 2022; 187:1310-1317. [PMID: 35389483 PMCID: PMC9617292 DOI: 10.1093/milmed/usac093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Anterior cruciate ligament (ACL) rupture in military personnel and civilians can be a devastating injury. A service member is 10 times more likely to suffer an ACL injury than their civilian counterparts, and despite successful surgical stabilization, 4%-35% will develop arthrofibrosis, over 50% will not return to full active duty, and up to 50% will develop post-traumatic osteoarthritis (PTOA) within 15 years. Equally concerning, woman are 2 to 8 times more likely to experience ACL injuries than men, which represents a major knowledge gap. Materials and Methods A comprehensive literature search was performed in December 2021 using structured search terms related to prevalence, risk factors, disease progression, and treatment of ACL injury and reconstruction. The literature search was conducted independently by two researchers using PubMed, Cochrane, and Embase databases, with inclusion of articles with military, civilian, and sex relevance, and exclusion of most papers with a publication date greater than 10 years. The resources used for the review reflect the most current data, knowledge, and recommendations associated with research and clinical findings from reliable international sources. Results Currently, there is no effective system-based drug therapy that creates a “permissive environment” to reduce synovial and cartilage stress after ACL injury and reconstruction and prevent secondary complications. We argue that progress in this area has been hampered by researchers and clinicians failing to recognize that (1) an ACL injury is a system’s failure that affects the whole joint, (2) the early molecular events define and perpetuate different injury phenotypes, (3) male and female responses may be different and have a molecular basis, (4) the female phenotype continues to be under-represented in basic and clinical research, and (5) the variable outcomes may be perpetuated by the trauma of surgery itself. The early molecular events after ACL injury are characterized by an overexpression of joint inflammation, immune dysfunction, and trauma-induced synovial stress. We are developing an upstream adenosine, lidocaine, and magnesium therapy to blunt these early molecular events and expedite healing with less arthrofibrosis and early PTOA complications. Conclusions ACL injuries continue to be a major concern among military personnel and civilians and represent a significant loss in command readiness and quality of life. The lack of predictability in outcomes after ACL repair or reconstruction underscores the need for new joint protection therapies. The male–female disparity requires urgent investigation.
Collapse
Affiliation(s)
- Jodie L Morris
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville 4811, Australia
| | - Peter McEwen
- The Orthopaedic Research Institute of Queensland (ORIQL), Townsville, Queensland, QLD 4812, Australia
| | - Hayley L Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville 4811, Australia
| | - Geoffrey P Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville 4811, Australia
| |
Collapse
|
24
|
Donnenfield JI, Karamchedu NP, Fleming BC, Molino J, Proffen BL, Murray MM. Articular cartilage and synovium may be important sources of post-surgical synovial fluid inflammatory mediators. Am J Transl Res 2022; 14:1640-1651. [PMID: 35422952 PMCID: PMC8991160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The primary source of synovial fluid inflammatory mediators is currently unknown and may include different tissues comprising the joint, including the synovium and articular cartilage. Prior work in a porcine model has demonstrated that anterior cruciate ligament (ACL) surgery leads to significant changes in early gene expression in the synovium and articular cartilage, which are the same whether concomitant ligament restoration is performed or not. In this study, 36 Yucatan minipigs underwent ACL surgery, and a custom multiplex assay was used to measure synovial fluid protein levels of MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-12, MMP-13, IL-1α, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, GM-CSF, and TNFα in 18 animals at 1 and 4 weeks after surgery. Linear regressions were used to evaluate the relationships between synovial fluid protein levels and the previously reported gene expression levels in the articular cartilage and synovium from the same animal cohort. Synovial fluid levels of MMP-13 and IL-6 were significantly correlated with synovial gene expression (P=.003 and P<.001 respectively), while IL-1α levels were significantly correlated with articular cartilage gene expression (P=.037). The synovium may be an important source of MMP-13 and IL-6, and the articular cartilage may be an important source of IL-1α in post-surgical inflammation. In developing treatments for post-surgical inflammation, the synovium may therefore be a promising target for modulating inflammatory mediators such as MMP-13 and IL-6 in the synovial fluid.
Collapse
Affiliation(s)
- Jonah I Donnenfield
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| | - Naga Padmini Karamchedu
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI 02903, USA
| | - Braden C Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI 02903, USA
| | - Janine Molino
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI 02903, USA
| | - Benedikt L Proffen
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| | - Martha M Murray
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| |
Collapse
|
25
|
Liu C, Fan F, Zhong L, Su J, Zhang Y, Tu Y. Elucidating the material basis and potential mechanisms of Ershiwuwei Lvxue Pill acting on rheumatoid arthritis by UPLC-Q-TOF/MS and network pharmacology. PLoS One 2022; 17:e0262469. [PMID: 35130279 PMCID: PMC8820630 DOI: 10.1371/journal.pone.0262469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Ershiwuwei Lvxue Pill (ELP, མགྲིན་མཚལ་ཉེར་ལྔ།), a traditional Tibetan medicine preparation, has been used hundreds of years for the clinical treatment of rheumatoid arthritis (RA) in the highland region of Tibet, China. Nevertheless, its chemical composition and therapeutic mechanism are unclear. This study aimed to uncover the potentially effective components of ELP and the pharmacological mechanisms against RA by combing UPLC-Q-TOF/MS and network pharmacology. In this study, 96 compounds of ELP were identified or tentatively characterized based on UPLC-Q-TOF/MS analysis. Then, a total of 22 potential bioactive compounds were screened by TCMSP with oral bioavailability and drug-likeness. Preliminarily, 10 crucial targets may be associated with RA through protein-protein interaction network analysis. The functional enrichment analysis indicated that ELP exerted anti-RA effects probably by synergistically regulating many biological pathways, such as PI3K-Akt, Cytokine-cytokine receptor interaction, JAK-STAT, MAPK, TNF, and Toll-like receptor signaling pathway. In addition, good molecular docking scores were highlighted between five promising bioactive compounds (ellagic acid, quercetin, kaempferol, galangin, coptisine) and five core targets (PTGS2, STAT3, VEGFA, MAPK3, TNF). Overall, ELP can exert its anti-RA activity via multicomponent, multitarget, and multichannel mechanisms of action. However, further studies are needed to validate the biological processes and effect pathways of ELP.
Collapse
Affiliation(s)
- Chuan Liu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhong
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinsong Su
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Tu
- Development Research Center of Traditional Chinese Medicine, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Jacobs CA, Conley CEW, Kraus VB, Lansdown DA, Lau BC, Li X, Majumdar S, Spindler KP, Lemaster NG, Stone AV. MOntelukast as a potential CHondroprotective treatment following Anterior cruciate ligament reconstruction (MOCHA Trial): study protocol for a double-blind, randomized, placebo-controlled clinical trial. Trials 2022; 23:98. [PMID: 35101085 PMCID: PMC8802473 DOI: 10.1186/s13063-021-05982-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND After anterior cruciate ligament (ACL) reconstruction, patient-reported outcomes are improved 10 years post-surgery; however, cytokine concentrations remain elevated years after surgery with over 80% of those with combined ACL and meniscus injuries having posttraumatic osteoarthritis (PTOA) within 10-15 years. The purpose of this multicenter, randomized, placebo-controlled trial is to assess whether a 6-month course of oral montelukast after ACL reconstruction reduces systemic markers of inflammation and biochemical and imaging biomarkers of cartilage degradation. METHODS We will enroll 30 individuals undergoing primary ACL reconstruction to participate in this IRB-approved multicenter clinical trial. This trial will target those at greatest risk of a more rapid PTOA onset (age range 25-50 with concomitant meniscus injury). Patients will be randomly assigned to a group instructed to take 10 mg of montelukast daily for 6 months following ACL reconstruction or placebo. Patients will be assessed prior to surgery and 1, 6, and 12 months following surgery. To determine if montelukast alters systemic inflammation following surgery, we will compare systemic concentrations of prostaglandin E2, monocyte chemoattractant protein-1, and pro-inflammatory cytokines between groups. We will also compare degradative changes on magnetic resonance imaging (MRI) collected 1 and 12 months following surgery between groups with reductions in early biomarkers of cartilage degradation assessed with urinary biomarkers of type II collagen breakdown and bony remodeling. DISCUSSION There is a complex interplay between the pro-inflammatory intra-articular environment, underlying bone remodeling, and progressive cartilage degradation. PTOA affects multiple tissues and appears to be more similar to rheumatoid arthritis than osteoarthritis with respect to inflammation. There is currently no treatment to delay or prevent PTOA after ACL injury. Since there is a larger and more persistent inflammatory response after ACL reconstruction than the initial insult of injury, treatment may need to be initiated after surgery, sustained over a period of time, and target multiple mechanisms in order to successfully alter the disease process. This study will assess whether a 6-month postoperative course of oral montelukast affects multiple PTOA mechanisms. Because montelukast administration can be safely sustained for long durations and offers a low-cost treatment option, should it be proven effective in the current trial, these results can be immediately incorporated into clinical practice. TRIAL REGISTRATION ClinicalTrials.gov NCT04572256 . Registered on October 1, 2020.
Collapse
Affiliation(s)
- Cale A Jacobs
- University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284, USA.
| | - Caitlin E W Conley
- University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284, USA
| | | | | | | | | | | | | | - Nicole G Lemaster
- University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284, USA
| | - Austin V Stone
- University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284, USA
| |
Collapse
|
27
|
Cuzzolin M, Previtali D, Zaffagnini S, Deabate L, Candrian C, Filardo G. Anterior Cruciate Ligament Reconstruction versus Nonoperative Treatment: Better Function and Less Secondary Meniscectomies But No Difference in Knee Osteoarthritis-A Meta-Analysis. Cartilage 2021; 13:1658S-1670S. [PMID: 34929763 PMCID: PMC8808919 DOI: 10.1177/19476035211046041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES The impact of anterior cruciate ligament (ACL) reconstruction on knee osteoarthritis (OA) is still unclear. The aim of the current meta-analysis was to compare surgical treatment versus nonoperative management of ACL tears to assess the impact of these approaches on knee OA development at a 5 and 10 years of follow-up. DESIGN A meta-analysis was performed after a systematic literature search (May 2021) was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Both randomized and nonrandomized comparative studies with more than 5 years of follow-up were selected. Influence of the treatment was assessed in terms of knee OA development, subjective and objective clinical results, activity level, and risk of further surgeries. Risk of bias and quality of evidence were assessed following the Cochrane guidelines. RESULTS Twelve studies matched the inclusion criteria, for a total of 1,004 patients. Level of evidence was rated low to very low. No difference was documented in terms of knee OA development, Tegner score, subjective International Knee Documentation Committee (IKDC), and Lysholm scores. A significant difference favoring the surgical treatment in comparison with a nonsurgical approach was observed in terms of objective IKDC score (P = 0.03) and risk of secondary meniscectomy (P < 0.0001). The level of evidence was considered very low for subjective IKDC, low for knee OA development, objective IKDC, number of secondary meniscectomies, and Lysholm score, and moderate for post-op Tegner score. CONCLUSIONS The meta-analysis did not support an advantage of ACL reconstruction in terms of OA prevention in comparison with a nonoperative treatment. Moreover, no differences were reported for subjective results and activity level at 5 and 10 years of follow-up. On the contrary, patients who underwent surgical treatment of their ACL tear presented important clinical findings in terms of better objective knee function and a lower rate of secondary meniscectomies when compared with conservatively managed patents.Protocol Registration: CRD420191156483 (PROSPERO).
Collapse
Affiliation(s)
- Marco Cuzzolin
- Orthopaedic and Traumatology Unit,
Ospedale Regionale di Lugano Service of Orthopedics and Traumatology, Department of
Surgery, EOC, Lugano, Switzerland
| | - Davide Previtali
- Orthopaedic and Traumatology Unit,
Ospedale Regionale di Lugano Service of Orthopedics and Traumatology, Department of
Surgery, EOC, Lugano, Switzerland,Davide Previtali, Orthopaedic and
Traumatology Unit, Ospedale Regionale di Lugano, EOC, Via Tesserete 46, 6900
Lugano, Switzerland.
| | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica II,
IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Deabate
- Orthopaedic and Traumatology Unit,
Ospedale Regionale di Lugano Service of Orthopedics and Traumatology, Department of
Surgery, EOC, Lugano, Switzerland
| | - Christian Candrian
- Orthopaedic and Traumatology Unit,
Ospedale Regionale di Lugano Service of Orthopedics and Traumatology, Department of
Surgery, EOC, Lugano, Switzerland,Facoltà di Scienze Biomediche,
Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Giuseppe Filardo
- Orthopaedic and Traumatology Unit,
Ospedale Regionale di Lugano Service of Orthopedics and Traumatology, Department of
Surgery, EOC, Lugano, Switzerland,Facoltà di Scienze Biomediche,
Università della Svizzera Italiana (USI), Lugano, Switzerland,Applied and Translational Research
Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
28
|
Boffa A, Merli G, Andriolo L, Lattermann C, Salzmann GM, Filardo G. Synovial Fluid Biomarkers in Knee Osteoarthritis: A Systematic Review and Quantitative Evaluation Using BIPEDs Criteria. Cartilage 2021; 13:82S-103S. [PMID: 32713185 PMCID: PMC8808867 DOI: 10.1177/1947603520942941] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The aim of this systematic review was to analyze the evidence about the efficacy of the several synovial fluid (SF) biomarkers proposed for knee osteoarthritis (OA), categorizing them by both molecular characteristics and clinical use according to the BIPEDs criteria, to provide a comprehensive and structured overview of the current literature. DESIGN A systematic review was performed in May 2020 on PubMed, Cochrane Library, and Embase databases about SF biomarkers in patients with knee OA. The search was limited to articles in the last 20 years on human studies, involving patients with knee OA, reporting SF biomarkers. The evidence for each selected SF biomarker was quantified according to the 6 categories of BIPEDs classification. RESULTS A total of 159 articles were included in the qualitative data synthesis and 201 different SF biomarkers were identified. Among these, several were investigated multiple times in different articles, for a total of 373 analyses. The studies included 13,557 patients with knee OA. The most promising SF biomarkers were C4S, IL-6, IL-8, Leptin, MMP-1/3, TIMP-1, TNF-α, and VEGF. The "burden of disease" and "diagnostic" categories were the most represented with 132 and 106 different biomarkers, respectively. CONCLUSIONS The systematic review identified numerous SF biomarkers. However, despite the high number of studies on the plethora of identified molecules, the evidence about the efficacy of each biomarker is supported by limited and often conflicting findings. Further research efforts are needed to improve the understanding of SF biomarkers for a better management of patients with knee OA.
Collapse
Affiliation(s)
- Angelo Boffa
- Clinica Ortopedica e Traumatologica 2,
IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Merli
- Applied and Translational Research (ATR)
Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2,
IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Christian Lattermann
- Department of Orthopaedic Surgery,
Center for Cartilage Repair and Sports Medicine, Brigham and Women’s Hospital,
Harvard Medical School, Chestnut Hill, MA, USA
| | - Gian M. Salzmann
- Department of Orthopaedic Surgery, Hip
and Knee Department, Schulthess Clinic, Zürich, Switzerland
| | - Giuseppe Filardo
- Applied and Translational Research (ATR)
Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
29
|
Lisee C, Spang JT, Loeser R, Longobardi L, Lalush D, Nissman D, Schwartz T, Hu D, Pietrosimone B. Tibiofemoral articular cartilage composition differs based on serum biochemical profiles following anterior cruciate ligament reconstruction. Osteoarthritis Cartilage 2021; 29:1732-1740. [PMID: 34536530 PMCID: PMC11608646 DOI: 10.1016/j.joca.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/31/2021] [Accepted: 09/08/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Biochemical joint changes contribute to posttraumatic osteoarthritis (PTOA) development following anterior cruciate ligament reconstruction (ACLR). The purpose of this longitudinal cohort study was to compare tibiofemoral cartilage composition between ACLR patients with different serum biochemical profiles. We hypothesized that profiles of increased inflammation (monocyte chemoattractant protein-1 [MCP-1]), type-II collagen turnover (type-II collagen breakdown [C2C]:synthesis [CPII]), matrix degradation (matrix metalloproteinase-3 [MMP-3] and cartilage oligomeric matrix protein [COMP]) preoperatively to 6-months post-ACLR would be associated with greater tibiofemoral cartilage T1ρ relaxation times 12-months post-ACLR. DESIGN Serum was collected from 24 patients (46% female, 22.1 ± 4.2 years old, 24.0 ± 2.6 kg/m2 body mass index [BMI]) preoperatively (6.4 ± 3.6 days post injury) and 6-months post-ACLR. T1ρ Magnetic Resonance Imaging (MRI) was collected for medial and lateral tibiofemoral articular cartilage at 12-months post-ACLR. A k-means cluster analysis was used to identify profiles based on biomarker changes over time and T1ρ relaxation times were compared between cluster groups controlling for sex, age, BMI, concomitant injury (either meniscal or chondral pathology), and Marx Score. RESULTS One cluster exhibited increases in MCP-1 and COMP while the other demonstrated decreases in MCP-1 and COMP preoperatively to 6-months post-ACLR. The cluster group with increases in MCP-1 and COMP demonstrated greater lateral tibial (adjusted mean difference = 3.88, 95% confidence intervals [1.97-5.78]) and femoral (adjusted mean difference = 12.71, 95% confidence intervals [0.41-23.81]) T1ρ relaxation times. CONCLUSION Profiles of increased serum levels of inflammation and matrix degradation markers preoperatively to 6-months post-ACLR are associated with MRI changes consistent with lesser lateral tibiofemoral cartilage proteoglycan density 12-months post-ACLR.
Collapse
Affiliation(s)
- C Lisee
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, NC, USA.
| | - J T Spang
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Loeser
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - L Longobardi
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D Lalush
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - D Nissman
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
| | - T Schwartz
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - D Hu
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B Pietrosimone
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
30
|
Hunt ER, Jacobs CA, Conley CEW, Ireland ML, Johnson DL, Lattermann C. Anterior cruciate ligament reconstruction reinitiates an inflammatory and chondrodegenerative process in the knee joint. J Orthop Res 2021; 39:1281-1288. [PMID: 32558951 DOI: 10.1002/jor.24783] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) injury leads to a sustained increase in synovial fluid concentrations of inflammatory cytokines and biomarkers of cartilage breakdown. While this has been documented post-injury, it remains unclear whether ACL reconstruction surgery contributes to the inflammatory process and/or cartilage breakdown. This study is a secondary analysis of 14 patients (nine males/five females, mean age = 9, mean BMI = 28) enrolled in an IRB-approved randomized clinical trial. Arthrocentesis was performed at initial presentation (mean = 6 days post-injury), immediately prior to surgery (mean = 23 days post-injury), 1-week post-surgery, and 1-month post-surgery. Enzyme-linked immunosorbant assay kits were used to determine concentrations of carboxy-terminal telopeptides of type II collagen (CTXII), interleukin-6 (IL-6), and IL-1β in the synovial fluid. The log-transformed IL-1β was not normally distributed; therefore, changes between time points were evaluated using a non-parametric Kruskal-Wallis one-way ANOVA. IL-1β concentrations significantly increased from the day of surgery to the first postoperative time point (P ≤ .001) and significantly decreased at the 4-week postoperative visit (P = .03). IL-1β concentrations at the 4-week postoperative visit remained significantly greater than both preoperative time points (P > .05). IL-6 concentrations at 1-week post-surgery were significantly higher than at initial presentation (P = .013), the day of surgery (P < .001), and 4 weeks after surgery (P = .002). CTX-II concentrations did not differ between the first three-time points (P > .99) but significantly increased at 4 weeks post-surgery (P < .01). ACL reconstruction appears to reinitiate an inflammatory response followed by an increase in markers for cartilage degradation. ACL reconstruction appears to initiate a second "inflammatory hit" resulting in increased chondral breakdown suggesting that post-operative chondroprotection may be needed.
Collapse
Affiliation(s)
- Emily R Hunt
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Cale A Jacobs
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Caitlin E-W Conley
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Mary L Ireland
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Darren L Johnson
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
31
|
Huang K, Cai HL, Zhang PL, Wu LD. Comparison between two rabbit models of posttraumatic osteoarthritis: A longitudinal tear in the medial meniscus and anterior cruciate ligament transection. J Orthop Res 2020; 38:2721-2730. [PMID: 32129514 DOI: 10.1002/jor.24645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/21/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Animal osteoarthritis (OA) models have been developed to understand OA progression and evaluate new OA therapies. However, individual variations in joint lesions remain a critical problem in most current OA models. We established a novel rabbit model by creating a longitudinal tear in the medial meniscus body that was reproducible and similar to posttraumatic biomechanical disturbances in human OA. New Zealand rabbits underwent surgery and were assessed for 9 weeks. The rabbits were randomized into the sham control, medial meniscal tear (MMT), and anterior cruciate ligament transection (ACLT) groups. The animals were sacrificed at 4, 6, and 9 weeks posttreatment. The knee joints were harvested for histological and gene expression assessments. Both the MMT and ACLT procedures led to time-dependent degenerative changes in the femoral condyle cartilage. At each time point, the MMT group cartilage showed more severe degenerative changes than did the ACLT group cartilage. Consistently, inflammatory cytokine and catabolic gene expression were significantly higher, and anabolic gene expression was significantly lower in the MMT group than in the ACLT group. MMT treatment caused more severe structural damage to the cartilage and higher catabolic gene expression levels than the ACLT model at each time point. The MMT model may be highly beneficial in investigating posttraumatic OA (PTOA) development, especially PTOA from a meniscal injury. The MMT model replicated key features of human PTOA, including meniscal lesions, inflammatory responses, and the progression to osteoarthritic cartilage degeneration, thereby providing an exciting new avenue for translating promising treatments to clinical practice.
Collapse
Affiliation(s)
- Kai Huang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hai-Li Cai
- Department of Ultrasound, The 903rd Hospital of PLA, Hangzhou, China
| | - Peng-Li Zhang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Li-Dong Wu
- Department of Orthopedic Surgery, The Second Hospital of Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Oladeji LO, Stoker AM, Stannard JP, Cook JL. Use of a Hyperosmolar Saline Solution to Mitigate Proinflammatory and Degradative Responses of Articular Cartilage and Meniscus for Application to Arthroscopic Surgery. Arthroscopy 2020; 36:3050-3057. [PMID: 32693010 DOI: 10.1016/j.arthro.2020.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/01/2020] [Accepted: 07/12/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE This study was designed to evaluate differences in proinflammatory and degradative mediator production and extracellular matrix degradation from osteoarthritic knee articular cartilage and meniscus explants treated with either hyperosmolar saline or isotonic saline. METHODS 6 mm-diameter full-thickness explants were created from articular cartilage and menisci recovered after patients underwent knee surgery. One explant half was treated for 3 hours with hyperosmolar saline (600 mOsm/L) and the corresponding half with isotonic saline (300 mOsm/L). Explants were subsequently cultured for 3 days in tissue culture media. On day 3, media were collected for biomarker analyses. Results were normalized to tissue wet weight and analyzed statistically. RESULTS Articular cartilage was collected from 10 patients (5 male, 5 female; mean age = 66.9 years) and menisci were collected from 8 patients (2 male, 6 female; mean age = 66 years). Articular cartilage media concentrations of monocyte chemoattractant protein-1 (P = .001) and interleukin (IL)-6 (P = .049) were significantly lower in explants treated with hyperosmolar saline. Meniscus media concentrations of prostaglandin E2 (P = .008), monocyte chemoattractant protein-1 (P = .011), IL-6 (P = .029), IL-8 (P = .012), matrix metalloproteinase-2 (P = .011), and glycosaminoglycan (P = .008) were significantly lower in explants treated with hyperosmolar saline. CONCLUSIONS Treatment of cartilage and meniscus explants with hyperosmolar saline effectively mitigated key proinflammatory mediator production, as well as degradative mediator production and glycosaminoglycan loss from meniscus, with no detrimental effects noted compared to isotonic saline. CLINICAL RELEVANCE These results suggest that hyperosmolar saline irrigation fluid may provide a safe alternative to standard isotonic saline irrigation fluid, and could mitigate untoward effects associated with inflammatory responses after standard-of-care knee arthroscopy.
Collapse
Affiliation(s)
- Lasun O Oladeji
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, U.S.A.; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, U.S.A
| | - Aaron M Stoker
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, U.S.A.; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, U.S.A
| | - James P Stannard
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, U.S.A.; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, U.S.A
| | - James L Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, U.S.A.; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, U.S.A..
| |
Collapse
|
33
|
Ayturk UM, Sieker JT, Haslauer CM, Proffen BL, Weissenberger MH, Warman ML, Fleming BC, Murray MM. Proteolysis and cartilage development are activated in the synovium after surgical induction of post traumatic osteoarthritis. PLoS One 2020; 15:e0229449. [PMID: 32107493 PMCID: PMC7046188 DOI: 10.1371/journal.pone.0229449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/06/2020] [Indexed: 12/26/2022] Open
Abstract
Anterior cruciate ligament (ACL) transection surgery in the minipig induces post-traumatic osteoarthritis (PTOA) in a pattern similar to that seen in human patients after ACL injury. Prior studies have reported the presence of cartilage matrix-degrading proteases, such as Matrix metalloproteinase-1 (MMP-1) and A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4), in the synovial fluid of injured or arthritic joints; however, the tissue origin of these proteases is unknown. The objective of this study was to identify transcriptional processes activated in the synovium after surgical induction of PTOA with ACL transection, and to determine if processes associated with proteolysis were enriched in the synovium after ACL transection. Unilateral ACL transection was performed in adolescent Yucatan minipigs and synovium samples were collected at 1, 5, 9, and 14 days post-injury. Transcriptome-wide gene expression levels were determined using bulk RNA-Sequencing in the surgical animals and control animals with healthy knees. The greatest number of transcripts with significant changes was observed 1 day after injury. These changes were primarily associated with cellular proliferation, consistent with measurements of increased cellularity of the synovium at the two-week time point. At five to 14 days, the expression of transcripts relating to proteolysis and cartilage development was significantly enriched. While protease inhibitor-encoding transcripts (TIMP2, TIMP3) represented the largest fraction of protease-associated transcripts in the uninjured synovium, protease-encoding transcripts (including MMP1, MMP2, ADAMTS4) predominated after surgery. Cartilage development-associated transcripts that are typically not expressed by synovial cells, such as ACAN and COMP, were enriched in the synovium following ACL-transection. The upregulation in both catabolic processes (proteolysis) and anabolic processes (cartilage development) suggests that the synovium plays a complex, balancing role in the early response to PTOA induction.
Collapse
Affiliation(s)
- Ugur M. Ayturk
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jakob T. Sieker
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carla M. Haslauer
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benedikt L. Proffen
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Matthew L. Warman
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Braden C. Fleming
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Martha M. Murray
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
34
|
Hunt ER, Villasanta-Tezanos AG, Butterfield TA, Lattermann C, Jacobs CA. Upregulation of Systemic Inflammatory Pathways Following Anterior Cruciate Ligament Injury Relates to Both Cartilage and Muscular Changes: A Pilot Study. J Orthop Res 2020; 38:387-392. [PMID: 31517396 DOI: 10.1002/jor.24467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
In conjunction with cartilage breakdown, muscle maladaptation including atrophy and increased fibrosis have been observed in the quadriceps following anterior cruciate ligament (ACL) injury. Previously observed upregulated muscle-related proteins in the synovial fluid following ACL rupture allude to cellular communication between the joint and muscle. Therefore, the purpose of this study was to determine whether muscle-related analytes are differentially expressed in the serum. Sixteen patients with an acute ACL tear participated in this IRB-approved study. Serum was obtained at two different time points at a mean of 6 and 14 days post-injury, and serum was analyzed by a highly multiplexed assay of 1,300 proteins. Pathway analysis using DAVID was performed; genes included met three criteria: significant change between the two study time points using a paired t test, significant change between the two study time points using a Mann-Whitney non-parametric test, and significant Benjamini post hoc analysis. Twelve analytes significantly increased between time points. Proteins chitinase-3-like protein 1 (p = 0.01), insulin-like growth factor binding protein 1 (p = 0.01), insulin-like growth factor binding protein 5 (p = 0.02), renin (p = 0.004), and lymphotoxin alpha 1: beta 2 (p = 0.03) were significantly upregulated in serum following acute ACL injury. The current results confirm the inflammatory pattern previously seen in the synovial fluid thought to play a role in the progression of post-traumatic osteoarthritis after ACL injury, and this data also provides further insights into important communication between the joint and quadriceps group, whose function is important in long term health. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:387-392, 2020.
Collapse
Affiliation(s)
- Emily R Hunt
- Department of Orthopedic Surgery, University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284
| | | | - Timothy A Butterfield
- College of Health Sciences, Rehabilitation Science PhD Program, University of Kentucky, Lexington, Kentucky
| | - Christian Lattermann
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cale A Jacobs
- Department of Orthopedic Surgery, University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284
| |
Collapse
|
35
|
Innovative Techniques to Enhance Musculoskeletal Surgery Outcomes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7189240. [PMID: 30539017 PMCID: PMC6258107 DOI: 10.1155/2018/7189240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/27/2023]
|