1
|
Gerekci Yeşi Lyurt S, Koyun D, Toprak SK, Özcan M, Özen C. A predictive metabolomic model for FLT3 and NPM1 mutations in Acute Myeloid Leukemia patients. J Pharm Biomed Anal 2025; 260:116789. [PMID: 40081307 DOI: 10.1016/j.jpba.2025.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/16/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Cytogenetic abnormalities and gene mutations are essential for planning AML treatment. However, in Turkey, test results typically take 14-30 days. This delay emphasizes a critical need for rapid methods to deliver clinical data in urgent cases requiring immediate treatment decisions. To address this need, our objective was to develop a quick prediction method for NPM1 (Nucleophosmin-1) and FLT3 (FMS-like tyrosine kinase 3) mutations using LC-MS/MS (Liquid Chromatography-Tandem Mass Spectrometry) targeted metabolomics to detect these common and clinically important mutations in de novo AML patients (n = 42) through patient groups and a healthy group. We analyzed metabolic patterns using LC-MS/MS measurements of amino acids and acyl carnitines, key components critical to AML prognosis. The data were then subjected to multivariate analysis techniques. Principal Component Analysis (PCA) revealed that the model explained 79 % of the total variance among the sample groups. To further enhance class discrimination, we conducted Partial Least Squares-Discriminant Analysis (PLS-DA), resulting in R2Y and Q2 values of 0.845 and 0.619, respectively. Using the PLS-DA model, VIP (Variable Importance Projection) identified key metabolites with scores > 1.5, including C0 carnitine, glutamic acid, aspartic acid, tryptophan, histidine, isoleucine, and alpha-aminobutyric acid, respectively, highlighting their potential significance in distinguishing mutation groups. To ensure the validity of the PLS-DA model and evaluate potential overestimation, we validated the model using cross-validation and permutation test, demonstrating its robustness and reliability. Our preliminary model, developed through a targeted metabolomics approach, shows strong fit and predictive capability in determining the mutation status of NPM1 and FLT3 in AML patients.
Collapse
Affiliation(s)
- Selin Gerekci Yeşi Lyurt
- Middle East Technical University, Biochemistry Graduate Program, Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1, Çankaya, Ankara 06800, Turkey; JTC Diagnosemittel GmbH, Vöhl, Hessen 34516, Germany.
| | - Derya Koyun
- Ankara University School of Medicine, Hematology Department, Ankara, Turkey
| | | | - Muhit Özcan
- Ankara University School of Medicine, Hematology Department, Ankara, Turkey
| | - Can Özen
- Middle East Technical University, Biochemistry Graduate Program, Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1, Çankaya, Ankara 06800, Turkey.
| |
Collapse
|
2
|
Kivrak M, Nalkiran I, Sevim Nalkiran H. Exploring the Therapeutic Potential of the DOT1L Inhibitor EPZ004777 Using Bioinformatics and Molecular Docking Approaches in Acute Myeloid Leukemia. Curr Issues Mol Biol 2025; 47:173. [PMID: 40136427 PMCID: PMC11941229 DOI: 10.3390/cimb47030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a malignancy characterized by the clonal expansion of hematopoietic stem and progenitor cells, often associated with mutations such as NPM1. DOT1L inhibitors have shown potential as new therapeutic opportunities for NPM1-mutant AML. The aim of this study was to investigate potential alternative targets of the small-molecule inhibitor EPZ004777, in addition to its primary target, DOT1L, using RNA sequencing data from the NCBI-GEO database (GSE85107). METHODS Differentially expressed genes (DEGs) were identified through bioinformatic analysis, followed by pathway enrichment analysis to uncover the relevant biological pathways. Additionally, molecular docking analysis was conducted to assess the binding affinity of EPZ004777 with the proteins CT45A3, HOXA4, SNX19, TPBG, and ZNF185, which were identified as significantly DEGs. The protein structures were obtained from AlphaFold and the Protein Data Bank. RESULTS EPZ004777 significantly altered gene expression. Oncofetal genes (CT45A3, TPBG) and genes associated with oncogenic pathways (HOXA4, ZNF185, SNX19) were downregulated, while the pro-apoptotic gene BEX3 was upregulated. Pathway enrichment analysis revealed the suppression of the Rap1 signaling pathway and cell adhesion molecules, which may reduce the invasiveness of AML cells. Additionally, upregulation of immune-related pathways suggests enhanced anti-tumor immune responses. Molecular docking analysis demonstrated that EPZ004777 has strong binding potential with SNX19, TPBG, and ZNF185 proteins. CONCLUSIONS EPZ004777 has been identified as a potent modulator of SNX19, TPBG, and ZNF185 associated with apoptosis and tumor progression in AML.
Collapse
Affiliation(s)
- Mehmet Kivrak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye
| | - Ihsan Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (I.N.); (H.S.N.)
| | - Hatice Sevim Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (I.N.); (H.S.N.)
| |
Collapse
|
3
|
Tao Q, Wu Q, Xue Y, Chen C, Zhou Y, Shao R, Zhang H, Liu H, Zeng X, Zhou L, Liu Q, Jin H. Prognostic impact of IL7R mutations on acute myeloid leukemia. Ther Adv Hematol 2024; 15:20406207241279533. [PMID: 39346679 PMCID: PMC11439168 DOI: 10.1177/20406207241279533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024] Open
Abstract
Background Interleukin-7 receptor (IL7R) mutation has been demonstrated to be an adverse prognostic factor in acute lymphoblastic leukemia (ALL) patients. However, the effects of the IL7R mutation on acute myeloid leukemia (AML) have rarely been reported. Here, we investigated IL7R mutations and their effects on AML patients. Methods A total of 346 newly diagnosed AML patients from January 2017 to July 2020 at Nanfang Hospital were analyzed in this study. A genomic panel of 167 gene targets was detected by next-generation sequencing. Results Among 346 patients, 33 (9.5%) AML patients carried IL7R mutations. With a median follow-up of 50.7 months (95% confidence interval (CI) 17.3-62.2), the 5-year overall survival (OS) rates were 51.5% (95% CI 37.0%-71.0%) and 72.2% (95% CI 67.4%-77.3%; p = 0.008), the 5-year event-free survival (EFS) rates were 36.1% (95% CI 23.2%-57.1%) and 58.1% (95% CI 52.9%-63.8%; p = 0.005), the 5-year non-relapse mortality (NRM) were 21.4% (95% CI 8.5%-38.2%) and 6.2% (95% CI 3.7%-9.5%; p = 0.004) in the IL7R mutant (IL7R MUT ) group and non-IL7R mutant (IL7R WT ) group, respectively. There is no significant difference in the disease-free survival (75.1% vs 73.5%, p = 0.885) and cumulative incidence of relapse (25.7% vs 25.2%, p = 0.933) between IL7R MUT and IL7R WT group. Furthermore, patients who underwent hematopoietic stem cell transplantation (HSCT) still had more adverse outcomes in the IL7R MUT group than in the IL7R WT group (5-year OS: 61.9% vs 85.3%, p = 0.003). In the TET2 (p = 0.013) and DNA methyltransferase 3A (DNMT3A; p = 0.046) mutation subgroups, the presence of IL7R mutations was associated with worse OS than in AML patients without IL7R mutations. Conclusion Our study demonstrated that the IL7R mutation is associated with an inferior prognosis for AML patients. Patients with IL7R mutations have higher NRM, shorter OS, and EFS than patients without IL7R mutations, even patients who have undergone HSCT. Future larger and multicentric prospective studies will be explored.
Collapse
Affiliation(s)
- Qiqi Tao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The Sixth Affiliated Hospital, school of Medicine, South China University of Technology, Foshan, China
| | - Qiaoyuan Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yutong Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Changkun Chen
- Department of Hematology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
- Department of Hematology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Ya Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ruoyang Shao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Haiyan Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | | | - Xiangzong Zeng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Lingling Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Hematology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
4
|
Bao Y, Ding G, Yu H, He Y, Wu J. Regulation of TGF-β2-induced epithelial-mesenchymal transition and autophagy in lens epithelial cells by the miR-492/ NPM1 axis. BIOMOLECULES & BIOMEDICINE 2024; 24:1273-1289. [PMID: 38662949 PMCID: PMC11378993 DOI: 10.17305/bb.2024.10249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 09/07/2024]
Abstract
A cataract is a clinically common blinding disease closely related to the ageing of the eye cells, which has become a major health killer in the elderly. Our research seeks to analyze the primary targets linked to the pathogenesis of cataracts during the ageing process. We performed bioinformatics analyses on the GSE101727 dataset to discover genes linked with ageing and cataracts. To explore the impacts of Nucleophosmin 1 (NPM1) on cell apoptosis, proliferation, as well as epithelial-mesenchymal transition (EMT) processes, in vitro tests such as western blotting, flow cytometry, and MTT were carried out. Additionally, the study incorporated transforming growth factor β2 (TGF-β2) to examine its function in cellular responses, chloroquine (CQ) to regulate autophagic flow, and H2O2 therapy to mimic oxidative stress. Our study discovered seven ageing-related genes, including NPM1, that had substantial relationships with cataracts. NPM1 overexpression was shown to boost cell proliferation and prevent apoptosis in SRA01/04 cells. Notably, NPM1 modulated the TGF-β signalling pathway, influencing cell proliferation and EMT processes. miR-429 was shown to be adversely regulating NPM1 and autophagy-related proteins, as demonstrated by changes in their expression in response to TGF-β2 treatment. Furthermore, NPM1 knockdown restored autophagy activity suppressed by miR-429 mimics, indicating a complex interaction of miR-429, NPM1, and TGF-β2 pathways in regulating autophagy and EMT. Lens epithelial cell proliferation and apoptosis were largely regulated by NPM1, as well as autophagy and EMT, which were significantly mediated by TGF-β2 and the miR-429/NPM1 axis. These results imply new possible targets for prognosis and therapy of cataracts.
Collapse
Affiliation(s)
- Yanqiong Bao
- Department of Ophthalmology, Zhenhai Longsai Hospital, Zhejiang, China
| | - Guangjie Ding
- Department of Ophthalmology, Zhenhai Longsai Hospital, Zhejiang, China
| | - Haiqing Yu
- Department of Ophthalmology, Zhenhai Longsai Hospital, Zhejiang, China
| | - Yawei He
- Department of Ophthalmology, Zhenhai Longsai Hospital, Zhejiang, China
| | - Jiayan Wu
- Department of Health Management Center, Zhenhai Longsai Hospital, Zhejiang, China
| |
Collapse
|
5
|
Schwede M, Jahn K, Kuipers J, Miles LA, Bowman RL, Robinson T, Furudate K, Uryu H, Tanaka T, Sasaki Y, Ediriwickrema A, Benard B, Gentles AJ, Levine R, Beerenwinkel N, Takahashi K, Majeti R. Mutation order in acute myeloid leukemia identifies uncommon patterns of evolution and illuminates phenotypic heterogeneity. Leukemia 2024; 38:1501-1510. [PMID: 38467769 PMCID: PMC11250774 DOI: 10.1038/s41375-024-02211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogeneous phenotypes.
Collapse
Affiliation(s)
- Matthew Schwede
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA
| | - Katharina Jahn
- Biomedical Data Science, Institute for Computer Science, Free University of Berlin, Berlin, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Linde A Miles
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Robert L Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Troy Robinson
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ken Furudate
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuya Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Asiri Ediriwickrema
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooks Benard
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Andrew J Gentles
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Morini M, Raggi F, Bartolucci M, Petretto A, Ardito M, Rossi C, Segalerba D, Garaventa A, Eva A, Cangelosi D, Bosco MC. Plasma-Derived Exosome Proteins as Novel Diagnostic and Prognostic Biomarkers in Neuroblastoma Patients. Cells 2023; 12:2516. [PMID: 37947594 PMCID: PMC10649754 DOI: 10.3390/cells12212516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor during infancy, causing up to 10% of mortality in children; thus, identifying novel early and accurate diagnostic and prognostic biomarkers is mandatory. NB-derived exosomes carry proteins (Exo-prots) reflecting the status of the tumor cell of origin. The purpose of this study was to characterize, for the first time, the Exo-prots specifically expressed in NB patients associated with tumor phenotype and disease stage. We isolated exosomes from plasma specimens of 24 HR-NB patients and 24 low-risk (LR-NB) patients at diagnosis and of 24 age-matched healthy controls (CTRL). Exo-prot expression was measured by liquid chromatography-mass spectrometry. The data are available via ProteomeXchange (PXD042422). The NB patients had a different Exo-prot expression profile compared to the CTRL. The deregulated Exo-prots in the NB specimens acted mainly in the tumor-associated pathways. The HR-NB patients showed a different Exo-prot expression profile compared to the LR-NB patients, with the modulation of proteins involved in cell migration, proliferation and metastasis. NCAM, NCL, LUM and VASP demonstrated a diagnostic value in discriminating the NB patients from the CTRL; meanwhile, MYH9, FN1, CALR, AKAP12 and LTBP1 were able to differentiate between the HR-NB and LR-NB patients with high accuracy. Therefore, Exo-prots contribute to NB tumor development and to the aggressive metastatic NB phenotype.
Collapse
Affiliation(s)
- Martina Morini
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (M.A.); (D.S.)
| | - Federica Raggi
- Unit of Autoinflammatory Diseases and Immunodeficiencies, Pediatric Rheumatology Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.R.); (M.C.B.)
| | - Martina Bartolucci
- Core Facilities, Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.B.); (A.P.)
| | - Andrea Petretto
- Core Facilities, Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.B.); (A.P.)
| | - Martina Ardito
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (M.A.); (D.S.)
| | - Chiara Rossi
- Unit of Autoinflammatory Diseases and Immunodeficiencies, Pediatric Rheumatology Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.R.); (M.C.B.)
| | - Daniela Segalerba
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (M.A.); (D.S.)
| | - Alberto Garaventa
- Pediatric Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Alessandra Eva
- Scientific Directorate, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Davide Cangelosi
- Clinical Bioinfomatics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Maria Carla Bosco
- Unit of Autoinflammatory Diseases and Immunodeficiencies, Pediatric Rheumatology Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.R.); (M.C.B.)
| |
Collapse
|
7
|
Pan X, Chang Y, Ruan G, Wei F, Jiang H, Jiang Q, Huang X, Zhao X. Prognostic impact of FLT3-ITD mutation on NPM1 + acute myeloid leukaemia patients and related molecular mechanisms. Br J Haematol 2023; 203:212-223. [PMID: 37621257 DOI: 10.1111/bjh.18973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 08/26/2023]
Abstract
The prognosis of acute myeloid leukaemia (AML) patients carrying NPM1 mutations is significantly worse when accompanied by FLT3-ITD mutations. However, accurate quantitative detection of FLT3-ITD mutations remains challenging. To identify a novel biomarker in NPM1+ FLT3-ITD+ AML patients for more accurate stratification, we analysed the differential gene expression between the NPM1+ FLT3-ITD+ and NPM1+ FLT3-ITD- groups in five public AML datasets and identified a biomarker by taking the intersection of differentially expressed genes. We validated this biomarker in bone marrow samples from NPM1+ AML patients at the Peking University Institute of Haematology and analysed its prognostic significance. BCAT1 expression was higher in the NPM1+ FLT3-ITD+ group than in the NPM1+ FLT3-ITD- group in all seven cohorts. BCAT1 was able to predict the prognosis of NPM1+ FLT3-ITD+ AML patients, and its predictive ability was superior to that of the FLT3-ITD allelic ratio (AR). FLT3-targeted inhibitor quizartinib reduced BCAT1 expression. BCAT1 knockdown using lentiviral vectors led to the downregulation of MYC expression. Thus, we identified BCAT1 as a novel biomarker for NPM1+ FLT3-ITD+ AML patients. The FLT3-ITD/BCAT1/MYC signalling pathway may play a biological role in promoting the occurrence and development of AML in FLT3-ITD+ cell lines.
Collapse
Affiliation(s)
- Xin'an Pan
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Yingjun Chang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Guorui Ruan
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Fangfang Wei
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Hao Jiang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Qian Jiang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiaojun Huang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaosu Zhao
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Izzo A, Akol I, Villarreal A, Lebel S, Garcia-Miralles M, Cheffer A, Bovio P, Heidrich S, Vogel T. Nucleophosmin 1 cooperates with the methyltransferase DOT1L to preserve peri-nucleolar heterochromatin organization by regulating H3K27me3 levels and DNA repeats expression. Epigenetics Chromatin 2023; 16:36. [PMID: 37759327 PMCID: PMC10537513 DOI: 10.1186/s13072-023-00511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND NPM1 is a phosphoprotein highly abundant in the nucleolus. However, additional nuclear functions have been attributed to NPM1, probably through interaction with other nuclear factors. DOT1L is one interaction partner of NPM1 that catalyzes methylation of histone H3 at lysine 79 (H3K79). DOT1L, playing functional roles in several biological processes, is known for its capability to organize and regulate chromatin. For example, DOT1L modulates DNA repeats expression within peri-nucleolar heterochromatin. NPM1 also affects peri-nucleolar heterochromatin spatial organization. However, it is unclear as of yet whether NPM1 and DOT1L functionally synergize to preserve nucleoli organization and genome stability, and generally, which molecular mechanisms would be involved. RESULTS We characterized the nuclear function of NPM1 on peri-nucleolar heterochromatin organization. We show that (i) monomeric NPM1 interacts preferentially with DOT1L in the nucleus; (ii) NPM1 acts in concert with DOT1L to maintain each other's protein homeostasis; (iii) NPM1 depletion results in H3K79me2 upregulation and differential enrichment at chromatin binding genes including Ezh2; (iv) NPM1 and DOT1L modulate DNA repeats expression and peri-nucleolar heterochromatin organization via epigenetic mechanisms dependent on H3K27me3. CONCLUSIONS Our findings give insights into molecular mechanisms employed by NPM1 and DOT1L to regulate heterochromatin activity and structural organization around the nucleoli and shed light on one aspect of the complex role of both proteins in chromatin dynamics.
Collapse
Affiliation(s)
- Annalisa Izzo
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
| | - Ipek Akol
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModul Basics), Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Alejandro Villarreal
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- Laboratorio de Neuropatología Molecular, Facultad de Medicina, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Universidad de Buenos Aires, 1121, Buenos Aires, Argentina
| | - Shannon Lebel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Marta Garcia-Miralles
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Arquimedes Cheffer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Patrick Bovio
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Stefanie Heidrich
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModul Basics), Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
9
|
Saulle E, Spinello I, Quaranta MT, Labbaye C. Advances in Understanding the Links between Metabolism and Autophagy in Acute Myeloid Leukemia: From Biology to Therapeutic Targeting. Cells 2023; 12:1553. [PMID: 37296673 PMCID: PMC10252746 DOI: 10.3390/cells12111553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Autophagy is a highly conserved cellular degradation process that regulates cellular metabolism and homeostasis under normal and pathophysiological conditions. Autophagy and metabolism are linked in the hematopoietic system, playing a fundamental role in the self-renewal, survival, and differentiation of hematopoietic stem and progenitor cells, and in cell death, particularly affecting the cellular fate of the hematopoietic stem cell pool. In leukemia, autophagy sustains leukemic cell growth, contributes to survival of leukemic stem cells and chemotherapy resistance. The high frequency of disease relapse caused by relapse-initiating leukemic cells resistant to therapy occurs in acute myeloid leukemia (AML), and depends on the AML subtypes and treatments used. Targeting autophagy may represent a promising strategy to overcome therapeutic resistance in AML, for which prognosis remains poor. In this review, we illustrate the role of autophagy and the impact of its deregulation on the metabolism of normal and leukemic hematopoietic cells. We report updates on the contribution of autophagy to AML development and relapse, and the latest evidence indicating autophagy-related genes as potential prognostic predictors and drivers of AML. We review the recent advances in autophagy manipulation, combined with various anti-leukemia therapies, for an effective autophagy-targeted therapy for AML.
Collapse
Affiliation(s)
- Ernestina Saulle
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| | | | | | - Catherine Labbaye
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| |
Collapse
|
10
|
Florio D, Roviello V, La Manna S, Napolitano F, Maria Malfitano A, Marasco D. Small molecules enhancers of amyloid aggregation of C-terminal domain of Nucleophosmin 1 in acute myeloid leukemia. Bioorg Chem 2022; 127:106001. [DOI: 10.1016/j.bioorg.2022.106001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
11
|
Kongta R, Panyasit N, Jansaento W, Duangmano S. Development of E-ice-COLD-PCR assay combined with HRM analysis for Nucleophosmin1 gene mutation detection in acute myelogenous leukemia. PLoS One 2022; 17:e0274034. [PMID: 36103476 PMCID: PMC9473412 DOI: 10.1371/journal.pone.0274034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/21/2022] [Indexed: 12/08/2022] Open
Abstract
Mutations of the nucleophosmin1 (NPM1) gene represent the most frequent molecular alteration in acute myelogenous leukemia (AML), especially in patients with AML who have a normal karyotype. These alterations have been shown to carry favorable prognostic significance in patients with AML. Several methods have been developed for detection of NPM1 gene mutations. However, their ability to detect low levels of mutations in a wild-type background is limited. In this study, the Enhance improved and complete enrichment Co-amplification at Lower Denaturation temperature Polymerase Chain Reaction (E-ice-COLD-PCR) assay combined with High Resolution Melting (HRM) analysis was developed and validated for highly specific and sensitive screening for NPM1 gene mutations. A total of 83 blood samples from patients with AML were collected, and their DNA was extracted. For mutational analysis, the E-ice-COLD-PCR assay for the detection of NPM1 gene mutations was developed. PCR products were analyzed by HRM analysis. All positive samples were confirmed by direct sequencing. This assay enabled detection specificity and sensitivity of NPM1 mutations in 9/83 patients with AML. Direct sequencing results were 100% concordant with this method. In addition, the limit of detection was 12.5% mutant in the final concentration of 5 ng genomic DNA. The E-ice-COLD-PCR assay with HRM analysis is a highly specific and sensitive screening method for enrichment of detecting NPM1 gene mutations. This method has both a short turn around time and easier interpretation compared to those of other methods.
Collapse
Affiliation(s)
- Rattana Kongta
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Noppamas Panyasit
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
12
|
Wang D, Li Y, Liu Y, Cheng S, Liu F, Zuo R, Ding C, Shi S, Liu G. NPM1 promotes cell proliferation by targeting PRDX6 in colorectal cancer. Int J Biochem Cell Biol 2022; 147:106233. [PMID: 35659568 DOI: 10.1016/j.biocel.2022.106233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/29/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
Colorectal cancer is a malignant tumor that begins in the colorectal mucosal epithelium. NPM1 is a nucleolar phosphoprotein that has been linked to tumor progression in humans. NPM1 is significantly overexpressed in a variety of tumors, including colorectal cancer, but its role and mechanism in colorectal cancer remain unknown. Therefore, the purpose of this study was to discover the role of NPM1 in promoting colorectal cancer proliferation via PRDX6 and its molecular mechanism. NPM1 knockdown or overexpression inhibited or promoted the proliferation and cell cycle progression of HCT-116 and HT-29 colorectal cancer cells, respectively, according to our findings. Furthermore, NPM1 knockdown or overexpression increased or decreased intracellular ROS levels. Animal experiments revealed that NPM1 knockdown or overexpression inhibited or promoted the growth of colorectal cancer cells transplanted subcutaneously. NPM1 knockdown or overexpression reduced or increased PRDX6 expression and related enzyme activities, respectively, according to our findings. NPM1 formed a complex with CBX3 as evidenced by immunoprecipitation, and the double luciferase reporter gene assay confirmed that the CBX3-NPM1 complex promoted PRDX6 transcription. Our data support the role of NPM1 in promoting the proliferation of colorectal cancer, which may be accomplished by CBX3 promoting the expression of the antioxidant protein PRDX6 and thus inhibiting intracellular ROS levels. NPM1 and PRDX6 are potential colorectal cancer therapeutic targets.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yin Li
- Department of Medical Examination, Xiamen International Travel Healthcare Center, Xiamen 361000, Fujian, China
| | - Yanling Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, China
| | - Shuyu Cheng
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fan Liu
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361002, China
| | - Renjie Zuo
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Chenchun Ding
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Songlin Shi
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361002, China.
| | - Guoyan Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
13
|
La Manna S, Florio D, Di Natale C, Lagreca E, Sibillano T, Giannini C, Marasco D. Type C mutation of nucleophosmin 1 acute myeloid leukemia: Consequences of intrinsic disorder. Biochim Biophys Acta Gen Subj 2022; 1866:130173. [PMID: 35597503 DOI: 10.1016/j.bbagen.2022.130173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/09/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nucleophosmin 1 (NPM1) protein is a multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML). AML mutations cause the unfolding of the C-terminal domain (CTD) and the protein delocalizing in the cytosol (NPM1c+). Marked aggregation endowed with an amyloid character was assessed as consequences of mutations. SCOPE Herein we analyzed the effects of type C mutation on two protein regions: i) a N-terminal extended version of the CTD, named Cterm_mutC and ii) a shorter polypeptide including the sequences of the second and third helices of the CTD, named H2_mutC. MAJOR CONCLUSIONS Both demonstrated able to self-assembly with different kinetics and conformational intermediates and to provide fibers presenting large flexible regions. GENERAL SIGNIFICANCE The present study adds a new piece of knowledge to the effects of AML-mutations on structural biology of Nucleophosmin 1, that could be exploited in therapeutic interventions targeting selectively NPMc+.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy; Istituto Italiano di Tecnologia, University of Naples "Federico II", Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Elena Lagreca
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy; Istituto Italiano di Tecnologia, University of Naples "Federico II", Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
14
|
Elevated FAM84B promotes cell proliferation via interacting with NPM1 in esophageal squamous cell carcinoma. Cell Death Dis 2022; 8:182. [PMID: 35396552 PMCID: PMC8993864 DOI: 10.1038/s41420-022-00984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Family with sequence similarity 84, member B (FAM84B) is a significant copy number amplification gene in the 8q24.21 locus identified by our previous WGS study in esophageal squamous cell carcinoma (ESCC). However, its clinical relevance and potential mechanisms have been elusive. Here, we performed the association analyses between FAM84BAmp and clinicopathological features using 507 ESCC samples. The results indicated that, compared with the FAM84Bnon-Amp patients, the FAM84BAmp patients showed a more aggressive and a worse prognosis. A significant correlation was discovered between the expression level of FAM84B and FAM84BAmp in the ESCC cohort. Furthermore, we found that the forced expression change of FAM84B can influence ESCC cell proliferation and cell-cycle status, which is probably mediated by NPM1. A direct interaction between FAM84B and the C-terminal (189–294aa) of NPM1 was identified, which increased the NPM1 nuclear expression. Over-expression of NPM1 could inhibit the CDKN2A protein expression, which might affect the ESCC cell cycle. Our results indicate FAM84B CNA may be a potential diagnostic and therapeutic biomarker in ESCC, meanwhile, reveal a novel mechanism of FAM84B that promotes tumorigenesis via interacting with NPM1 and suppressing CDKN2A.
Collapse
|
15
|
Functional characterization of NPM1-TYK2 fusion oncogene. NPJ Precis Oncol 2022; 6:3. [PMID: 35042970 PMCID: PMC8766497 DOI: 10.1038/s41698-021-00246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022] Open
Abstract
Gene fusions are known to drive many human cancers. Therefore, the functional characterization of newly discovered fusions is critical to understanding the oncobiology of these tumors and to enable therapeutic development. NPM1–TYK2 is a novel fusion identified in CD30 + lymphoproliferative disorders, and here we present the functional evaluation of this fusion gene as an oncogene. The chimeric protein consists of the amino-terminus of nucleophosmin 1 (NPM1) and the carboxyl-terminus of tyrosine kinase 2 (TYK2), including the kinase domain. Using in vitro lymphoid cell transformation assays and in vivo tumorigenic xenograft models we present direct evidence that the fusion gene is an oncogene. NPM1 fusion partner provides the critical homodimerization needed for the fusion kinase constitutive activation and downstream signaling that are responsible for cell transformation. As a result, our studies identify NPM1–TYK2 as a novel fusion oncogene and suggest that inhibition of fusion homodimerization could be a precision therapeutic approach in cutaneous T-cell lymphoma patients expressing this chimera.
Collapse
|
16
|
CYCLON and NPM1 Cooperate within an Oncogenic Network Predictive of R-CHOP Response in DLBCL. Cancers (Basel) 2021; 13:cancers13235900. [PMID: 34885010 PMCID: PMC8656558 DOI: 10.3390/cancers13235900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/05/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary CYCLON is a nuclear protein, which has been associated with disease progression and treatment resistance in DLBCL, the most common form of aggressive B-cell lymphoma, but also represents a predictive factor of refractory disease and relapse for immuno-chemotherapy-treated DLBCL patients. The molecular mechanisms related to this unstructured protein remain largely uncharacterized. Here, we performed a mass-spectrometry-based identification of the CYCLON protein interactome that suggested it could exert nucleolar functions related to cell proliferation. Among the CYCLON oncogenic network, we performed an immunohistochemical evaluation of the multi-functional nucleolar protein NPM1 in a DLBCL cohort and showed that CYCLON/NPM1 concomitant expression delineates a poor prognosis subgroup of patients. Multivariate survival analyses demonstrated that specific sub-cellular localizations of CYCLON and NPM1 represent independent novel predictors specifically associated with refractory DLBCL. Abstract R-CHOP immuno-chemotherapy significantly improved clinical management of diffuse large B-cell lymphoma (DLBCL). However, 30–40% of DLBCL patients still present a refractory disease or relapse. Most of the prognostic markers identified to date fail to accurately stratify high-risk DLBCL patients. We have previously shown that the nuclear protein CYCLON is associated with DLBCL disease progression and resistance to anti-CD20 immunotherapy in preclinical models. We also recently reported that it also represents a potent predictor of refractory disease and relapse in a retrospective DLBCL cohort. However, only sparse data are available to predict the potential biological role of CYCLON and how it might exert its adverse effects on lymphoma cells. Here, we characterized the protein interaction network of CYCLON, connecting this protein to the nucleolus, RNA processing, MYC signaling and cell cycle progression. Among this network, NPM1, a nucleolar multi-functional protein frequently deregulated in cancer, emerged as another potential target related to treatment resistance in DLBCL. Immunohistochemistry evaluation of CYCLON and NPM1 revealed that their co-expression is strongly related to inferior prognosis in DLBCL. More specifically, alternative sub-cellular localizations of the proteins (extra-nucleolar CYCLON and pan-cellular NPM1) represent independent predictive factors specifically associated to R-CHOP refractory DLBCL patients, which could allow them to be orientated towards risk-adapted or novel targeted therapies.
Collapse
|
17
|
La Manna S, Florio D, Di Natale C, Scognamiglio PL, Sibillano T, Netti PA, Giannini C, Marasco D. Type F mutation of nucleophosmin 1 Acute Myeloid Leukemia: A tale of disorder and aggregation. Int J Biol Macromol 2021; 188:207-214. [PMID: 34364939 DOI: 10.1016/j.ijbiomac.2021.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
Protein aggregation is suggested as a reversible, wide-spread physiological process used by cells to regulate their growth and adapt to different stress conditions. Nucleophosmin 1(NPM1) protein is an abundant multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML) patients. So far, the role of NPM1 mutations in leukemogenesis has remained largely elusive considering that they have the double effect of unfolding the C-terminal domain (CTD) and delocalizing the protein in the cytosol (NPM1c+). This mislocalization heavily impacts on cell cycle regulation. Our recent investigations unequivocally demonstrated an amyloid aggregation propensity introduced by AML mutations. Herein, employing complementary biophysical assays, we have characterized a N-terminal extended version of type F AML mutation of CTD and proved that it is able to form assemblies with amyloid character and fibrillar morphology. The present study represents an additional phase of knowledge to deepen the roles exerted by different types of cytoplasmatic NPM1c+ forms to develop in the future potential therapeutics for their selective targeting.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Pasqualina Liana Scognamiglio
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy.
| |
Collapse
|
18
|
Holoubek A, Strachotová D, Otevřelová P, Röselová P, Heřman P, Brodská B. AML-Related NPM Mutations Drive p53 Delocalization into the Cytoplasm with Possible Impact on p53-Dependent Stress Response. Cancers (Basel) 2021; 13:cancers13133266. [PMID: 34209894 PMCID: PMC8269334 DOI: 10.3390/cancers13133266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Nucleophosmin (NPM) is one of the most abundant nucleolar proteins and its mutations frequently occur in acute myeloid leukemia (AML). The mutations cause aberrant cytoplasmic localization of mutated protein (NPMmut) and often mediate dislocation of NPM interaction partners. Tumor suppressor p53 is known to interact with NPM in response to genotoxic stress and its cytoplasmic localization is an unfavorable prognostic factor in cancers. This study aims to characterize the NPM-p53 interaction and to elucidate the effect of the NPM mutations on p53 localization and expression in live cells. In addition, the cellular dynamics of NPMmut and p53 after treatment with nuclear export inhibitor Selinexor is described and the mechanism of the Selinexor action proposed. Our results contribute to a better understanding of the oncogenic potential of NPM mutations. Abstract Nucleophosmin (NPM) interaction with tumor suppressor p53 is a part of a complex interaction network and considerably affects cellular stress response. The impact of NPM1 mutations on its interaction with p53 has not been investigated yet, although consequences of NPMmut-induced p53 export to the cytoplasm are important for understanding the oncogenic potential of these mutations. We investigated p53-NPM interaction in live HEK-293T cells by FLIM-FRET and in cell lysates by immunoprecipitation. eGFP lifetime-photoconversion was used to follow redistribution dynamics of NPMmut and p53 in Selinexor-treated cells. We confirmed the p53-NPMwt interaction in intact cells and newly documented that this interaction is not compromised by the NPM mutation causing displacement of p53 to the cytoplasm. Moreover, the interaction was not abolished for non-oligomerizing NPM variants with truncated oligomerization domain, suggesting that oligomerization is not essential for interaction of NPM forms with p53. Inhibition of the nuclear exporter XPO1 by Selinexor caused expected nuclear relocalization of both NPMmut and p53. However, significantly different return rates of these proteins indicate nontrivial mechanism of p53 and NPMmut cellular trafficking. The altered p53 regulation in cells expressing NPMmut offers improved understanding to help investigational strategies targeting these mutations.
Collapse
Affiliation(s)
- Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
| | - Dita Strachotová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic;
| | - Petra Otevřelová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
| | - Pavla Röselová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
| | - Petr Heřman
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic;
- Correspondence: (P.H.); (B.B.); Tel.: +420-951-551-461 (P.H.); +420-221-977-354 (B.B.)
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
- Correspondence: (P.H.); (B.B.); Tel.: +420-951-551-461 (P.H.); +420-221-977-354 (B.B.)
| |
Collapse
|
19
|
Othman GO, Mohammad NS, Saeed CH. Molecular study of Nucleophosmin 1(NPM1) gene in acute myeloid leukemia in Kurdish population. Afr Health Sci 2021; 21:687-692. [PMID: 34795724 PMCID: PMC8568245 DOI: 10.4314/ahs.v21i2.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In patients with Acute Myeloid Leukemia (AML) the most frequent acquired molecular abnormalities and important prognostic indicators is nucleophosmin-1 (NPM1) mutations. Our study aims was molecular study of Nucleophosmin -1 gene in Acute Myeloid Leukemia in Kurdish population. PATIENTS &METHODS A total of 50 patients with AML, (36) of them attended Nanakaly Hospital and (14) attended Hiwa Hospital and 30 healthy subjects as control were selected randomly, all were matched of age and gender. Polymerase chain reaction (PCR) was used for detection of NPM1 gene mutation. Three samples of PCR product for NPM1 gene mutations were sequenced, and mutations were determined by comparison with the normal NPM1 sequence NCBI (GenBank accession number NM_002520). RESULTS Out of 50 patients with AML, 5 (10%) of them were NPM1 gene mutation positive, and 45 (90%) were negative. The mutation were a base substitution (C to A), (G to C), (G to T), transversion mutation in addition of frame shift mutation and all mutated cases were heterozygous and retained a wild type allele. CONCLUSION Identification of NPM1 mutations in AML are important for prognostication, treatment decision and optimization of patient care.
Collapse
Affiliation(s)
| | - Nawsherwan Sadiq Mohammad
- Hawler Medical University, College of Medicine. Nanakaly Teaching Hospital for Blood Diseases. Erbil- Iraq
| | | |
Collapse
|
20
|
Gan D, Chen Y, Wu Z, Luo L, Yirga SK, Zhang N, Ye F, Chen H, Hu J, Chen Y. Doxorubicin/Nucleophosmin Binding Protein-Conjugated Nanoparticle Enhances Anti-leukemia Activity in Acute Lymphoblastic Leukemia Cells in vitro and in vivo. Front Pharmacol 2021; 12:607755. [PMID: 34122059 PMCID: PMC8193937 DOI: 10.3389/fphar.2021.607755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive malignancy. Adults with ALL have more than 50% relapse rates. We have previously validated that overexpression of nucleophosmin (NPM) is involved in the multidrug resistance (MDR) development during ALL; and a synthetically engineered recombinant NPM binding protein (NPMBP) has been developed in our group; NPMBP and doxorubicin (DOX) can be conjugated in a nanoparticle-based drug delivery system named DOX-PMs-NPMBP to counteract MDR during ALL. Here, we evaluated the antileukemia potential of DOX-PMs-NPMBP in resistant ALL cells. This study demonstrates that DOX-PMs-NPMBP significantly enhances chemosensitivity to DOX in ALL cells. Despite at variable concentrations, both resistant and primary ALL cells from relapsed patients were sensitive to DOX-PMs-NPMBP. In detail, the half maximal inhibitory concentration (IC50) values of DOX-PMs-NPMBP were between 1.6- and 7.0-fold lower than those of DOX in cell lines and primary ALL cells, respectively; and apoptotic cells ratio was over 2-fold higher in DOX-PMs-NPMBP than DOX. Mechanistically, p53-driven apoptosis induction and cell cycle arrest played essential role in DOX-PMs-NPMBP-induced anti-leukemia effects. Moreover, DOX-PMs-NPMBP significantly inhibited tumor growth and prolonged mouse survival of ALL xenograft models; and no systemic toxicity occurrence was observed after treatment during follow-up. In conclusion, these data indicate that DOX-PMs-NPMBP may significantly exert growth inhibition and apoptosis induction, and markedly improve DOX antileukemia activity in resistant ALL cells. This novel drug delivery system may be valuable to develop as a new therapeutic strategy against multidrug resistant ALL.
Collapse
Affiliation(s)
- Donghui Gan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuwen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhengjun Wu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liping Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shimuye Kalayu Yirga
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Na Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fu Ye
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
21
|
Shafik NF, Darwish AD, Allam RM, Elsayed GM. FLT3-ITD Allele Frequency Is an Independent Prognostic Factor for Poor Outcome in FLT3-ITD-Positive AML Patients. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:676-685. [PMID: 34108128 DOI: 10.1016/j.clml.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is a molecular genetic alteration significantly affecting the clinical outcome in patients with acute myeloid leukemia (AML). FLT3-ITD mutations are characterized by variable mutant-to-wild allelic ratios (ARs) and sizes of the duplicated sequences. The size of the inserted sequence may vary from a few to hundreds of nucleotides. The aim of this work was to determine the impact of FLT3-ITD ARs, FLT3-ITD allelic frequency (AF), and allele size in de novo AML. PATIENTS AND METHODS We studied 117 patients with FLT3-ITD gene mutation-positive AML, dividing them into those with low ARs and those with high ARs (>0.64) and examined their prognostic impact. RESULTS High FLT3-ITD AR ≥ 0.64 and AF ≥ 0.5 were significantly associated with a lower overall survival compared with lower AR (median 0.625 vs. 1.020 months, respectively; P = .041) and AF (median 0.493 vs. 0.954 months, respectively; P = .009). NPM1 mutation had no favorable impact on the low-level FLT3-ITD group. CONCLUSION Initial high total leukocyte count, FLT3-ITD AF, and splenomegaly are independent prognostic factors for poor outcome in FLT3-ITD-positive AML.
Collapse
Affiliation(s)
- Nevine F Shafik
- Clinical Pathology and Oncologic Laboratory Medicine Department, National Cancer Institute, Cairo University, Egypt.
| | - Amira D Darwish
- Medical Oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Rasha Mahmoud Allam
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Egypt
| | - Ghada M Elsayed
- Clinical Pathology and Oncologic Laboratory Medicine Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
22
|
Wang YF, Dang HF, Luo X, Wang QQ, Gao C, Tian YX. Downregulation of SOX9 suppresses breast cancer cell proliferation and migration by regulating apoptosis and cell cycle arrest. Oncol Lett 2021; 22:517. [PMID: 33986877 PMCID: PMC8114479 DOI: 10.3892/ol.2021.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/16/2021] [Indexed: 01/10/2023] Open
Abstract
SRY-related high-mobility group box 9 (SOX9) is an important transcriptional factor that regulates diverse genes involved in development and stemness. Dysregulation of SOX9 encourages carcinogenesis in various types of cancer, including breast cancer. The present study aimed to explore the role of SOX9 in triple-negative breast cancer (TNBC). SOX9 expression was significantly upregulated in the TNBC MDA-MB-231, MDA-MB-436 and MDA-MB-468 cell lines compared with that in BT-549 cells. Based on a lentivirus assay, SOX9 inhibition in MDA-MB-231 and MDA-MB-436 cells suppressed cell proliferation and colony formation. Apoptosis was increased and the cell cycle was arrested at the G0/G1 phase in SOX9-knockdown cells. Transwell and wound-healing assays demonstrated that SOX9 inhibition decreased the migration and invasion of MDA-MB-231 and MDA-MB-436 cells. RNA sequencing identified that numerous genes were regulated by SOX9, including nucleophosmin, thioredoxin reductase 1, succinate dehydrogenase complex subunit D, nuclear receptor binding SET domain protein 2, eukaryotic translation initiation factor 4γ1 and glycogen phosphorylase L. Overall, the current study suggested that SOX9 acted as an oncogene in TNBC.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Hui-Feng Dang
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Xu Luo
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Qian-Qian Wang
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Chen Gao
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Ying-Xia Tian
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
23
|
Kuravi S, Cheng J, Fangman G, Polireddy K, McCormick S, Lin TL, Singh AK, Abhyankar S, Ganguly S, Welch DR, Jensen RA, McGuirk JP, Balusu R. Preclinical Evaluation of Gilteritinib on NPM1-ALK-Driven Anaplastic Large Cell Lymphoma Cells. Mol Cancer Res 2021; 19:913-920. [PMID: 33514657 DOI: 10.1158/1541-7786.mcr-20-0738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/14/2020] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
Anaplastic large cell lymphoma (ALCL) is an aggressive type of non-Hodgkin lymphoma. More than three-fourths of anaplastic lymphoma kinase (ALK)-positive ALCL cases express the nucleophosmin 1 (NPM1)-ALK fusion gene as a result of t(2;5) chromosomal translocation. The homodimerization of NPM1-ALK fusion protein mediates constitutive activation of the chimeric tyrosine kinase activity and downstream signaling pathways responsible for lymphoma cell proliferation and survival. Gilteritinib is a tyrosine kinase inhibitor recently approved by the FDA for the treatment of FMS-like tyrosine kinase mutation-positive acute myeloid leukemia. In this study, we demonstrate for the first time gilteritinib-mediated growth inhibitory effects on NPM1-ALK-driven ALCL cells. We utilized a total of five ALCL model cell lines, including both human and murine. Gilteritinib treatment inhibits NPM1-ALK fusion kinase phosphorylation and downstream signaling, resulting in induced apoptosis. Gilteritinib-mediated apoptosis was associated with caspase 3/9, PARP cleavage, the increased expression of proapoptotic protein BAD, and decreased expression of antiapoptotic proteins, survivin and MCL-1. We also found downregulation of fusion kinase activity resulted in decreased c-Myc protein levels. Furthermore, cell-cycle analysis indicated gilteritinib induced G0-G1-phase cell-cycle arrest and reduced CD30 expression. In summary, our preclinical studies explored the novel therapeutic potential of gilteritinib in the treatment of ALCL cells expressing NPM1-ALK and potentially in other ALK or ALK fusion-driven hematologic or solid malignancies. IMPLICATIONS: Our preclinical results explore the use of gilteritinib for the treatment of NPM1-ALK-driven ALCL cells and pave a path for developing future clinical trials. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/5/913/F1.large.jpg.
Collapse
Affiliation(s)
- Sudhakiranmayi Kuravi
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Janice Cheng
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Sophia McCormick
- Biospecimen Repository Core Facility, University of Kansas Medical Center, Kansas City, Kansas
| | - Tara L Lin
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Cancer Center, Kansas City, Kansas
| | - Anurag K Singh
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Cancer Center, Kansas City, Kansas
| | - Sunil Abhyankar
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Cancer Center, Kansas City, Kansas
| | - Siddhartha Ganguly
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Cancer Center, Kansas City, Kansas
| | - Danny R Welch
- The University of Kansas Cancer Center, Kansas City, Kansas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Roy A Jensen
- The University of Kansas Cancer Center, Kansas City, Kansas
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Joseph P McGuirk
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Cancer Center, Kansas City, Kansas
| | - Ramesh Balusu
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
- The University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
24
|
Zhang C, Liu T, Luo P, Gao L, Liao X, Ma L, Jiang Z, Liu D, Yang Z, Jiang Q, Wang Y, Tan X, Luo S, Wang Y, Shi C. Near-infrared oxidative phosphorylation inhibitor integrates acute myeloid leukemia-targeted imaging and therapy. SCIENCE ADVANCES 2021; 7:7/1/eabb6104. [PMID: 33523835 PMCID: PMC7775779 DOI: 10.1126/sciadv.abb6104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/04/2020] [Indexed: 05/11/2023]
Abstract
Acute myeloid leukemia (AML) is a deadly hematological malignancy with frequent disease relapse. The biggest challenge for AML therapy is the lack of methods to target and kill the heterogeneous leukemia cells, which lead to disease relapse. Here, we describe a near-infrared (NIR) fluorescent dye, IR-26, which preferentially accumulates in the mitochondria of AML cells, depending on the hyperactive glycolysis of malignant cell, and simultaneously impairs oxidative phosphorylation (OXPHOS) to exert targeted therapeutic effects for AML cells. In particular, IR-26 also exhibits potential for real-time monitoring of AML cells with an in vivo flow cytometry (IVFC) system. Therefore, IR-26 represents a novel all-in-one agent for the integration of AML targeting, detection, and therapy, which may help to monitor disease progression and treatment responses, prevent unnecessary delays in administering upfront therapy, and improve therapeutic efficiency to the residual AML cells, which are responsible for disease relapse.
Collapse
Affiliation(s)
- Chi Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tao Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Li Gao
- Department of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xingyun Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dengqun Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zeyu Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qingzhi Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shenglin Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
25
|
El-Gamal RAER, Hashem AES, Habashy DM, Abou Elwafa MAZ, Boshnak NH. Flow cytometry in detection of Nucleophosmin 1 mutation in acute myeloid leukemia patients: A reproducible tertiary hospital experience. Int J Lab Hematol 2020; 43:68-75. [PMID: 32856429 DOI: 10.1111/ijlh.13317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/18/2020] [Accepted: 07/29/2020] [Indexed: 12/08/2022]
Abstract
INTRODUCTION Nucleophosmin 1 (NPM1) mutation is one of the most frequent gene mutations in adult acute myeloid leukemia (AML), being detected in 35% of all cases and in up to 60% of patients with normal karyotype AML. AML with mutated NPM1 has distinct pathology, immunophenotyping, and confirmed favorable prognostic significance. Hence, AML with mutated NPM1 is a separate entity in the revised 2016 World Health Organization classification. This study aimed to evaluate the use of a reproducible flow cytometry approach in the assay of mutant NPM1 protein in AML patients and to correlate flow cytometric results with the NPM1 gene mutation. METHODS Eighty-nine newly diagnosed AML patients were evaluated for the expression of mutant NPM1 using flow cytometry and for the presence of NPM1 exon 12 mutations using high-resolution melting polymerase chain reaction (HRM PCR). RESULTS The NPM1 mutation was found in 35 (39.3%) patients by HRM PCR. These patients showed a significantly higher level of percentage of positive-stained cells (% positive cells) and normalized median fluorescence intensity (MFI) for mutant NPM1 by flow cytometry than the negative mutation group. CONCLUSION Flow cytometric detection of mutant NPM1 offers a possible tool to indicate NPM1 mutational status.
Collapse
Affiliation(s)
| | - Azza El-Sayed Hashem
- Department of Clinical Pathology, Hematology Unit, Ain Shams University, Cairo, Egypt
| | - Deena Mohamed Habashy
- Department of Clinical Pathology, Hematology Unit, Ain Shams University, Cairo, Egypt
| | | | - Noha Hussein Boshnak
- Department of Clinical Pathology, Hematology Unit, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Cela I, Di Matteo A, Federici L. Nucleophosmin in Its Interaction with Ligands. Int J Mol Sci 2020; 21:E4885. [PMID: 32664415 PMCID: PMC7402337 DOI: 10.3390/ijms21144885] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin (NPM1) is a mainly nucleolar protein that shuttles between nucleoli, nucleoplasm and cytoplasm to fulfill its many functions. It is a chaperone of both nucleic acids and proteins and plays a role in cell cycle control, centrosome duplication, ribosome maturation and export, as well as the cellular response to a variety of stress stimuli. NPM1 is a hub protein in nucleoli where it contributes to nucleolar organization through heterotypic and homotypic interactions. Furthermore, several alterations, including overexpression, chromosomal translocations and mutations are present in solid and hematological cancers. Recently, novel germline mutations that cause dyskeratosis congenita have also been described. This review focuses on NPM1 interactions and inhibition. Indeed, the list of NPM1 binding partners is ever-growing and, in recent years, many studies contributed to clarifying the structural basis for NPM1 recognition of both nucleic acids and several proteins. Intriguingly, a number of natural and synthetic ligands that interfere with NPM1 interactions have also been reported. The possible role of NPM1 inhibitors in the treatment of multiple cancers and other pathologies is emerging as a new therapeutic strategy.
Collapse
Affiliation(s)
- Ilaria Cela
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology (IBPM) of the CNR, c/o “Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|