1
|
Martínez-Gardeazabal J, Pereira-Castelo G, Moreno-Rodríguez M, Llorente-Ovejero A, Fernández M, Fernández-Vega I, Manuel I, Rodríguez-Puertas R. Sphingosine 1-phosphate receptor subtype 1 (S1P 1) activity in the course of Alzheimer's disease. Neurobiol Dis 2024; 202:106713. [PMID: 39448041 DOI: 10.1016/j.nbd.2024.106713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Some specific lipid molecules in the brain act as signaling molecules, neurotransmitters, or neuromodulators, by binding to specific G protein-coupled receptors (GPCR) for neurolipids. One such receptor, sphingosine 1-phosphate receptor subtype 1 (S1P1), is coupled to Gi/o proteins and is involved in cell proliferation, growth, and neuroprotection. S1P1 constitutes an interesting target for neurodegenerative diseases like multiple sclerosis and Alzheimer's disease (AD), in which changes in the sphingolipid metabolism have been observed. This study analyzes S1P1 receptor-mediated activity in healthy brains and during AD progression using postmortem samples from controls and patients at different Braak's stages. Additionally, the distribution of S1P1 receptor activity in human brains is compared to that in commonly used rodent models, rats and mice, through functional autoradiography, measuring [35S]GTPγS binding stimulated by the S1P1 receptor selective agonist CYM-5442 to obtain the distribution of functional activity of S1P1 receptors. S1P1 receptor-mediated activity, along with that of the cannabinoid CB1 receptor, is one of the highest recorded for any GPCR in many gray matter areas of the brain, reaching maximum values in the cerebellar cortex, specific areas of the hippocampus and the basal forebrain. S1P1 signaling is crucial in areas that regulate learning, memory, motor control, and nociception, such as the basal forebrain and basal ganglia. In AD, S1P1 receptor activity is increased in the inner layers of the frontal cortex and underlying cortical white matter at early stages, but decreases in the hippocampus in advanced stages, indicating ongoing brain impairment. Importantly, we identified significant correlations between S1P1 receptor activity and Braak stages, suggesting that S1P1 receptor dysfunction is associated to disease progression, particularly in memory-related regions. The S1P signaling via S1P1 receptor is a promising neurological target due to its role in key neurophysiological functions and its potential to modify the progression of neurodegenerative diseases. Finally, rats are suggested as a preferred experimental model for studying S1P1 receptor-mediated responses in the human brain.
Collapse
Affiliation(s)
- Jonatan Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain
| | - Gorka Pereira-Castelo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Marta Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Manuel Fernández
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain; Department of Neurology, Hospital Universitario de Cruces, 48903 Barakaldo, Spain
| | - Iván Fernández-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Avda. Roma, s/n, 33011 Oviedo, Spain; Health Research Institute of Principality of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain.
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain
| |
Collapse
|
2
|
Thomas N, Schröder NH, Nowak MK, Wollnitzke P, Ghaderi S, von Wnuck Lipinski K, Wille A, Deister-Jonas J, Vogt J, Gräler MH, Dannenberg L, Buschmann T, Westhoff P, Polzin A, Kelm M, Keul P, Weske S, Levkau B. Sphingosine-1-phosphate suppresses GLUT activity through PP2A and counteracts hyperglycemia in diabetic red blood cells. Nat Commun 2023; 14:8329. [PMID: 38097610 PMCID: PMC10721873 DOI: 10.1038/s41467-023-44109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Red blood cells (RBC) are the major carriers of sphingosine-1-phosphate (S1P) in blood. Here we show that variations in RBC S1P content achieved by altering S1P synthesis and transport by genetic and pharmacological means regulate glucose uptake and metabolic flux. This is due to S1P-mediated activation of the catalytic protein phosphatase 2 (PP2A) subunit leading to reduction of cell-surface glucose transporters (GLUTs). The mechanism dynamically responds to metabolic cues from the environment by increasing S1P synthesis, enhancing PP2A activity, reducing GLUT phosphorylation and localization, and diminishing glucose uptake in RBC from diabetic mice and humans. Functionally, it protects RBC against lipid peroxidation in hyperglycemia and diabetes by activating the pentose phosphate pathway. Proof of concept is provided by the resistance of mice lacking the S1P exporter MFSD2B to diabetes-induced HbA1c elevation and thiobarbituric acid reactive substances (TBARS) generation in diabetic RBC. This mechanism responds to pharmacological S1P analogues such as fingolimod and may be functional in other insulin-independent tissues making it a promising therapeutic target.
Collapse
Affiliation(s)
- Nadine Thomas
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Nathalie H Schröder
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Melissa K Nowak
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Shahrooz Ghaderi
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | | | - Annalena Wille
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | | | - Jens Vogt
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Lisa Dannenberg
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tobias Buschmann
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Amin Polzin
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Petra Keul
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Weske
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany.
| |
Collapse
|
3
|
Chen H, Wang J, Zhang C, Ding P, Tian S, Chen J, Ji G, Wu T. Sphingosine 1-phosphate receptor, a new therapeutic direction in different diseases. Biomed Pharmacother 2022; 153:113341. [PMID: 35785704 DOI: 10.1016/j.biopha.2022.113341] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
Sphingosine 1-phosphate receptor (S1PR), as a kind of G protein-coupled receptor, has five subtypes, including S1PR1, S1PR2, S1PR3, S1PR4, and S1PR5. Sphingosine 1-phosphate receptor (S1P) and S1PR regulate the trafficking of neutrophils and some cells, which has great effects on immune systems, lung tissue, and liver tissue. Presently, many related reports have proved that S1PR has a strong effect on the migration of lymphocytes, tumor cells, neutrophils, and many other cells via the regulation of signals, pathways, and enzymes. In this way, S1PR can regulate the relative response of the organism. Thus, S1PR has become a possible target for the treatment of autoimmune diseases, pulmonary disease, liver disease, and cancer. In this review, we mainly focus on the research of the S1PR for the new therapeutic directions of different diseases and is expected to assist support in the clinic and drug use.
Collapse
Affiliation(s)
- Hongyu Chen
- Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuxia Tian
- Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Junming Chen
- Minhang Hospital, Fudan University, Shanghai 201199, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Khan SA, Goliwas KF, Deshane JS. Sphingolipids in Lung Pathology in the Coronavirus Disease Era: A Review of Sphingolipid Involvement in the Pathogenesis of Lung Damage. Front Physiol 2021; 12:760638. [PMID: 34690821 PMCID: PMC8531546 DOI: 10.3389/fphys.2021.760638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Sphingolipids are bioactive lipids involved in the regulation of cell survival, proliferation, and the inflammatory response. The SphK/S1P/S1PR pathway (S1P pathway) is a driver of many anti-apoptotic and proliferative processes. Pro-survival sphingolipid sphingosine-1-phosphate (S1P) initiates its signaling cascade by interacting with various sphingosine-1-phosphate receptors (S1PR) through which it is able to exert its pro-survival or inflammatory effects. Whereas sphingolipids, including ceramides and sphingosines are pro-apoptotic. The pro-apoptotic lipid, ceramide, can be produced de novo by ceramide synthases and converted to sphingosine by way of ceramidases. The balance of these antagonistic lipids and how this balance manifests is the essence of the sphingolipid rheostat. Recent studies on SARS-CoV-2 have implicated the S1P pathway in the pathogenesis of novel coronavirus disease COVID-19-related lung damage. Accumulating evidence indicates that an aberrant inflammatory process, known as "cytokine storm" causes lung injury in COVID-19, and studies have shown that the S1P pathway is involved in signaling this hyperinflammatory response. Beyond the influence of this pathway on cytokine storm, over the last decade the S1P pathway has been investigated for its role in a wide array of lung pathologies, including pulmonary fibrosis, pulmonary arterial hypertension (PAH), and lung cancer. Various studies have used S1P pathway modulators in models of lung disease; many of these efforts have yielded results that point to the potential efficacy of targeting this pathway for future treatment options. Additionally, they have emphasized S1P pathway's significant role in inflammation, fibrosis, and a number of other endothelial and epithelial changes that contribute to lung damage. This review summarizes the S1P pathway's involvement in COVID-19 and chronic lung diseases and discusses the potential for targeting S1P pathway as a therapeutic option for these diseases.
Collapse
Affiliation(s)
| | | | - Jessy S. Deshane
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Grailhe P, Boutarfa‐Madec A, Beauverger P, Janiak P, Parkar AA. A label-free impedance assay in endothelial cells differentiates the activation and desensitization properties of clinical S1P 1 agonists. FEBS Open Bio 2020; 10:2010-2020. [PMID: 32810927 PMCID: PMC7530392 DOI: 10.1002/2211-5463.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/10/2022] Open
Abstract
Sphingosine-1 phosphate receptor-1 (S1P1 ) activation maintains endothelial barrier integrity, whereas S1P1 desensitization induces peripheral blood lymphopenia. The latter is exploited in the approval and/or late-stage development of receptor-desensitizing agents targeting the S1P1 receptor in multiple sclerosis, such as siponimod, ozanimod, and ponesimod. SAR247799 is a recently described G protein-biased S1P1 agonist that activates S1P1 without desensitization and thus has endothelial-protective properties in patients without reducing lymphocytes. As SAR247799 demonstrated endothelial-protective effects at sub-lymphocyte-reducing doses, the possibility exists that other S1P1 modulators could also exhibit endothelial-protective properties at lower doses. To explore this possibility, we sought to quantitatively compare the biased properties of SAR247799 with the most advanced clinical molecules targeting S1P1 . In this study, we define the β-arrestin pathway component of the impedance profile following S1P1 activation in a human umbilical vein endothelial cell line (HUVEC) and report quantitative indices of the S1P1 activation-to-desensitization ratio of various clinical molecules. In a label-free impedance assay assessing endothelial barrier integrity and disruption, the mean estimates (95% confidence interval) of the activation-to-desensitization ratios of SAR247799, ponesimod, ozanimod, and siponimod were 114 (91.1-143), 7.66 (3.41-17.2), 6.35 (3.21-12.5), and 0.170 (0.0523-0.555), respectively. Thus, we show that SAR247799 is the most G protein-biased S1P1 agonist currently characterized. This rank order of bias among the most clinically advanced S1P1 modulators provides a new perspective on the relative potential of these clinical molecules for improving endothelial function in patients in relation to their lymphocyte-reducing (desensitization) properties.
Collapse
Affiliation(s)
- Patrick Grailhe
- Diabetes and Cardiovascular ResearchSanofi R&DChilly‐MazarinFrance
| | | | | | - Philip Janiak
- Diabetes and Cardiovascular ResearchSanofi R&DChilly‐MazarinFrance
| | - Ashfaq A. Parkar
- Diabetes and Cardiovascular ResearchSanofi US ServicesBridgewaterNJUSA
| |
Collapse
|
6
|
Marciniak A, Camp SM, Garcia JGN, Polt R. In silico Docking Studies of Fingolimod and S1P 1 Agonists. Front Pharmacol 2020; 11:247. [PMID: 32210822 PMCID: PMC7076195 DOI: 10.3389/fphar.2020.00247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
The sphingosine-1-phosphate receptor 1 (S1P1), originally the endothelial differentiation gene 1 receptor (EDG-1), is one of five G protein–coupled receptors (GPCRs) S1P1–5 that bind to and are activated by sphingosine-1-phosphate (S1P). The lipid S1P is an intermediate in sphingolipid homeostasis, and S1P1 is a major medical target for immune system modulation; agonism of the receptor produces a myriad of biological responses, including endothelial cell barrier integrity, chemotaxis, lymphocyte trafficking/targeting, angiogenesis, as well as regulation of the cardiovascular system. Use of in silico docking simulations on the crystal structure of S1P1 allows for pinpointing the residues within the receptor’s active site that actively contribute to the binding of S1P, and point to how these specific interactions can be exploited to design more effective synthetic analogs to specifically target S1P1 in the presence of the closely related receptors S1P2, S1P3, S1P4, and S1P5. We examined the binding properties of the endogenous substrate as well as a selection of synthetic sphingosine-derived S1P1 modulators of S1P1 with in silico docking simulations using the software package Molecular Operating Environment® (MOE®). The modeling studies reveal the relevance of phosphorylation, i.e., the presence of a phosphate or phosphonate moiety within the substrate for successful binding to occur, and indicate which residues are responsible for S1P1 binding of the most prominent sphingosine-1-phosphate receptor (S1PR) modulators, including fingolimod and its structural relatives. Furthermore, trends in steric preferences as for the binding of enantiomers to S1P1 could be observed, facilitating future design of receptor-specific substrates to precisely target the active site of S1P1.
Collapse
Affiliation(s)
- Alexander Marciniak
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, United States
| | - Sara M Camp
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|