1
|
Chawathe A, Ahire V, Luthra K, Patil B, Garkhal K, Sharma N. Analytical and drug delivery strategies for short peptides: From manufacturing to market. Anal Biochem 2025; 696:115699. [PMID: 39461693 DOI: 10.1016/j.ab.2024.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
In recent times, biopharmaceuticals have gained attention because of their tremendous potential to benefit millions of patients globally by treating widespread diseases such as cancer, diabetes and many rare diseases. Short peptides (SP), also termed as oligopeptides, are one such class of biopharmaceuticals, that are majorly involved in efficient functioning of biological systems. Peptide chains that are 2-20 amino acids long are considered as oligopeptides by researchers and are some of the functionally vital compounds with widespread applications including self-assembly material for drug delivery, targeting ligands for precise/specific targeting and other biological uses. Using functionalised biomacromolecules such as short chained peptides, helps in improving pharmacokinetic properties and biodistribution profile of the drug. Apart from this, functionalised SP are being employed as cell penetrating peptides and prodrug to specifically and selectively target tumor sites. In order to minimize any unwanted interaction and adverse effects, the stability and safety of SP should be ensured throughout its development from manufacturing to market. Formulation development and characterization strategies of these potential molecules are described in the following review along with various applications and details of marketed formulations.
Collapse
Affiliation(s)
- Ashwini Chawathe
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Vishal Ahire
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Kshitiz Luthra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Bhumika Patil
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
2
|
Vashist A, Perez Alvarez G, Andion Camargo V, Raymond AD, Arias AY, Kolishetti N, Vashist A, Manickam P, Aggarwal S, Nair M. Recent advances in nanogels for drug delivery and biomedical applications. Biomater Sci 2024; 12:6006-6018. [PMID: 39484856 PMCID: PMC11528912 DOI: 10.1039/d4bm00224e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/26/2024] [Indexed: 11/03/2024]
Abstract
Nanotechnology has shown great promise for researchers to develop efficient nanocarriers for better therapy, imaging, and sustained release of drugs. The existing treatments are accompanied by serious toxicity limitations, leading to severe side effects, multiple drug resistance, and off-target activity. In this regard, nanogels have garnered significant attention for their multi-functional role combining advanced therapeutics with imaging in a single platform. Nanogels can be functionalized to target specific tissues which can improve the efficiency of drug delivery and other challenges associated with the existing nanocarriers. Translation of nanogel technology requires more exploration towards stability and enhanced efficiency. In this review, we present the advances and challenges related to nanogels for cancer therapy, ophthalmology, neurological disorders, tuberculosis, wound healing, and anti-viral applications. A perspective on recent research trends of nanogels for translation to clinics is also discussed.
Collapse
Affiliation(s)
- Arti Vashist
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Gabriela Perez Alvarez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Vianessa Andion Camargo
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Andrea D Raymond
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Adriana Yndart Arias
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Nagesh Kolishetti
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Atul Vashist
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, India
- Centre of Excellence in Nanosensors and Nanomedicine, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Madhavan Nair
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
3
|
Baek SW, Kim DM, Lee S, Song DH, Park GM, Park CG, Han DK. Bulk Modification with Inorganic Particles and Immobilization of Extracellular Vesicles onto PDO Composite for Facial Rejuvenation. Tissue Eng Regen Med 2024; 21:199-208. [PMID: 38261265 PMCID: PMC10825105 DOI: 10.1007/s13770-023-00622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The skin, a vital organ protecting against microorganisms and dehydration, undergoes structural decline with aging, leading to visible issues such as wrinkles and sagging. Reduced blood vessels exacerbate vulnerability, hindering optimal cellular function and compromising skin health. Polydioxanone (PDO) biomaterials address aging concerns but produce acidic byproducts, causing inflammation. Inorganic particles and nitric oxide (NO) play crucial roles in inhibiting inflammation and promoting skin regeneration. Stem cell-derived extracellular vesicles (EVs) contribute to intercellular communication, offering the potential to enhance cell functions. The study proposes a method to enhance PDO-based medical devices by incorporating inorganic particles and immobilizing EVs, focusing on facial rejuvenation, anti-inflammatory response, collagen formation, and angiogenesis. METHOD PDO composites with inorganic particles such as magnesium hydroxide (MH) and zinc oxide (ZO) were prepared and followed by EV immobilization. Comprehensive characterization included biocompatibility, anti-inflammation, collagen formation ability, and angiogenesis ability. RESULTS Bulk-modified PDO composites demonstrated even dispersion of inorganic particles, pH neutralization, and enhanced biocompatibility. EVs immobilized on the composite surface exhibited spherical morphology. Inflammation-related gene expressions decreased, emphasizing anti-inflammatory effects. Collagen-related gene and protein expressions increased, showcasing collagen formation ability. In addition, angiogenic capabilities were notably improved, indicating potential for skin rejuvenation. CONCLUSION The study successfully developed and characterized PDO composites with inorganic particles and EVs, demonstrating promising attributes for medical applications. These composites exhibit biocompatibility, anti-inflammatory properties, collagen formation ability, and angiogenic potential, suggesting their utility in skin rejuvenation and tissue engineering. Further research and clinical validation are essential.
Collapse
Affiliation(s)
- Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi, 13488, Korea
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi, 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi, 16419, Korea
| | - Dong Min Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi, 13488, Korea
| | - Semi Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi, 13488, Korea
| | - Duck Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi, 13488, Korea
| | - Gi-Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi, 13488, Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi, 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi, 16419, Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi, 13488, Korea.
| |
Collapse
|
4
|
Bui TVA, Kim JJ, Huang X, Pu A, Li X, Hong SB, Choi YJ, Kim HW, Yao X, Park HJ, Ban K. Core-Shell Droplet-Based Angiogenic Patches for the Treatment of Ischemic Diseases: Ultrafast Processability, Physical Tunability, and Controlled Delivery of an Angiogenic Cocktail. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50693-50707. [PMID: 37812574 DOI: 10.1021/acsami.3c09062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The patch-based delivery system has been a promising therapeutic approach for treating various vascular diseases. However, conventional methods face several challenges, including labor-intensive and time-consuming processes associated with patch fabrication or factor incorporation, inadequate physical properties, and uncontrolled release of factors. These limitations restrict the potential applications in clinical settings. To overcome these issues, we propose a novel core-shell-shaped droplet patch system called an angiogenic patch (AP). Our system offers several distinct advantages over conventional patches. It enables a rapid and straightforward fabrication process utilizing only two biodegradable ingredients [alginate and ε-poly(l-lysine)], ensuring minimal toxicity. Moreover, the AP exhibits excellent physical integrity to match and withstand physiological mechanics and allows for customizable patch dimensions tailored to individual patients' pathological conditions. Notably, the AP enables facile loading of angiogenic cytokines during patch fabrication, allowing sustained release at a controlled rate through tunable network cross-linking. Subsequently, the AP, delivering a precisely formulated cocktail of angiogenic cytokines (VEGF, bFGF, EGF, and IGF), demonstrated significant effects on endothelial cell functions (migration and tubule formation) and survival under pathological conditions simulating ischemic injury. Likewise, in in vivo experiments using a mouse model of hindlimb ischemia, the AP encapsulating the angiogenic cocktail effectively restored blood flow following an ischemic insult, promoting muscle regeneration and preventing limb loss. With its simplicity and rapid processability, user-friendly applicability, physical tunability, and the ability to efficiently load and control the delivery of angiogenic factors, the AP holds great promise as a therapeutic means for treating patients with ischemic diseases.
Collapse
Affiliation(s)
- Thi Van Anh Bui
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Jin-Ju Kim
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Xin Huang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Aoyang Pu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Xin Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, Catholic University College of Medicine, Seoul 06591, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center and College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Xi Yao
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Hun-Jun Park
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| |
Collapse
|
5
|
Liu L, Yao S, Mao X, Fang Z, Yang C, Zhang Y. Thermosensitive hydrogel coupled with sodium ascorbyl phosphate promotes human umbilical cord-derived mesenchymal stem cell-mediated skin wound healing in mice. Sci Rep 2023; 13:11909. [PMID: 37488143 PMCID: PMC10366115 DOI: 10.1038/s41598-023-38666-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Poor survival and restricted function of transplanted stem cells are regarded as limiting their efficacy in wound recovery greatly. Consequently, it is necessary to identify innovative therapeutic strategies to solve these issues. Firstly, the biological effect of PF-127 hydrogel alone and in combination with SAP on the survival, and migration of cultured HUCMSCs was assessed by cell viability, apoptosis, and scratch wound assays. S. aureus and E. coli were used to evaluate the antibacterial activity of PF-127 plus SAP combination. Further, the ability of HUCMSCs-conditioned medium (HUCMSCs-CM) to promote the angiogenesis and migration of human umbilical vein endothelial cells (HUVECs) in vitro was evaluated using tube formation and transwell migration assays. Finally, the HUCMSCs embedded in PF-127 plus SAP scaffold were administered onto mice's excisional cutaneous wound bed. Histological and immunohistochemical analyses were employed to investigate the wound healing capacity as well as cellular responses of PF-127/HUCMSCs/SAP hydrogel. PF-127 showed cytotoxicity on HUCMSCs, whereas the addition of SAP significantly promoted cell viability and alleviated apoptosis of HUCMSCs encapsulated in PF-127 hydrogel in vitro. SAP supplementation substantially abrogated the inhibiting effect of PF-127 on the migration of HUCMSCs in vitro. The combination of PF-127 and SAP exerted an obvious bacteriostatic function on S. aureus and E. coli. Moreover, the co-treatment with SAP could remarkably enhance the stimulative effect of HUCMSCs-CM on the angiogenesis and migration of HUVECs in vitro. PF-127 combined SAP-embedded HUCMSCs transplantation resulted in a potently accelerated wound healing process, promoted the number of proliferating cells and newly formed blood vessels, as well as enhanced expression of vascular endothelial growth factor. PF-127 coupled with SAP contributes to HUCMSCs-mediated traumatic wound closure in mice by promoting cell survival, antibacterial action, and angiogenesis. Our results offered a theoretical foundation for the clinical treatment of traumatic skin defects.
Collapse
Affiliation(s)
- Liji Liu
- Department of Bone and Joint, The Central Hospital of Yueyang, Yueyang, 414020, China
| | - Sheng Yao
- Huarong County People's Hospital, Yueyang, 414207, China
| | - Xianhua Mao
- Yueyang Vocational and Technical College, Yueyang, 414000, China
| | - Zheng Fang
- Department of Bone and Joint, The Central Hospital of Yueyang, Yueyang, 414020, China
| | - Cheng Yang
- Department of Bone and Joint, The Central Hospital of Yueyang, Yueyang, 414020, China
| | - Yan Zhang
- Department of Bone and Joint, The Central Hospital of Yueyang, Yueyang, 414020, China.
| |
Collapse
|
6
|
Smaldone G, Rosa E, Gallo E, Diaferia C, Morelli G, Stornaiuolo M, Accardo A. Caveolin-Mediated Internalization of Fmoc-FF Nanogels in Breast Cancer Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15031026. [PMID: 36986886 PMCID: PMC10051563 DOI: 10.3390/pharmaceutics15031026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
INTRODUCTION Hydrogel nanoparticles, also known as nanogels (NGs), have been recently proposed as alternative supramolecular vehicles for the delivery of biologically relevant molecules like anticancer drugs and contrast agents. The inner compartment of peptide based NGs can be opportunely modified according to the chemical features of the cargo, thus improving its loading and release. A full understanding of the intracellular mechanism involved in nanogel uptake by cancer cells and tissues would further contribute to the potential diagnostic and clinical applications of these nanocarriers, allowing the fine tuning of their selectivity, potency, and activity. The structural characterization of nanogels were assessed by Dynamic Light Scattering (DLS) and Nanoparticles Tracking Analysis (NTA) analysis. Cells viability of Fmoc-FF nanogels was evaluated by MTT assay on six breast cancer cell lines at different incubation times (24, 48, and 72 h) and peptide concentrations (in the range 6.25 × 10-4 ÷ 5·10-3 × wt%). The cell cycle and mechanisms involved in Fmoc-FF nanogels intracellular uptake were evaluated using flow cytometry and confocal analysis, respectively. Fmoc-FF nanogels, endowed with a diameter of ~130 nm and a zeta potential of ~-20.0/-25.0 mV, enter cancer cells via caveolae, mostly those responsible for albumin uptake. The specificity of the machinery used by Fmoc-FF nanogels confers a selectivity toward cancer cell lines overexpressing the protein caveolin1 and efficiently performing caveolae-mediated endocytosis.
Collapse
Affiliation(s)
| | - Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Enrico Gallo
- IRCCS Synlab SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
7
|
Hofmann E, Schwarz A, Fink J, Kamolz LP, Kotzbeck P. Modelling the Complexity of Human Skin In Vitro. Biomedicines 2023; 11:biomedicines11030794. [PMID: 36979772 PMCID: PMC10045055 DOI: 10.3390/biomedicines11030794] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
The skin serves as an important barrier protecting the body from physical, chemical and pathogenic hazards as well as regulating the bi-directional transport of water, ions and nutrients. In order to improve the knowledge on skin structure and function as well as on skin diseases, animal experiments are often employed, but anatomical as well as physiological interspecies differences may result in poor translatability of animal-based data to the clinical situation. In vitro models, such as human reconstructed epidermis or full skin equivalents, are valuable alternatives to animal experiments. Enormous advances have been achieved in establishing skin models of increasing complexity in the past. In this review, human skin structures are described as well as the fast evolving technologies developed to reconstruct the complexity of human skin structures in vitro.
Collapse
Affiliation(s)
- Elisabeth Hofmann
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Anna Schwarz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Julia Fink
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Petra Kotzbeck
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|