1
|
Sharma M, Paudyal V, Syed SK, Thapa R, Kassam N, Surani S. Management of Pulmonary Arterial Hypertension: Current Strategies and Future Prospects. Life (Basel) 2025; 15:430. [PMID: 40141775 PMCID: PMC11943839 DOI: 10.3390/life15030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Primary pulmonary hypertension (PPH), now known as pulmonary arterial hypertension (PAH), has induced significant treatment breakthroughs in the past decade. Treatment has focused on improving patient survival and quality of life, and delaying disease progression. Current therapies are categorized based on targeting different pathways known to contribute to PAH, including endothelin receptor antagonists (ERAs), phosphodiesterase-5 inhibitors (PDE-5 inhibitors), prostacyclin analogs, soluble guanylate cyclase stimulators, and activin signaling inhibitors such as Sotatercept. The latest addition to treatment options is soluble guanylate cyclase stimulators, such as Riociguat, which directly stimulates the nitric oxide pathway, facilitating vasodilation. Looking to the future, advancements in PAH treatment focus on precision medicine involving the sub-stratification of patients through a deep characterization of altered Transforming Growth Factor-β(TGF-β) signaling and molecular therapies. Gene therapy, targeting specific genetic mutations linked to PAH, and cell-based therapies, such as mesenchymal stem cells, are under investigation. Besides prevailing therapies, emerging PH treatments target growth factors and inflammation-modulating pathways, with ongoing trials assessing their long-term benefits and safety. Hence, this review explores current therapies that delay progression and improve survival, as well as future treatments with curative potential.
Collapse
Affiliation(s)
- Munish Sharma
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor Scott and White, Temple, TX 76508, USA;
| | - Vivek Paudyal
- Department of General Practice and Emergency Medicine, Karnali Academy of Health Sciences, Chandannath 21200, Jumla, Nepal; (V.P.); (R.T.)
| | - Saifullah Khalid Syed
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Rubi Thapa
- Department of General Practice and Emergency Medicine, Karnali Academy of Health Sciences, Chandannath 21200, Jumla, Nepal; (V.P.); (R.T.)
| | - Nadeem Kassam
- Department of Medicine, Aga Khan University, Nairobi 30270, Kenya;
| | - Salim Surani
- Department of Medicine and Pharmacy, Texas A&M, College Station, TX 77840, USA
| |
Collapse
|
2
|
Ahmed S, Ahmed A, Rådegran G. Circulating biomarkers in pulmonary arterial hypertension: State-of-the-art review and future directions. JHLT OPEN 2024; 6:100152. [PMID: 40145036 PMCID: PMC11935499 DOI: 10.1016/j.jhlto.2024.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Pulmonary arterial hypertension is a complex and heterogeneous condition, associated with a considerable diagnostic delay, diminished exercise capacity, and poor outcomes. In pulmonary arterial hypertension, biomarker research has become a subject of intense inquiry, and novel circulating biomarkers acknowledged in a multitude of mechanistic pathways are emerging. Beyond the widely used natriuretic peptides, novel biomarkers may provide deeper pathophysiological understanding, support clinical decision-making, and prompt the incorporation of precision medicine by enabling a more precise individual phenotyping. In this state-of-the-art review, the recent advances in circulating biomarkers in pulmonary arterial hypertension from a clinical perspective are discussed, with particular emphasis on the current state of knowledge, gaps in evidence, and future perspectives.
Collapse
Affiliation(s)
- Salaheldin Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
3
|
Mondoni M, Rinaldo R, Ryerson CJ, Albrici C, Baccelli A, Tirelli C, Marchetti F, Cefalo J, Nalesso G, Ferranti G, Alfano F, Sotgiu G, Guazzi M, Centanni S. Vascular involvement in idiopathic pulmonary fibrosis. ERJ Open Res 2024; 10:00550-2024. [PMID: 39588083 PMCID: PMC11587140 DOI: 10.1183/23120541.00550-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 11/27/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic, fibrosing and progressive interstitial lung disease of unknown aetiology with a pathogenesis still partly unknown. Several microvascular and macrovascular abnormalities have been demonstrated in the pathogenesis of IPF and related pulmonary hypertension (PH), a complication of the disease. Methods We carried out a non-systematic, narrative literature review aimed at describing the role of the vasculature in the natural history of IPF. Results The main molecular pathogenetic mechanisms involving vasculature (i.e. endothelial-to-mesenchymal transition, vascular remodelling, endothelial permeability, occult alveolar haemorrhage, vasoconstriction and hypoxia) and the genetic basis of vascular remodelling are described. The prevalence and clinical relevance of associated PH are highlighted with focus on the vasculature as a prognostic marker. The vascular effects of current antifibrotic therapies, the role of pulmonary vasodilators in the treatment of disease, and new pharmacological options with vascular-targeted activity are described. Conclusions The vasculature plays a key role in the natural history of IPF from the early phases of disease until development of PH in a subgroup of patients, a complication related to a worse prognosis. Pulmonary vascular volume has emerged as a novel computed tomography finding and a predictor of mortality, independent of PH. New pharmacological options with concomitant vascular-directed activity might be promising in the treatment of IPF.
Collapse
Affiliation(s)
- Michele Mondoni
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Rocco Rinaldo
- Department of Medical Sciences, Respiratory Diseases Unit, AOU Città della Salute e della Scienza di Torino, Molinette Hospital, University of Turin, Turin, Italy
| | - Christopher J. Ryerson
- Department of Medicine and Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Cristina Albrici
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Andrea Baccelli
- Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas’ NHS Foundation Trust, London, UK
| | - Claudio Tirelli
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Francesca Marchetti
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Jacopo Cefalo
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giulia Nalesso
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giulia Ferranti
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Fausta Alfano
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Sotgiu
- Dept of Medical, Clinical Epidemiology and Medical Statistics Unit, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Marco Guazzi
- Department of Cardiology, University of Milano School of Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Stefano Centanni
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Wang DD, Cheng M, Chen CY. Intervention control of aerobic exercise in maintaining quality of life and pulmonary hypertension in hemodialysis patients. World J Clin Cases 2024; 12:4217-4229. [PMID: 39015922 PMCID: PMC11235546 DOI: 10.12998/wjcc.v12.i20.4217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Pulmonary hypertension is a serious complication in the treatment of maintenance hemodialysis patients, which seriously affects the quality of life of patients and threatens their life safety. Prevention, treatment and improvement of pulmonary hypertension are of great significance to improve the quality of life of patients. AIM To investigate the intervention and control of pedal-powered bicycle in maintaining quality of life and pulmonary hypertension in hemodialysis patients. METHODS 73 patients with maintenance hemadialysis combined with pulmonary arterial hypertension at a hemodialysis center in a certain hospital from May 2021 to May 2022 are selected. Patients are divided into two groups, 37 cases in the control group (group C) and 36 cases in the intervention group (group I). Patients are divided into two groups, group C is treated with oral administration of betaglandin sodium combined with routine nursing care. Based on group C, group I conducts power cycling exercises. RESULTS After treatment, group I patients had higher muscle strength, 36-Item Short Form Health Survey scores, and Kidney Disease Targets Areas scores; The 6-minute walk distance test index level was higher and the Borg score was lower; The group I had lower systolic blood pressure, greater vital capacity, higher positive emotion, lower systolic pulmonary artery pressure index level, higher arterial partial oxygen pressure level, lower pulmonary vascular resistance index level, and higher blood oxygen saturation level [158.91 ± 11.89 vs 152.56 ± 12.81, 1795.01 ± 603.18 vs 1907.20 ± 574.15, 24.00 (22.00, 29.00) vs 24.00 (22.00, 28.00), P < 0.001]. CONCLUSION Aerobic exercise combined with Western medicine treatment can effectively improve patients' pulmonary hypertension, alleviate their negative emotions, and enable them to achieve a higher level of quality of life.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Department of Rehabilitation Medicine, Zhejiang Hospital, Hangzhou 310012, Zhejiang Province, China
| | - Min Cheng
- Blood Purification Center, Zhejiang Hospital, Hangzhou 310012, Zhejiang Province, China
| | - Chun-Ying Chen
- Department of Rehabilitation Medicine, Zhejiang Hospital, Hangzhou 310012, Zhejiang Province, China
| |
Collapse
|
5
|
Kiely DG, Channick R, Flores D, Galiè N, MacDonald G, Marcus JT, Mitchell L, Peacock A, Rosenkranz S, Tawakol A, Torbicki A, Vonk Noordegraaf A, Swift AJ. Comparison of cardiac magnetic resonance imaging, functional and haemodynamic variables in pulmonary arterial hypertension: insights from REPAIR. ERJ Open Res 2024; 10:00547-2023. [PMID: 38348238 PMCID: PMC10860210 DOI: 10.1183/23120541.00547-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/11/2023] [Indexed: 02/15/2024] Open
Abstract
Background Measures that can detect large treatment effects are important for monitoring therapeutic effectiveness. The 2022 European Society of Cardiology/European Respiratory Society guidelines highlight the importance of imaging in monitoring disease status and treatment response in pulmonary arterial hypertension (PAH). Are the standardised treatment effect sizes (STES) of cardiac magnetic resonance imaging (cMRI) comparable with functional and haemodynamic variables? Methods REPAIR (ClinicalTrials.gov: NCT02310672) was a prospective, multicentre, single-arm, open-label, 52-week phase 4 study evaluating the effect of macitentan 10 mg, with or without a phosphodiesterase 5 inhibitor (PDE5i), on right ventricular (RV) remodelling, cardiac function and cardiopulmonary haemodynamics. Both cMRI and functional assessments were performed at screening and at weeks 26 and 52; haemodynamic measurements were conducted at screening and week 26. In this post hoc analysis, STES were estimated using the parametric Cohen's d and non-parametric Cliff's delta tests. Results At week 26, large STES (Cohen's d) were observed for 10 of the 20 cMRI variables assessed, including the prognostic measures of RV and left ventricular stroke volume and RV ejection fraction and the haemodynamic trial end-point, pulmonary vascular resistance; medium STES were observed for 6-min walk distance (6MWD). The STES were consistent in treatment-naïve patients and those escalating therapy and maintained at week 52. Similar results were obtained using the non-parametric Cliff's delta method. Conclusions The treatment effect of macitentan, alone or in combination with a PDE5i, was comparable for several cMRI and haemodynamic variables with prognostic value in PAH, and greater than that of 6MWD in patients with PAH, highlighting the emerging relevance of cMRI in PAH.
Collapse
Affiliation(s)
- David G. Kiely
- Sheffield Pulmonary Vascular Disease Unit and NIHR Biomedical Research Centre, Royal Hallamshire Hospital and University of Sheffield, Sheffield, UK
- Department of Clinical Medicine, University of Sheffield, Sheffield, UK
| | | | - Dayana Flores
- Global Medical Affairs, Actelion Pharmaceuticals Ltd, a Janssen Pharmaceutical Company of Johnson & Johnson, Allschwil, Switzerland
| | - Nazzareno Galiè
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES), Università di Bologna, Bologna, Italy
| | - Gwen MacDonald
- Global Medical Affairs, Actelion Pharmaceuticals Ltd, a Janssen Pharmaceutical Company of Johnson & Johnson, Allschwil, Switzerland
| | - J. Tim Marcus
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lada Mitchell
- Statistical Decision Science, Actelion Pharmaceuticals Ltd, a Janssen Pharmaceutical Company of Johnson & Johnson, Allschwil, Switzerland
| | - Andrew Peacock
- Statistical Decision Science, Actelion Pharmaceuticals Ltd, a Janssen Pharmaceutical Company of Johnson & Johnson, Allschwil, Switzerland
| | | | - Ahmed Tawakol
- Department of Cardiology, Heart Center, University Hospital Cologne and Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| | - Adam Torbicki
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Andrew J. Swift
- Department of Clinical Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Lan L, Feng K, Wu Y, Zhang W, Wei L, Che H, Xue L, Gao Y, Tao J, Qian S, Cao W, Zhang J, Wang C, Tian M. Phenomic Imaging. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:597-612. [PMID: 38223684 PMCID: PMC10781914 DOI: 10.1007/s43657-023-00128-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 01/16/2024]
Abstract
Human phenomics is defined as the comprehensive collection of observable phenotypes and characteristics influenced by a complex interplay among factors at multiple scales. These factors include genes, epigenetics at the microscopic level, organs, microbiome at the mesoscopic level, and diet and environmental exposures at the macroscopic level. "Phenomic imaging" utilizes various imaging techniques to visualize and measure anatomical structures, biological functions, metabolic processes, and biochemical activities across different scales, both in vivo and ex vivo. Unlike conventional medical imaging focused on disease diagnosis, phenomic imaging captures both normal and abnormal traits, facilitating detailed correlations between macro- and micro-phenotypes. This approach plays a crucial role in deciphering phenomes. This review provides an overview of different phenomic imaging modalities and their applications in human phenomics. Additionally, it explores the associations between phenomic imaging and other omics disciplines, including genomics, transcriptomics, proteomics, immunomics, and metabolomics. By integrating phenomic imaging with other omics data, such as genomics and metabolomics, a comprehensive understanding of biological systems can be achieved. This integration paves the way for the development of new therapeutic approaches and diagnostic tools.
Collapse
Affiliation(s)
- Lizhen Lan
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Kai Feng
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Yudan Wu
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Wenbo Zhang
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Ling Wei
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Huiting Che
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Yidan Gao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Ji Tao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Shufang Qian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Wenzhao Cao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, National Center for Neurological Disorders, Fudan University, Shanghai, 200040 China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Mei Tian
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| |
Collapse
|
7
|
Caccamo M, Harrell FE, Hemnes AR. Evolution and optimization of clinical trial endpoints and design in pulmonary arterial hypertension. Pulm Circ 2023; 13:e12271. [PMID: 37554146 PMCID: PMC10405062 DOI: 10.1002/pul2.12271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Selection of endpoints for clinical trials in pulmonary arterial hypertension (PAH) is challenging because of the small numbers of patients and the changing expectations of patients, clinicians, and regulators in this evolving therapy area. The most commonly used primary endpoint in PAH trials has been 6-min walk distance (6MWD), leading to the approval of several targeted therapies. However, single surrogate endpoints such as 6MWD or hemodynamic parameters may not correlate with clinical outcomes. Composite endpoints of clinical worsening have been developed to reflect patients' overall condition more accurately, although there is no standard definition of worsening. Recently there has been a shift to composite endpoints assessing clinical improvement, and risk scores developed from registry data are increasingly being used. Biomarkers are another area of interest, although brain natriuretic peptide and its N-terminal prohormone are the only markers used for risk assessment or as endpoints in PAH. A range of other genetic, metabolic, and immunologic markers is currently under investigation, along with conventional and novel imaging modalities. Patient-reported outcomes are an increasingly important part of evaluating new therapies, and several PAH-specific tools are now available. In the future, alternative statistical techniques and trial designs, such as patient enrichment strategies, will play a role in evaluating PAH-targeted therapies. In addition, modern sequencing techniques, imaging analyses, and high-dimensional statistical modeling/machine learning may reveal novel markers that can play a role in the diagnosis and monitoring of PAH.
Collapse
Affiliation(s)
- Marco Caccamo
- Division of CardiologyWVU Heart and Vascular InstituteMorgantownWest VirginiaUSA
| | - Frank E. Harrell
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
8
|
Mitxelena-Iribarren O, Bujanda X, Zabalza L, Alkorta J, Lopez-Elorza A, Gracia R, Dupin D, Arana S, Ruiz-Cabello J, Mujika M. Design and fabrication of a microfluidic system with embedded circular channels for rotary cell culture. Biotechnol J 2023:e2300004. [PMID: 37100765 DOI: 10.1002/biot.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
The development of functional blood vessels is today a fundamental pillar in the evaluation of new therapies and diagnostic agents. This article describes the manufacture and subsequent functionalization, by means of cell culture, of a microfluidic device with a circular section. Its purpose is to simulate a blood vessel in order to test new treatments for pulmonary arterial hypertension. The manufacture was carried out using a process in which a wire with a circular section determines the dimensions of the channel. To fabricate the blood vessel, cells were seeded under rotary cell culture to obtain a homogeneous cell seeding in the inner wall of the devices. This is a simple and reproducible method that allows the generation of blood vessel models in vitro.
Collapse
Affiliation(s)
- Oihane Mitxelena-Iribarren
- CEIT-Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Xabier Bujanda
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Laura Zabalza
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Janire Alkorta
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Aitziber Lopez-Elorza
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Raquel Gracia
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Damien Dupin
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Sergio Arana
- CEIT-Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Jesús Ruiz-Cabello
- CIC biomaGUNE-Basque Research and Technology Alliance (BRTA), San Sebastián, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Maite Mujika
- CEIT-Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| |
Collapse
|
9
|
Hirsch K, Nolley S, Ralph DD, Zheng Y, Altemeier WA, Rhodes CJ, Morrell NW, Wilkins MR, Leary PJ, Rayner SG. Circulating markers of inflammation and angiogenesis and clinical outcomes across subtypes of pulmonary arterial hypertension. J Heart Lung Transplant 2023; 42:173-182. [PMID: 36470771 PMCID: PMC9840657 DOI: 10.1016/j.healun.2022.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Subtypes of pulmonary arterial hypertension (PAH) differ in both fundamental disease features and clinical outcomes. Angiogenesis and inflammation represent disease features that may differ across subtypes and are of special interest in connective tissue disease-associated PAH (CTD-PAH). We compared inflammatory and angiogenic biomarker profiles across different etiologies of PAH and related them to clinical outcomes. METHODS Participants with idiopathic PAH, CTD-PAH, toxin-associated PAH (tox-PAH), or congenital heart disease-associated PAH (CHD-PAH) were enrolled into a prospective observational cohort. Baseline serum concentrations of 33 biomarkers were related to 3-year mortality, echocardiogram, REVEAL score, and 6-minute walk distance (6MWD). Findings were validated using plasma proteomic data from the UK PAH Cohort Study. RESULTS One hundred twelve patients were enrolled: 45 idiopathic, 27 CTD-PAH, 20 tox-PAH, and 20 CHD-PAH. Angiogenic and inflammatory biomarkers were distinctly elevated within the CTD-PAH cohort. Six biomarkers were associated with mortality within the entire PAH cohort: interleukin-6 (IL-6, HR:1.6, 95% CI:1.18-2.18), soluble fms-like tyrosine kinase 1 (sFlt-1, HR:1.35, 95% CI:1.02-1.80), placental growth factor (PlGF, HR:1.55, 95% CI:1.07-2.25), interferon gamma-induced protein 10 (IP-10, HR:1.44, 95% CI:1.04-1.99), tumor necrosis factor-beta (TNF-β, HR:1.81, 95% CI:1.11-2.95), and NT-proBNP (HR:2.19, 95% CI:1.52-3.14). Only IL-6 and NT-proBNP remained significant after controlling for multiple comparisons. IL-6, IP-10, and sFlt-1 significantly associated with mortality in CTD-PAH, but not non-CTD-PAH subgroups. In the UK cohort, IP-10, PlGF, TNF-β, and NT-proBNP significantly associated with 5-year survival. CONCLUSION Levels of angiogenic and inflammatory biomarkers are elevated in CTD-PAH, compared with other etiologies of PAH, and may correlate with clinical outcomes including mortality.
Collapse
Affiliation(s)
- Kellen Hirsch
- Department of Medicine, University of Washington, Seattle, Washington
| | - Stephanie Nolley
- Department of Medicine, University of Washington, Seattle, Washington
| | - David D Ralph
- Department of Medicine, University of Washington, Seattle, Washington
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - William A Altemeier
- Department of Medicine, University of Washington, Seattle, Washington; Center for Lung Biology, University of Washington, Seattle, Washington
| | - Christopher J Rhodes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter J Leary
- Department of Medicine, University of Washington, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington
| | - Samuel G Rayner
- Department of Medicine, University of Washington, Seattle, Washington; Department of Bioengineering, University of Washington, Seattle, Washington; Center for Lung Biology, University of Washington, Seattle, Washington.
| |
Collapse
|
10
|
Zhang A, De Gala V, Lementowski PW, Cvetkovic D, Xu JL, Villion A. Veno-Arterial Extracorporeal Membrane Oxygenation Rescue in a Patient With Pulmonary Hypertension Presenting for Revision Total Hip Arthroplasty: A Case Report and Narrative Review. Cureus 2022; 14:e28234. [PMID: 36158355 PMCID: PMC9488858 DOI: 10.7759/cureus.28234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 12/01/2022] Open
Abstract
Patients with pulmonary hypertension (PH) are at an increased risk of perioperative morbidity and mortality when undergoing non-cardiac surgery. We present a case of a 57-year-old patient with severe PH, who developed cardiac arrest as the result of right heart failure, undergoing a revision total hip arthroplasty under combined spinal epidural anesthesia. Emergent veno-arterial (VA) extracorporeal membrane oxygenation (ECMO) was undertaken as rescue therapy during the pulmonary hypertensive crisis and a temporizing measure to provide circulatory support in an intensive care unit (ICU). We present a narrative review on perioperative management for patients with PH undergoing non-cardiac surgery. The review goes through the updated hemodynamic definition, clinical classification of PH, perioperative morbidity, and mortality associated with PH in non-cardiac surgery. Pre-operative assessment evaluates the type of surgery, the severity of PH, and comorbidities. General anesthesia (GA) is discussed in detail for patients with PH regarding the benefits of and unsubstantiated arguments against GA in non-cardiac surgery. The literature on risks and benefits of regional anesthesia (RA) in terms of neuraxial, deep plexus, and peripheral nerve block with or without sedation in patients with PH undergoing non-cardiac surgery is reviewed. The choice of anesthesia technique depends on the type of surgery, right ventricle (RV) function, pulmonary artery (PA) pressure, and comorbidities. Given the differences in pathophysiology and mechanical circulatory support (MCS) between the RV and left ventricle (LV), the indications, goals, and contraindications of VA-ECMO as a rescue in cardiopulmonary arrest and pulmonary hypertensive crisis in patients with PH are discussed. Given the significant morbidity and mortality associated with PH, multidisciplinary teams including anesthesiologists, surgeons, cardiologists, pulmonologists, and psychological and social worker support should provide perioperative management.
Collapse
|
11
|
Boucherat O, Yokokawa T, Krishna V, Kalyana-Sundaram S, Martineau S, Breuils-Bonnet S, Azhar N, Bonilla F, Gutstein D, Potus F, Lawrie A, Jeyaseelan J, Provencher S, Bonnet S. Identification of LTBP-2 as a plasma biomarker for right ventricular dysfunction in human pulmonary arterial hypertension. NATURE CARDIOVASCULAR RESEARCH 2022; 1:748-760. [PMID: 39196085 DOI: 10.1038/s44161-022-00113-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/07/2022] [Indexed: 08/29/2024]
Abstract
Although right ventricular (RV) function is the primary determinant of morbidity and mortality in pulmonary arterial hypertension (PAH), the molecular mechanisms of RV remodeling and the circulating factors reflecting its function remain largely elusive. In this context, the identification of new molecular players implicated in maladaptive RV remodeling along with the optimization of risk stratification approaches in PAH are key priorities. Through combination of transcriptomic and proteomic profiling of RV tissues with plasma proteome profiling, we identified a panel of proteins, mainly related to cardiac fibrosis, similarly upregulated in the RV and plasma of patients with PAH with decompensated RV. Among these, we demonstrated that plasma latent transforming growth factor beta binding protein 2 (LTBP-2) level correlates with RV function in human PAH and adds incremental value to current risk stratification models to predict long-term survival in two independent PAH cohorts.
Collapse
Affiliation(s)
- Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
- Department of Medicine, Université Laval, Québec City, Québec, Canada
| | - Tetsuro Yokokawa
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Vinod Krishna
- Janssen Research & Development, Spring House, PA, USA
| | | | - Sandra Martineau
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Nabil Azhar
- Janssen Research & Development, Spring House, PA, USA
| | - Fany Bonilla
- Janssen Research & Development, Spring House, PA, USA
| | | | - François Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK & Insigneo institute for in silico medicine, Sheffield, UK
| | | | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
- Department of Medicine, Université Laval, Québec City, Québec, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada.
- Department of Medicine, Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
12
|
Rhodes CJ, Wharton J, Swietlik EM, Harbaum L, Girerd B, Coghlan JG, Lordan J, Church C, Pepke-Zaba J, Toshner M, Wort SJ, Kiely DG, Condliffe R, Lawrie A, Gräf S, Montani D, Boucly A, Sitbon O, Humbert M, Howard LS, Morrell NW, Wilkins MR. Using the Plasma Proteome for Risk Stratifying Patients with Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2022; 205:1102-1111. [PMID: 35081018 PMCID: PMC9851485 DOI: 10.1164/rccm.202105-1118oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rationale: NT-proBNP (N-terminal pro-brain natriuretic peptide), a biomarker of cardiac origin, is used to risk stratify patients with pulmonary arterial hypertension (PAH). Its limitations include poor sensitivity to early vascular pathology. Other biomarkers of vascular or systemic origin may also be useful in the management of PAH. Objectives: Identify prognostic proteins in PAH that complement NT-proBNP and clinical risk scores. Methods: An aptamer-based assay (SomaScan version 4) targeting 4,152 proteins was used to measure plasma proteins in patients with idiopathic, heritable, or drug-induced PAH from the UK National Cohort of PAH (n = 357) and the French EFORT (Evaluation of Prognostic Factors and Therapeutic Targets in PAH) study (n = 79). Prognostic proteins were identified in discovery-replication analyses of UK samples. Proteins independent of 6-minute-walk distance and NT-proBNP entered least absolute shrinkage and selection operator modeling, and the best combination in a single score was evaluated against clinical targets in EFORT. Measurements and Main Results: Thirty-one proteins robustly informed prognosis independent of NT-proBNP and 6-minute-walk distance in the UK cohort. A weighted combination score of six proteins was validated at baseline (5-yr mortality; area under the curve [AUC], 0.73; 95% confidence interval [CI], 0.63-0.85) and follow-up in EFORT (AUC, 0.84; 95% CI, 0.75-0.94; P = 9.96 × 10-6). The protein score risk stratified patients independent of established clinical targets and risk equations. The addition of the six-protein model score to NT-proBNP improved prediction of 5-year outcomes from AUC 0.762 (0.702-0.821) to 0.818 (0.767-0.869) by receiver operating characteristic analysis (P = 0.00426 for difference in AUC) in the UK replication and French samples combined. Conclusions: The plasma proteome informs prognosis beyond established factors in PAH and may provide a more sensitive measure of therapeutic response.
Collapse
Affiliation(s)
- Christopher J Rhodes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Emilia M Swietlik
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lars Harbaum
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Barbara Girerd
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - J Gerry Coghlan
- Department of Cardiology, Royal Free Campus, University College London, London, United Kingdom
| | - James Lordan
- University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Colin Church
- University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Mark Toshner
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J Wort
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Sheffield Pulmonary Vascular Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom; and
| | - Robin Condliffe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Sheffield Pulmonary Vascular Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom; and
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,BioResource for Translational Research, National Institute for Health Research Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David Montani
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Athénaïs Boucly
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Olivier Sitbon
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Luke S Howard
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
13
|
Boxhammer E, Berezin AE, Paar V, Bacher N, Topf A, Pavlov S, Hoppe UC, Lichtenauer M. Severe Aortic Valve Stenosis and Pulmonary Hypertension: A Systematic Review of Non-Invasive Ways of Risk Stratification, Especially in Patients Undergoing Transcatheter Aortic Valve Replacement. J Pers Med 2022; 12:603. [PMID: 35455719 PMCID: PMC9026430 DOI: 10.3390/jpm12040603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Patients with severe aortic valve stenosis and concomitant pulmonary hypertension show a significantly reduced survival prognosis. Right heart catheterization as a preoperative diagnostic tool to determine pulmonary hypertension has been largely abandoned in recent years in favor of echocardiographic criteria. Clinically, determination of echocardiographically estimated systolic pulmonary artery pressure falls far short of invasive right heart catheterization data in terms of accuracy. The aim of the present systematic review was to highlight noninvasive possibilities for the detection of pulmonary hypertension in patients with severe aortic valve stenosis, with a special focus on cardiovascular biomarkers. A total of 525 publications regarding echocardiography, cardiovascular imaging and biomarkers related to severe aortic valve stenosis and pulmonary hypertension were analyzed in a systematic database analysis using PubMed Central®. Finally, 39 publications were included in the following review. It was shown that the current scientific data situation, especially regarding cardiovascular biomarkers as non-invasive diagnostic tools for the determination of pulmonary hypertension in severe aortic valve stenosis patients, is poor. Thus, there is a great scientific potential to combine different biomarkers (biomarker scores) in a non-invasive way to determine the presence or absence of PH.
Collapse
Affiliation(s)
- Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (E.B.); (V.P.); (N.B.); (A.T.); (U.C.H.)
| | - Alexander E. Berezin
- Internal Medicine Department, State Medical University of Zaporozhye, 69035 Zaporozhye, Ukraine;
| | - Vera Paar
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (E.B.); (V.P.); (N.B.); (A.T.); (U.C.H.)
| | - Nina Bacher
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (E.B.); (V.P.); (N.B.); (A.T.); (U.C.H.)
| | - Albert Topf
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (E.B.); (V.P.); (N.B.); (A.T.); (U.C.H.)
| | - Sergii Pavlov
- Department of Clinical Laboratory Diagnostics, State Medical University of Zaporozhye, 69035 Zaporozhye, Ukraine;
| | - Uta C. Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (E.B.); (V.P.); (N.B.); (A.T.); (U.C.H.)
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (E.B.); (V.P.); (N.B.); (A.T.); (U.C.H.)
| |
Collapse
|
14
|
OUP accepted manuscript. Rheumatology (Oxford) 2022; 61:3989-3996. [DOI: 10.1093/rheumatology/keac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/27/2021] [Indexed: 11/14/2022] Open
|
15
|
Exploring Functional Differences between the Right and Left Ventricles to Better Understand Right Ventricular Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9993060. [PMID: 34497685 PMCID: PMC8421158 DOI: 10.1155/2021/9993060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
The right and left ventricles have traditionally been studied as individual entities. Furthermore, modifications found in diseased left ventricles are assumed to influence on right ventricle alterations, but the connection is poorly understood. In this review, we describe the differences between ventricles under physiological and pathological conditions. Understanding the mechanisms that differentiate both ventricles would facilitate a more effective use of therapeutics and broaden our knowledge of right ventricle (RV) dysfunction. RV failure is the strongest predictor of mortality in pulmonary arterial hypertension, but at present, there are no definitive therapies directly targeting RV failure. We further explore the current state of drugs and molecules that improve RV failure in experimental therapeutics and clinical trials to treat pulmonary arterial hypertension and provide evidence of their potential benefits in heart failure.
Collapse
|
16
|
Sweatt AJ, Reddy R, Rahaghi FN, Al-Naamani N. What's new in pulmonary hypertension clinical research: lessons from the best abstracts at the 2020 American Thoracic Society International Conference. Pulm Circ 2021; 11:20458940211040713. [PMID: 34471517 PMCID: PMC8404658 DOI: 10.1177/20458940211040713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
In this conference paper, we review the 2020 American Thoracic Society International Conference session titled, "What's New in Pulmonary Hypertension Clinical Research: Lessons from the Best Abstracts". This virtual mini-symposium took place on 21 October 2020, in lieu of the annual in-person ATS International Conference which was cancelled due to the COVID-19 pandemic. Seven clinical research abstracts were selected for presentation in the session, which encompassed five major themes: (1) standardizing diagnosis and management of pulmonary hypertension, (2) improving risk assessment in pulmonary arterial hypertension, (3) evaluating biomarkers of disease activity, (4) understanding metabolic dysregulation across the spectrum of pulmonary hypertension, and (5) advancing knowledge in chronic thromboembolic pulmonary hypertension. Focusing on these five thematic contexts, we review the current state of knowledge, summarize presented research abstracts, appraise their significance and limitations, and then discuss relevant future directions in pulmonary hypertension clinical research.
Collapse
Affiliation(s)
- Andrew J. Sweatt
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Raju Reddy
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Farbod N. Rahaghi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nadine Al-Naamani
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - on behalf of the American Thoracic Society Pulmonary Circulation Assembly Early Career Working Group
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
17
|
Resveratrol Prevents Right Ventricle Dysfunction, Calcium Mishandling, and Energetic Failure via SIRT3 Stimulation in Pulmonary Arterial Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9912434. [PMID: 34239697 PMCID: PMC8238598 DOI: 10.1155/2021/9912434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vessel remodeling; however, its severity and impact on survival depend on right ventricular (RV) failure. Resveratrol (RES), a polyphenol found in red wine, exhibits cardioprotective effects on RV dysfunction in PAH. However, most literature has focused on RES protective effect on lung vasculature; recent finding indicates that RES has a cardioprotective effect independent of pulmonary arterial pressure on RV dysfunction, although the underlying mechanism in RV has not been determined. Therefore, this study is aimed at evaluating sirtuin-3 (SIRT3) modulation by RES in RV using a monocrotaline- (MC-) induced PAH rat model. Myocyte function was evaluated by confocal microscopy as cell contractility, calcium signaling, and mitochondrial membrane potential (ΔΨm); cell energetics was assessed by high-resolution respirometry, and western blot and immunoprecipitation evaluated posttranslational modifications. PAH significantly affects mitochondrial function in RV; PAH is prone to mitochondrial permeability transition pore (mPTP) opening, thus decreasing the mitochondrial membrane potential. The compromised cellular energetics affects cardiomyocyte function by decreasing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity and delaying myofilament unbinding, disrupting cell relaxation. RES partially protects mitochondrial integrity by deacetylating cyclophilin-D, a critical component of the mPTP, increasing SIRT3 expression and activity and preventing mPTP opening. The preserved energetic capability rescues cell relaxation by maintaining SERCA activity. Avoiding Ca2+ transient and cell contractility mismatch by preserving mitochondrial function describes, for the first time, impairment in excitation-contraction-energetics coupling in RV failure. These results highlight the importance of mitochondrial energetics and mPTP in PAH.
Collapse
|
18
|
Pullamsetti SS, Tello K, Seeger W. Utilising biomarkers to predict right heart maladaptive phenotype: a step toward precision medicine. Eur Respir J 2021; 57:57/4/2004506. [PMID: 33833075 DOI: 10.1183/13993003.04506-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/11/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Dept of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, Germany
| | - Khodr Tello
- Dept of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Dept of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| |
Collapse
|