1
|
Wu S, Zhao S, Hai L, Yang Z, Wang S, Cui D, Xie J. Macrophage polarization regulates the pathogenesis and progression of autoimmune diseases. Autoimmun Rev 2025; 24:103820. [PMID: 40268127 DOI: 10.1016/j.autrev.2025.103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/28/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are integral components of the innate immune system, present in nearly all tissues and organs throughout the body. They exhibit a high degree of plasticity and heterogeneity, participating in immune responses to maintain immune homeostasis. When the immune system loses tolerance, macrophages rapidly proliferate and polarize in response to various signaling pathways within a disrupted microenvironment. The direction of macrophage polarization can be regulated by a variety of factors, including transcription factors, non-coding RNAs, and metabolic reprogramming. Autoimmune diseases arise from the immune system's activation against host cells, with macrophage polarization playing a critical role in the pathogenesis of numerous chronic inflammatory and autoimmune conditions, such as rheumatoid arthritis, systemic lupus erythematosus, immune thrombocytopenic purpura, and type 1 diabetes. Consequently, elucidating the molecular mechanisms underlying macrophage development and function presents opportunities for the development of novel therapeutic targets. This review outlines the functions of macrophage polarization in prevalent autoimmune diseases and the underlying mechanisms involved. Furthermore, we discuss the immunotherapeutic potential of targeting macrophage polarization and highlight the characteristics and recent advancements of promising therapeutic targets. Our aim is to inspire further strategies to restore macrophage balance in preventing and treating autoimmune diseases.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shubi Zhao
- Department of Critical Medicine, School of Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Lei Hai
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyin Yang
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shifen Wang
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jue Xie
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Labanca C, Martino EA, Vigna E, Bruzzese A, Mendicino F, Caridà G, Lucia E, Olivito V, Manicardi V, Amodio N, Neri A, Morabito F, Gentile M. Rilzabrutinib for the Treatment of Immune Thrombocytopenia. Eur J Haematol 2025. [PMID: 40222822 DOI: 10.1111/ejh.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Advancements in the understanding of ITP pathogenesis have led to significant improvements in disease management through the use of both traditional immunosuppressive strategies and novel targeted therapies. However, a subset of patients remains refractory to treatment or achieves only transient benefits, underscoring the need for alternative therapeutic approaches. Bruton's tyrosine kinase (BTK) inhibitors have emerged as a promising strategy for autoimmune cytopenias, including ITP, due to their ability to modulate key immune pathways. Rilzabrutinib, an oral, reversible BTK inhibitor, represents a novel therapeutic approach for ITP. Rilzabrutinib, an oral, reversible BTK inhibitor, offers a novel mechanism of action by preserving platelet aggregation while reducing macrophage-mediated platelet clearance, distinguishing it from irreversible BTK inhibitors. This review provides an updated and comprehensive analysis of the Phase 1/2 LUNA 2 trial and its long-term extension, contextualizing rilzabrutinib within the broader treatment landscape. We also offer a comparative assessment of other BTK inhibitors investigated for ITP and discuss rilzabrutinib's potential positioning relative to existing therapies, including thrombopoietin receptor agonists (TPO-RAs), rituximab, fostamatinib, and immunosuppressants. Results from the phase 1/2 LUNA 2 trial and its long-term extension demonstrated that Rilzabrutinib induced a durable platelet response in 40% of patients, with a median time to response of 11.5 days. The treatment exhibited a favorable safety profile, with predominantly grade 1 or 2 adverse events and no significant safety concerns commonly associated with BTK inhibitors, such as increased bleeding risk, hepatic toxicity, or cardiac arrhythmias. Preliminary data presented at ASH 2024 from the ongoing Phase 3 LUNA 3 trial, a randomized, double-blind study, further support rilzabrutinib's efficacy and long-term safety. If confirmed, these findings suggest that rilzabrutinib could represent a valuable therapeutic option for patients with refractory ITP, addressing a critical unmet need and potentially redefining treatment paradigms.
Collapse
Affiliation(s)
| | | | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | | | - Giulio Caridà
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Veronica Manicardi
- Laboratorio di Ricerca Traslazionale, Azienda USL-IRCSS Reggio Emilia, Reggio Emilia, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Neri
- Scientific Directorate, IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | | | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
3
|
Yu TS, Han SQ, Wang LJ, Wang HY, Ni XF, Wang RT, Li GS, Hou Y, Peng J, Yan ZY, Zhao YJ, Hou M, Liu XG. Effects of orelabrutinib, a BTK inhibitor, on antibody-mediated platelet destruction in primary immune thrombocytopenia. Br J Haematol 2025; 206:1186-1199. [PMID: 40069128 DOI: 10.1111/bjh.20045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/28/2025] [Indexed: 04/12/2025]
Abstract
Primary immune thrombocytopenia (ITP) is a haemorrhagic disorder with a complex pathogenesis, wherein autoreactive B-cell-mediated platelet destruction plays a crucial role. Bruton's tyrosine kinase (BTK) is widely expressed and essential for immune cells. Several BTK inhibitors have been used clinically to treat haematological malignancies, while few studies are focusing on the regulatory role of BTK in ITP. This study aims to explore the feasibility and underlying mechanisms of a novel BTK inhibitor orelabrutinib in the treatment of ITP through in vitro and in vivo experiments. Orelabrutinib could inhibit B-cell receptor-mediated B-cell activation, proliferation, differentiation and pro-inflammatory cytokine secretion. Transcriptome sequencing revealed that B cells of ITP patients were more hyper-responsive in inflammation and secretion activity compared to healthy controls, and orelabrutinib might alter B-cell status through downregulating ribosome and mitochondrial metabolism. Fcγ receptor-mediated platelet phagocytosis and pro-inflammatory cytokine production by macrophages were also suppressed by orelabrutinib. Furthermore, orelabrutinib treatment considerably elevated the platelet count in active ITP murine models by inhibiting plasma cell differentiation, anti-platelet antibody production, pro-inflammatory factor secretion and platelet phagocytosis in the livers and spleens. Taken together, orelabrutinib could serve as a potential therapeutic agent for ITP by blocking antibody-mediated platelet destruction.
Collapse
Affiliation(s)
- Tian-Shu Yu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shou-Qing Han
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Ling-Jun Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Hao-Yi Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xiao-Fei Ni
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Ru-Ting Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Guo-Sheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Zhen-Yu Yan
- North China University of Science and Technology Affiliated Hospital, Tangshan City, Hebei Province, China
| | - Ya-Jing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
4
|
Cooper N, Jansen AJG, Bird R, Mayer J, Sholzberg M, Tarantino MD, Garg M, Ypma PF, McDonald V, Percy C, Košťál M, Goncalves I, Bogdanov LH, Gernsheimer TB, Diab R, Yao M, Daak A, Kuter DJ. Efficacy and Safety Results With Rilzabrutinib, an Oral Bruton Tyrosine Kinase Inhibitor, in Patients With Immune Thrombocytopenia: Phase 2 Part B Study. Am J Hematol 2025; 100:439-449. [PMID: 39844469 PMCID: PMC11803537 DOI: 10.1002/ajh.27539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 01/24/2025]
Abstract
Current treatments for persistent or chronic immune thrombocytopenia (ITP) are limited by inadequate response, toxicity, and impaired quality of life. The Bruton tyrosine kinase inhibitor rilzabrutinib was evaluated to further characterize safety and durability of platelet response. LUNA2 Part B is a multicenter, phase 1/2 study in adults with ITP (≥ 3 months duration, platelet count < 30 × 109/L) who failed ≥ 1 ITP therapy (NCT03395210, EudraCT 2017-004012-19). Oral rilzabrutinib 400 mg bid was given over 24 weeks, with optional long-term extension (LTE). Primary endpoints were safety and platelet counts ≥ 50 × 109/L on ≥ 8 of the last 12 weeks of main treatment without rescue medication. From 22 March2018 to 31 January2023, 26 patients were enrolled. Patients had baseline median platelet count 13 × 109/L, ITP duration 10.3 years, and six prior ITP therapies (46% splenectomized). Nine (35%) patients achieved the primary endpoint. Platelet counts ≥ 50 × 109/L or ≥ 30 × 109/L and doubling from baseline without rescue therapy were sustained for a mean 9.3 weeks. 11 (42%) LTE-eligible patients were ongoing with median LTE platelet > 80 × 109/L. Three (12%) patients received rescue medication during main treatment, none in LTE. Clinically meaningful improvements were observed in fatigue and women's health. With a median treatment duration of 167 days (main treatment), 16 (62%) patients had ≥ 1 treatment-related adverse event (AE), mainly grade 1, including diarrhea (35%), headache (23%), and nausea (15%). There was no treatment-related grade ≥ 2 bleeding/thrombotic events/infections, serious AE, or death. Rilzabrutinib continues to demonstrate durable platelet responses with favorable safety profile in previously treated ITP patients. Trial Registration: NCT03395210, EudraCT 2017-004012-19.
Collapse
Affiliation(s)
- Nichola Cooper
- Department Immunology and Inflammation, Imperial CollegeHammersmith HospitalLondonUK
| | | | - Robert Bird
- Princess Alexandra HospitalWoolloongabbaAustralia
| | - Jiří Mayer
- Masaryk University HospitalBrnoCzech Republic
| | - Michelle Sholzberg
- St. Michael's Hospital, Li Ka Shing Knowledge InstituteUniversity of TorontoTorontoOntarioCanada
| | - Michael D. Tarantino
- The Bleeding and Clotting Disorders InstituteUniversity of Illinois College of Medicine‐PeoriaPeoriaIllinoisUSA
| | | | - Paula F. Ypma
- Department of HematologyHagaZiekenhuis, Den HaagThe Netherlands
| | | | | | - Milan Košťál
- Fourth Department of Internal Medicine and Hematology, Faculty of MedicineUniversity Hospital of Hradec KrálovéHradec KrálovéCzech Republic
| | - Isaac Goncalves
- Royal Melbourne Hospital and Peter MacCallum Cancer CentreParkvilleAustralia
| | | | | | | | | | | | - David J. Kuter
- Hematology Division, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Modi D, Chowdhury SR, Mahamad S, Modi H, Cines DB, Neunert CE, Al-Samkari H, Cooper N, Moulis G, Cunningham-Rundles C, Liebman HA, Bussel JB, Breakey VR, Nazy I, Arnold DM. Primary versus Secondary Immune Thrombocytopenia (ITP): A Meeting Report from the 2023 McMaster ITP Summit. Thromb Haemost 2025. [PMID: 39719150 DOI: 10.1055/a-2508-1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The McMaster Immune Thrombocytopenia (ITP) Summit, held on October 27, 2023, was an educational seminar from leading experts in immune thrombocytopenia and related disorders geared toward hematologists, internists, immunologists, and clinical and translational scientists. The focus of the Summit was to review the mechanisms, diagnosis, and treatment of primary versus secondary ITP. Specific objectives were to describe the unique features of secondary ITP, and to review its mechanisms in the context of autoimmune disease and infection. The key messages in this Summit were: (1) ITP is a heterogeneous disease, and genetic and immunologic insights may help classify patient subtypes; (2) exploring the autoimmune mechanisms and their association with hypogammaglobulinemia in patients with secondary ITP could improve our understanding of ITP and its subtypes; (3) investigating the mechanisms of ITP in the context of infections caused by viruses such as CMV, HIV, dengue, and hepatitis C, or bacteria such as H. pylori, or vaccinations could provide insight into the causes of ITP. A better understanding of secondary ITP could help elucidate the pathogenesis of ITP.
Collapse
Affiliation(s)
- Dimpy Modi
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Saifur R Chowdhury
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
- Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Ontario, Canada
| | - Syed Mahamad
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Hayley Modi
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Douglas B Cines
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Cindy E Neunert
- Columbia University Irving Medical Center, New York, New York, United States
| | - Hanny Al-Samkari
- Division of Hematology Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Nichola Cooper
- Hammersmith Hospital, Imperial College, London, United Kingdom
| | - Guillaume Moulis
- Department of Internal Medicine, Toulouse University Hospital, Toulouse, France
| | | | - Howard A Liebman
- University of Southern California-Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States
| | - James B Bussel
- Platelet Research & Treatment Program Weill, Cornell Medicine, New York, United States
| | - Vicky R Breakey
- McMaster Children's Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Ishac Nazy
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Division of Hematology and Thromboembolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Donald M Arnold
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
- Division of Hematology and Thromboembolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Evangelidis P, Tragiannidis K, Gavriilaki E, Tragiannidis A. Impact of Thrombopoietin Receptor Agonists on Pathophysiology of Pediatric Immune Thrombocytopenia. Curr Issues Mol Biol 2025; 47:65. [PMID: 39852180 PMCID: PMC11763769 DOI: 10.3390/cimb47010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Immune thrombocytopenia (ITP) in pediatric patients is a common cause of isolated thrombocytopenia. Various pathophysiological mechanisms are implicated in ITP pathogenesis, including the production of autoantibodies against components of platelets (PLTs) by B-cells, the activation of the complement system, phagocytosis by macrophages mediated by Fcγ receptors, the dysregulation of T cells, and reduced bone marrow megakaryopoiesis. ITP is commonly manifested with skin and mucosal bleeding, and it is a diagnosis of exclusion. In some ITP cases, the disease is self-limiting, and treatment is not required, but chronic-persistent disease can also be developed. In these cases, anti-CD20 monoclonal antibodies, such as rituximab and thrombopoietin (TPO) receptor agonists, can be used. TPO agonists have become standard of care today. It has been reported in the published literature that the efficacy of TPO-RAs can be up to 80% in the achievement of several end goals, such as PLT counts. In the current literature review, the data regarding the impact of TPO agonists in the pathogenesis of ITP and treatment outcomes of the patients are examined. In the era of precision medicine, targeted and individualized therapies are crucial to achieving better outcomes for pediatric patients with ITP, especially when chronic refractory disease is developed.
Collapse
Affiliation(s)
- Paschalis Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (E.G.)
| | - Konstantinos Tragiannidis
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (E.G.)
| | - Athanasios Tragiannidis
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
7
|
Seluk L, Davis AE, Rhoads S, Wechsler ME. Novel asthma treatments: Advancing beyond approved novel step-up therapies for asthma. Ann Allergy Asthma Immunol 2025; 134:9-18. [PMID: 39393433 DOI: 10.1016/j.anai.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
Over the past 2 decades, the management of severe asthma has shifted from relying on inhaled corticosteroids and bronchodilators to more precise, targeted approaches. Monoclonal antibodies designed to address specific molecular pathways in asthma have transformed care for patients with severe asthma. Because therapy targeting IgE became the first biologic developed for allergic asthma in 2003, monoclonal antibodies targeting interleukin (IL)-5, IL-5 receptor, IL-4/-13 receptor, and thymic stromal lymphopoietin have been approved for treating difficult-to-treat asthma, improving symptoms, reducing exacerbations, and reducing oral corticosteroid dosing. Despite these advances, many patients continue to experience asthma exacerbations and symptoms and fail to achieve remission. To address this, pharmaceutical companies and researchers are exploring novel therapies targeting different aspects of asthma pathophysiology, including cytokines, enzymes, and cellular pathways. Innovative treatments such as inhaled biologics, ultra-long-acting biologics, and combination biologics are in development. New molecular targets, such as Bruton tyrosine kinase, OX-40 ligand, and Janus kinase, offer promise for addressing unmet needs in asthma care. Although many therapies have failed to get approval for use because of a lack of efficacy, trial design, or toxicity, these experiments still provide insights into asthma's underlying mechanisms. The future of asthma management looks promising, with emerging therapies aiming to improve patient outcomes. The challenge will lie in identifying the right therapy for each patient and developing personalized treatment strategies.
Collapse
Affiliation(s)
- Lior Seluk
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado
| | - Andrea E Davis
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, The Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sarah Rhoads
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, The Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael E Wechsler
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado.
| |
Collapse
|
8
|
Al-Samkari H. 2025 update on clinical trials in immune thrombocytopenia. Am J Hematol 2024; 99:2178-2190. [PMID: 39105413 PMCID: PMC11469945 DOI: 10.1002/ajh.27448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Although the development and regulatory approval of the thrombopoietin receptor agonists revolutionized aspects of the immune thrombocytopenia (ITP) treatment landscape over the past two decades, there remain many areas of high unmet need. Therefore, a number of investigational and repurposed agents are currently undergoing clinical development in ITP. In a departure from historical trials, which largely focused on the indefinite treatment of persistent or chronic ITP, ongoing trials run the gamut of disease phases, and include novel agents being evaluated in early phases of the disease to attempt to modify the disease course. Many agents in development target disease pathophysiologic mechanisms not previously targeted by agents in current use, including platelet autoantibody recycling, B-cell maturation and differentiation, long-lived plasma cells, and the complement system, among others. These agents represent promising treatment options for patients with otherwise refractory disease or who are intolerant of currently available therapies. Additionally, with our increasing understanding of the diverse immune mechanisms at play in ITP, the expansion of the therapeutic armamentarium to include agents targeting diverse pathophysiologic mechanisms may allow a more personalized therapeutic selection in the future. This manuscript provides an up-to-date, in-depth overview of recently completed and ongoing clinical trials in ITP.
Collapse
Affiliation(s)
- Hanny Al-Samkari
- Division of Hematology Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Maurer M, Kolkhir P, Pereira MP, Siebenhaar F, Witte-Händel E, Bergmann KC, Bonnekoh H, Buttgereit T, Fluhr JW, Frischbutter S, Grekowitz EM, Herzog L, Kiefer LA, Krause K, Magerl M, Muñoz M, Neisinger S, Nojarov N, Prins S, Pyatilova P, Ramanauskaité A, Scheffel J, Terhorst-Molawi D, Treudler R, Weller K, Zuberbier T, Metz M. Disease modification in chronic spontaneous urticaria. Allergy 2024; 79:2396-2413. [PMID: 39044706 DOI: 10.1111/all.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Chronic spontaneous urticaria (CSU) is a debilitating, inflammatory skin condition characterized by infiltrating immune cells. Available treatments are limited to improving the signs and symptoms. There is an unmet need to develop therapies that target disease-driving pathways upstream of mast cell activation to inhibit or delay the progression of CSU and associated comorbidities. Here, we aim to define disease modification due to a treatment intervention and criteria that disease-modifying treatments (DMTs) must meet in CSU. We have defined disease modification in CSU as a favorable treatment-induced change in the underlying pathophysiology and, therefore, the disease course, which is clinically beneficial and enduring. A DMT must fulfil the following criteria: (1) prevents or delays the progression of CSU, (2) induces long-term, therapy-free clinical remission, which is the sustained absence of CSU signs and symptoms without the need for treatment, and (3) affects the underlying mechanism of CSU, as demonstrated by an effect on disease-driving signals and/or a biomarker. DMTs in CSU should slow disease progression, achieve long-lasting disease remission, target disease-driving mechanisms, reduce mast cell-activating IgE autoantibodies, target cytokine profile polarization, and normalize the gut microbiome and barrier. Treating CSU at the immune system level could provide valuable alternatives to pharmacotherapy in CSU management. Specific DMTs in CSU are yet to be developed, but some show potential benefits, such as inhibitors of Bruton's Tyrosine Kinase, IL-4 and IL-13. Future therapies could prevent CSU signs and symptoms, achieve long-term clinical benefits after discontinuing treatment, and prevent associated concomitant disorders.
Collapse
Affiliation(s)
- Marcus Maurer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Pavel Kolkhir
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Manuel P Pereira
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Frank Siebenhaar
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Ellen Witte-Händel
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karl-Christian Bergmann
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Hanna Bonnekoh
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Thomas Buttgereit
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Joachim W Fluhr
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Stefan Frischbutter
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Eva Maria Grekowitz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Leonie Herzog
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Lea Alice Kiefer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karoline Krause
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Markus Magerl
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Melba Muñoz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Sophia Neisinger
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Nicole Nojarov
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Samantha Prins
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Polina Pyatilova
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Aisté Ramanauskaité
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Jörg Scheffel
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Dorothea Terhorst-Molawi
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Regina Treudler
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karsten Weller
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Torsten Zuberbier
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Martin Metz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
10
|
Rask-Madsen C, Katragadda S, Li M, Ucpinar S, Chinn L, Arora P, Smith P. Effects of Quinidine or Rifampin Co-administration on the Single-Dose Pharmacokinetics and Safety of Rilzabrutinib (PRN1008) in Healthy Participants. Clin Pharmacol Drug Dev 2024; 13:590-600. [PMID: 38623935 DOI: 10.1002/cpdd.1404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
This open-label, phase 1 study was conducted with healthy adult participants to evaluate the potential drug-drug interaction between rilzabrutinib and quinidine (an inhibitor of P-glycoprotein [P-gp] and CYP2D6) or rifampin (an inducer of CYP3A and P-gp). Plasma concentrations of rilzabrutinib were measured after a single oral dose of rilzabrutinib 400 mg administered on day 1 and again, following a wash-out period, after co-administration of rilzabrutinib and quinidine or rifampin. Specifically, quinidine was given at a dose of 300 mg every 8 hours for 5 days from day 7 to day 11 (N = 16) while rifampin was given as 600 mg once daily for 11 days from day 7 to day 17 (N = 16) with rilzabrutinib given in the morning of day 10 (during quinidine dosing) or day 16 (during rifampin dosing). Quinidine had no significant effect on rilzabrutinib pharmacokinetics. Rifampin decreased rilzabrutinib exposure (the geometric mean of Cmax and AUC0-∞ decreased by 80.5% and 79.5%, respectively). Single oral doses of rilzabrutinib, with or without quinidine or rifampin, appeared to be well tolerated. These findings indicate that rilzabrutinib is a substrate for CYP3A but not a substrate for P-gp.
Collapse
Affiliation(s)
| | - Suresh Katragadda
- Department of Pharmacokinetics, Dynamics and Metabolism, Sanofi, Cambridge, MA, USA
| | - Mengyao Li
- Department of Pharmacokinetics, Dynamics and Metabolism, Sanofi, Bridgewater, NJ, USA
| | - Sibel Ucpinar
- Department of Pharmacokinetics, Dynamics and Metabolism, Sanofi, Bridgewater, NJ, USA
| | - Leslie Chinn
- Department of Pharmacokinetics, Dynamics and Metabolism, Sanofi, Bridgewater, NJ, USA
| | - Puneet Arora
- Department of Clinical, Inflammation and Immunology, Sanofi, South San Francisco, CA, USA
| | - Patrick Smith
- Integrated Drug Development, Certara, Parsippany, NJ, USA
| |
Collapse
|
11
|
Kuter DJ, Mayer J, Efraim M, Bogdanov LH, Baker R, Kaplan Z, Garg M, Trněný M, Choi PY, Jansen AJG, McDonald V, Bird R, Gumulec J, Kostal M, Gernsheimer T, Ghanima W, Daak A, Cooper N. Long-term treatment with rilzabrutinib in patients with immune thrombocytopenia. Blood Adv 2024; 8:1715-1724. [PMID: 38386978 PMCID: PMC10997915 DOI: 10.1182/bloodadvances.2023012044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
ABSTRACT Immune thrombocytopenia (ITP) is an autoimmune disease associated with autoantibody-mediated platelet destruction and impaired platelet production, resulting in thrombocytopenia and a predisposition to bleeding. The ongoing, global phase 1/2 study showed that rilzabrutinib, a Bruton tyrosine kinase inhibitor specifically developed to treat autoimmune disorders, could be an efficacious and well-tolerated treatment for ITP. Clinical activity, durability of response, and safety were evaluated in 16 responding patients who continued rilzabrutinib 400 mg twice daily in the long-term extension (LTE) study. At LTE entry, the median platelet count was 87 × 109/L in all patients, 68 × 109/L in those who had rilzabrutinib monotherapy (n = 5), and 156 × 109/L in patients who received concomitant ITP medication (thrombopoietin-receptor agonists and/or corticosteroids, n = 11). At a median duration of treatment of 478 days (range, 303-764), 11 of 16 patients (69%) continued to receive rilzabrutinib. A platelet count of ≥50 × 109/L was reported in 93% of patients for more than half of their monthly visits. The median percentage of LTE weeks with platelet counts ≥30 × 109/L and ≥50 × 109/L was 100% and 88%, respectively. Five patients discontinued concomitant ITP therapy and maintained median platelet counts of 106 × 109/L at 3 to 6 months after stopping concomitant ITP therapy. Adverse events related to treatment were grade 1 or 2 and transient, with no bleeding, thrombotic, or serious adverse events. With continued rilzabrutinib treatment in the LTE, platelet responses were durable and stable over time with no new safety signals. This trial is registered at www.clinicaltrials.gov as #NCT03395210 and www.clinicaltrialsregister.eu as EudraCT 2017-004012-19.
Collapse
Affiliation(s)
- David J. Kuter
- Hematology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Merlin Efraim
- University Multiprofile Hospital for Active Treatment “St. Marina” – Varna, Varna, Bulgaria
| | | | - Ross Baker
- Perth Blood Institute, Murdoch University, Perth, Australia
| | | | - Mamta Garg
- Leicester Royal Infirmary, Leicester, United Kingdom
| | - Marek Trněný
- First Department of Medicine – Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | | | - Vickie McDonald
- Barts Health NHS Trust, The Royal London Hospital, London, United Kingdom
| | - Robert Bird
- Princess Alexandra Hospital, Woolloongabba, Australia
| | - Jaromir Gumulec
- Department of Hemato-Oncology, University Hospital, Ostrava, Czech Republic
- Department of Hemato-Oncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Milan Kostal
- Fourth Department of Internal Medicine and Hematology, Faculty of Medicine, University Hospital of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Terry Gernsheimer
- University of Washington and Fred Hutchinson Cancer Center, Seattle, WA
| | - Waleed Ghanima
- Østfold Hospital Foundation, Gralum, Norway and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Nichola Cooper
- Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| |
Collapse
|