1
|
Sbrana F, Bigazzi F, Corciulo C, Dal Pino B. Lipoprotein apheresis reduces major adverse cardiovascular event incidence in high-lipoprotein (a) subjects on proprotein convertase subtilisin/kexin type 9 inhibitor therapy. Eur J Prev Cardiol 2024; 31:e62-e64. [PMID: 38470832 DOI: 10.1093/eurjpc/zwae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Francesco Sbrana
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, Pisa 1-56124, Italy
| | - Federico Bigazzi
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, Pisa 1-56124, Italy
| | - Carmen Corciulo
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, Pisa 1-56124, Italy
| | - Beatrice Dal Pino
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, Pisa 1-56124, Italy
| |
Collapse
|
2
|
Wu NQ, Li ZF, Lu MY, Li JJ. Monoclonal antibodies for dyslipidemia in adults: a focus on vulnerable patients groups. Expert Opin Biol Ther 2024; 24:157-169. [PMID: 38375817 DOI: 10.1080/14712598.2024.2321374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Dyslipidemia significantly contributes to atherosclerotic cardiovascular disease (ASCVD). Patients with lipid-rich vulnerable plaques are particularly susceptible to cardiovascular complications. Despite available lipid-lowering therapies (LLTs), challenges in effective lipid management remain. AREAS COVERED This article reviews monoclonal antibody (mAb) therapy in dyslipidemia, particularly focusing on vulnerable plaques and patients. We have reviewed the definitions of vulnerable plaques and patients, outlined the efficacy of traditional LLTs, and discussed in-depth the mAbs targeting PCSK9. We extensively discuss the potential mechanisms, intracoronary imaging, and clinical evidence of PCSK9mAbs in vulnerable plaques and patients. A brief overview of promising mAbs targeting other targets such as ANGPTL3 is also provided. EXPERT OPINION Research consistently supports the potential of mAb therapies in treating adult dyslipidemia, particularly in vulnerable patients. PCSK9mAbs are effective in regulating lipid parameters, such as LDL-C and Lp(a), and exhibit anti-inflammatory and anti-thrombotic properties. These antibodies also maintain endothelial and smooth muscle health, contributing to the stabilization of vulnerable plaques and reduction in adverse cardiovascular events. Future research aims to further understand PCSK9 and other targets like ANGPTL3, focusing on vulnerable groups. Overall, mAbs are emerging as a promising and superior approach in dyslipidemia management and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Na-Qiong Wu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Zhi-Fan Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Meng-Ying Lu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Apheresis is a treatment option for severe dyslipidemia which has been introduced approximately 40 years ago to clinical practice. This article reviews recent apheresis research progresses, including apheresis for elevated LDL-cholesterol and elevated lipoprotein(a). RECENT FINDINGS While the role of apheresis in treating more common forms of LDL-hypercholesterolemia has been reduced due to the development of new, very potent LDL-lowering drugs, it still plays an important role in treating patients with homozygous familial hypercholesterolemia and patients with severe lipoprotein(a) elevation. One apheresis session can decrease LDL-cholesterol, apoB, and lipoprotein(a) by approximately 65%, which results in a time averaged reduction of 30-50%. Although time-consuming, and expensive regular apheresis is very well tolerated and has been proven safe for decades. Apheresis remains a treatment option for severe dyslipidemia, especially in homozygous familial hypercholesterolemia and elevated lipoprotein(a), if other forms of therapy fail to achieve targets.
Collapse
Affiliation(s)
- Klaus G Parhofer
- Medical Department IV - Grosshadern, University Munich, Marchioninistraße 15, 81377, Munich, Germany.
| |
Collapse
|
4
|
Adorni MP, Biolo M, Zimetti F, Palumbo M, Ronda N, Scarinzi P, Simioni P, Lupo MG, Ferri N, Previato L, Bernini F, Zambon A. HDL Cholesterol Efflux and Serum Cholesterol Loading Capacity Alterations Associate to Macrophage Cholesterol Accumulation in FH Patients with Achilles Tendon Xanthoma. Int J Mol Sci 2022; 23:ijms23158255. [PMID: 35897824 PMCID: PMC9332368 DOI: 10.3390/ijms23158255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/05/2023] Open
Abstract
Achilles tendon xanthoma (ATX) formation involves macrophage cholesterol accumulation within the tendon, similar to that occurring in atheroma. Macrophage cholesterol homeostasis depends on serum lipoprotein functions, namely the high-density lipoprotein (HDL) capacity to promote cell cholesterol efflux (cholesterol efflux capacity, CEC) and the serum cholesterol loading capacity (CLC). We explored the HDL-CEC and serum CLC, comparing 16 FH patients with ATX to 29 FH patients without ATX. HDL-CEC through the main efflux mechanisms mediated by the transporters ATP binding cassette G1 (ABCG1) and A1 (ABCA1) and the aqueous diffusion (AD) process was determined by a cell-based radioisotopic technique and serum CLC fluorimetrically. Between the two groups, no significant differences were found in terms of plasma lipid profile. A trend toward reduction of cholesterol efflux via AD and a significant increase in ABCA1-mediated HDL-CEC (+18.6%) was observed in ATX compared to no ATX patients. In ATX-presenting patients, ABCG1-mediated HDL-CEC was lower (−11%) and serum CLC was higher (+14%) compared to patients without ATX. Considering all the patients together, ABCG1 HDL-CEC and serum CLC correlated with ATX thickness inversely (p = 0.013) and directly (p < 0.0001), respectively. In conclusion, lipoprotein dysfunctions seem to be involved in ATX physiopathology and progression in FH patients.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
| | - Marta Biolo
- Department of Medicine, University of Padua, 35128 Padua, Italy; (M.B.); (P.S.); (P.S.); (M.G.L.); (N.F.); (L.P.)
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.Z.); (M.P.); (N.R.)
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.Z.); (M.P.); (N.R.)
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.Z.); (M.P.); (N.R.)
| | - Paolo Scarinzi
- Department of Medicine, University of Padua, 35128 Padua, Italy; (M.B.); (P.S.); (P.S.); (M.G.L.); (N.F.); (L.P.)
| | - Paolo Simioni
- Department of Medicine, University of Padua, 35128 Padua, Italy; (M.B.); (P.S.); (P.S.); (M.G.L.); (N.F.); (L.P.)
| | - Maria Giovanna Lupo
- Department of Medicine, University of Padua, 35128 Padua, Italy; (M.B.); (P.S.); (P.S.); (M.G.L.); (N.F.); (L.P.)
| | - Nicola Ferri
- Department of Medicine, University of Padua, 35128 Padua, Italy; (M.B.); (P.S.); (P.S.); (M.G.L.); (N.F.); (L.P.)
| | - Lorenzo Previato
- Department of Medicine, University of Padua, 35128 Padua, Italy; (M.B.); (P.S.); (P.S.); (M.G.L.); (N.F.); (L.P.)
| | - Franco Bernini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.Z.); (M.P.); (N.R.)
- Correspondence: ; Tel.: +39-0521-905039
| | | |
Collapse
|
5
|
Mahmood T, Minnier J, Ito MK, Li QH, Koren A, Kam IW, Fazio S, Shapiro MD. Discordant responses of plasma low-density lipoprotein cholesterol and lipoprotein(a) to alirocumab: A pooled analysis from 10 ODYSSEY Phase 3 studies. Eur J Prev Cardiol 2021; 28:816-822. [PMID: 34298554 DOI: 10.1177/2047487320915803] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors consistently reduce low-density lipoprotein cholesterol (LDL-C) by 50-60% and lipoprotein(a) (Lp(a)) by 20-30%, but the mechanism of Lp(a) lowering remains unclear. If Lp(a) is cleared by the LDL receptor, similar to LDL-C, then one would expect PCSK9 inhibition to induce a concordant LDL-C/Lp(a) response in an approximately 2:1 ratio. We aim to determine the prevalence of discordant plasma LDL-C/Lp(a) response to the PCSK9 inhibitor alirocumab. METHODS This is a post hoc, pooled analysis of 10 randomized controlled trials from the ODYSSEY Phase 3 clinical trial program for alirocumab. Patients enrolled in the trials were high cardiovascular risk and/or with heterozygous familial hypercholesterolemia. The primary end point was prevalence of discordant LDL-C/Lp(a) response to alirocumab at 24 weeks. Discordant response was defined as LDL-C reduction >35% and Lp(a) reduction ≤10%, or LDL-C reduction ≤35% and Lp(a) reduction >10%. RESULTS Of the 1709 patients in the pooled study cohort, 62.4% were male, and the mean age was 59.2 (SD: 11.0) years. Baseline mean LDL-C was 126.5 (SD: 46.3) mg/dL and baseline median Lp(a) was 46.9 (interquartile range: 21.8-89.0) mg/dL. Total prevalence of discordant LDL-C/Lp(a) response was 21.5% (12.6% with LDL-C >35% reduction and Lp(a) ≤10% reduction; 8.9% with LDL-C ≤35% reduction and Lp(a) >10% reduction). Baseline Lp(a) and familial hypercholesterolemia status did not affect discordance. CONCLUSION A high prevalence of discordant LDL-C/Lp(a) response was observed with alirocumab, further suggesting that PCSK9 inhibitor therapy with alirocumab reduces plasma Lp(a) through alternative pathways to LDL receptor clearance.
Collapse
Affiliation(s)
- Tahir Mahmood
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, USA
| | - Jessica Minnier
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, USA
- Oregon Health & Science University, OHSU-PSU School of Public Health, USA
| | | | | | | | | | - Sergio Fazio
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, USA
| | - Michael D Shapiro
- Center for Preventive Cardiology, Wake Forest University Baptist Medical Center, Section on Cardiovascular Medicine, USA
| |
Collapse
|
6
|
Attar A. PCSK9 inhibitors: Going forward and beyond. Eur J Prev Cardiol 2021; 28:803-804. [PMID: 33611486 DOI: 10.1177/2047487320916964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Armin Attar
- Department of Cardiovascular Medicine, TAHA clinical Trial Group, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
7
|
Chakraborty A, Pang J, Chan DC, Barnett W, Woodward AM, Vorster M, Watts GF. Effectiveness of proprotein convertase subtilisin/kexin-9 monoclonal antibody treatment on plasma lipoprotein(a) concentrations in patients with elevated lipoprotein(a) attending a clinic. Clin Cardiol 2021; 44:805-813. [PMID: 33955565 PMCID: PMC8207967 DOI: 10.1002/clc.23607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Lipoprotein(a) (Lp[a]) is a causal risk factor for atherosclerotic cardiovascular disease (ASCVD). Proprotein convertase subtilisin/kexin-9 monoclonal antibodies (PCSK9mAbs) can lower Lp(a) levels in clinical trials, but their effects in patients with elevated Lp(a) in clinical practice remain unclear. AIMS To investigate the effectiveness and safety of PCSK9mAbs in lowering plasma Lp(a) in patients with elevated Lp(a) concentrations in a lipid clinic. METHODS This was an open-label study of 53 adult patients with elevated Lp(a) concentration (≥0.5 g/L). Clinical, biochemical, and safety data were collected before and on treatment with evolocumab or alirocumab over a mean period of 11 months. RESULTS Treatment with a PCSK9mAb resulted in a significant reduction of 0.29 g/L (-22%) in plasma Lp(a) concentration (p<.001). There were also significant reductions in low-density lipoprotein-cholesterol (LDL-C) (-53%), remnant-cholesterol (-12%) and apolipoprotein B (-43%) concentrations. The change in Lp(a) concentration was significantly different from a comparable group of 35 patients with elevated Lp(a) who were not treated with a PCSK9mAb (-22% vs. -2%, p<.001). The reduction in Lp(a) concentration was not associated with the corresponding changes in LDL-C, remnant-cholesterol, and apolipoprotein B (p>.05 in all). 7.5% and 47% of the patients attained a target concentration of Lp(a) <0.5 g/L and LDL-C <1.8 mmol/L, respectively. PCSK9mAbs were well tolerated, the common adverse effects being pharyngitis (9.4%), nasal congestion (7.6%), myalgia (9.4%), diarrhoea (7.6%), arthralgia (9.4%) and injection site reactions (11%). CONCLUSION PCSK9mAbs can effectively and safely lower plasma Lp(a) concentrations in patients with elevated Lp(a) in clinical practice; the impact of the fall in Lp(a) on ASCVD outcomes requires further investigation.
Collapse
Affiliation(s)
- Anindita Chakraborty
- School of Medicine, Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
| | - Dick C. Chan
- School of Medicine, Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
| | - Wendy Barnett
- Lipid Disorders Clinic, Cardiometabolic Services, Department of CardiologyRoyal Perth HospitalPerthAustralia
| | - Ann Marie Woodward
- Lipid Disorders Clinic, Cardiometabolic Services, Department of CardiologyRoyal Perth HospitalPerthAustralia
| | - Mary Vorster
- Lipid Disorders Clinic, Cardiometabolic Services, Department of CardiologyRoyal Perth HospitalPerthAustralia
| | - Gerald F. Watts
- School of Medicine, Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
- Lipid Disorders Clinic, Cardiometabolic Services, Department of CardiologyRoyal Perth HospitalPerthAustralia
| |
Collapse
|
8
|
Xu J, Shapiro MD. Current Evidence and Future Directions of PCSK9 Inhibition. US CARDIOLOGY REVIEW 2021; 15:e01. [PMID: 39720497 PMCID: PMC11664773 DOI: 10.15420/usc.2020.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/10/2020] [Indexed: 11/04/2022] Open
Abstract
Recent scientific and therapeutic advances in proprotein convertase subtilisin kexin type 9 (PCSK9) inhibition have opened a chapter in the management of hypercholesterolemia, especially in patients who are inadequately controlled on or intolerant to statins. The two PCSK9 monoclonal antibodies, evolocumab and alirocumab, reduce LDL cholesterol by 60% and improve cardiovascular outcomes when taken in addition to statin therapy. More recently, inclisiran, a silencing RNA (siRNA) that inhibits translation of PCSK9 mRNA, demonstrated LDL cholesterol reduction by 45-50% with the advantage of dramatically reduced dose frequency. Other modes of PCSK9 inhibition include small molecule antagonists, vaccines, CRISPR gene editing, and antagonism at various steps of translation, and post-translational processing.
Collapse
Affiliation(s)
- Jiaqian Xu
- Center for the Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University Baptist Medical Center Winston Salem, NC
| | - Michael D Shapiro
- Center for the Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University Baptist Medical Center Winston Salem, NC
| |
Collapse
|
9
|
Sampietro T, Sbrana F, Bigazzi F, Ripoli A, Dal Pino B. Null receptor homozygous familial hypercholesterolaemia: Quoad valetudinem long life treatment. Eur J Prev Cardiol 2020; 27:2105-2108. [DOI: 10.1177/2047487319864191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Pokrovsky SN, Afanasieva OI, Ezhov MV. Therapeutic Apheresis for Management of Lp(a) Hyperlipoproteinemia. Curr Atheroscler Rep 2020; 22:68. [DOI: 10.1007/s11883-020-00886-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Greco MF, Sirtori CR, Corsini A, Ezhov M, Sampietro T, Ruscica M. Lipoprotein(a) Lowering-From Lipoprotein Apheresis to Antisense Oligonucleotide Approach. J Clin Med 2020; 9:jcm9072103. [PMID: 32635396 PMCID: PMC7408876 DOI: 10.3390/jcm9072103] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
It is well-known that elevated lipoprotein(a)—Lp(a)—levels are associated with a higher risk of cardiovascular (CV) mortality and all-cause mortality, although a standard pharmacotherapeutic approach is still undefined for patients with high CV risk dependent on hyperlipoproteinemia(a). Combined with high Lp(a) levels, familial hypercholesterolemia (FH) leads to a greater CVD risk. In suspected FH patients, the proportion of cases explained by a rise of Lp(a) levels ranges between 5% and 20%. In the absence of a specific pharmacological approach able to lower Lp(a) to the extent required to achieve CV benefits, the most effective strategy today is lipoprotein apheresis (LA). Although limited, a clear effect on Lp(a) is exerted by PCSK9 antagonists, with apparently different mechanisms when given with statins (raised catabolism) or as monotherapy (reduced production). In the era of RNA-based therapies, a new dawn is represented by the use of antisense oligonucleotides APO(a)Lrx, able to reduce Lp(a) from 35% to over 80%, with generally modest injection site reactions. The improved knowledge of Lp(a) atherogenicity and possible prevention will be of benefit for patients with residual CV risk remaining after the most effective available lipid-lowering agents.
Collapse
Affiliation(s)
- Maria Francesca Greco
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.F.G.); (A.C.)
| | - Cesare R. Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
| | - Alberto Corsini
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.F.G.); (A.C.)
- IRCCS Multimedica, 20099 Milan, Italy
| | - Marat Ezhov
- National Medical Research Center of Cardiology of the Ministry of Health, Moscow, Russia;
| | - Tiziana Sampietro
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, 56126 Pisa, Italy;
| | - Massimiliano Ruscica
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.F.G.); (A.C.)
- Correspondence: ; Tel.: +39-0250318220
| |
Collapse
|
12
|
Dal Pino B, Barison A, Sbrana F, Bigazzi F, Sampietro T. Recent TakoTsubo syndrome and lipoprotein apheresis: An alert for a safe procedure. Eur J Prev Cardiol 2020; 27:444-446. [DOI: 10.1177/2047487319835635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Beatrice Dal Pino
- Lipoapheresis Unit – Reference centre for diagnosis and treatment of inherited dyslipidaemias, Fondazione Toscana ‘Gabriele Monasterio’, Pisa, Italy
| | - Andrea Barison
- U.O. Cardiologia e Medicina Cardiovascolare, Fondazione Toscana ‘Gabriele Monasterio’, Pisa, Italy
| | - Francesco Sbrana
- Lipoapheresis Unit – Reference centre for diagnosis and treatment of inherited dyslipidaemias, Fondazione Toscana ‘Gabriele Monasterio’, Pisa, Italy
| | - Federico Bigazzi
- Lipoapheresis Unit – Reference centre for diagnosis and treatment of inherited dyslipidaemias, Fondazione Toscana ‘Gabriele Monasterio’, Pisa, Italy
| | - Tiziana Sampietro
- Lipoapheresis Unit – Reference centre for diagnosis and treatment of inherited dyslipidaemias, Fondazione Toscana ‘Gabriele Monasterio’, Pisa, Italy
| |
Collapse
|
13
|
Anker MS, von Haehling S, Papp Z, Anker SD. ESC Heart Failure receives its first impact factor. Eur J Heart Fail 2019; 21:1490-e8. [PMID: 31883221 DOI: 10.1002/ejhf.1665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Markus S Anker
- Division of Cardiology and Metabolism, Department of Cardiology, Charité and Berlin Institute of Health Center for Regenerative Therapies (BCRT) and DZHK (German Centre for Cardiovascular Research), partner site Berlin and Department of Cardiology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, Heart Center Göttingen, University of Göttingen Medical Center, George August University, Göttingen, Germany and German Center for Cardiovascular Medicine (DZHK), partner site Göttingen, Göttingen, Germany
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Stefan D Anker
- Division of Cardiology and Metabolism, Department of Cardiology, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany, DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
14
|
Piepoli MF. Editor’s Presentation. Eur J Prev Cardiol 2019; 26:899-901. [DOI: 10.1177/2047487319853064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Massimo F Piepoli
- Heart Failure Unit, G. da Saliceto Hospital, AUSL Piacenza, Italy
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Sant’Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
15
|
Ruscica M, Watts GF, Sirtori CR. PCSK9 monoclonal antibodies and lipoprotein apheresis for lowering lipoprotein(a): making choices in an era of RNA-based therapies. Eur J Prev Cardiol 2019; 26:998-1000. [DOI: 10.1177/2047487319833504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Bimolecular Sciences, Università degli Studi di Milano, Italy
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Australia
- Lipid Disorders Clinic, Royal Perth Hospital, Australia
- Familial Hypercholesterolaemia Australia Network, Australia
| | - Cesare R Sirtori
- Centro Dislipidemie, ASST Grande Ospedale Metropolitano Niguarda, Italy
| |
Collapse
|
16
|
Macchi C, Banach M, Corsini A, Sirtori CR, Ferri N, Ruscica M. Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels - experimental and clinical approaches with lipid-lowering agents. Eur J Prev Cardiol 2019; 26:930-949. [PMID: 30776916 DOI: 10.1177/2047487319831500] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulation of pro-protein convertase subtilisin/kexin type 9 (PCSK9) by drugs has led to the development of a still small number of agents with powerful activity on low-density lipoprotein cholesterol levels, associated with a significant reduction of cardiovascular events in patients in secondary prevention. The Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER) and Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab (ODYSSEY OUTCOMES) studies, with the two available PCSK9 antagonists, i.e. evolocumab and alirocumab, both reported a 15% reduction in major adverse cardiovascular events. Regulation of PCSK9 expression is dependent upon a number of factors, partly genetic and partly associated to a complex transcriptional system, mainly controlled by sterol regulatory element binding proteins. PCSK9 is further regulated by concomitant drug treatments, particularly by statins, enhancing PCSK9 secretion but decreasing its stimulatory phosphorylated form (S688). These complex transcriptional mechanisms lead to variable circulating levels making clinical measurements of plasma PCSK9 for cardiovascular risk assessment a debated matter. Determination of total PCSK9 levels may provide a diagnostic tool for explaining an apparent resistance to PCSK9 inhibitors, thus indicating the need for other approaches. Newer agents targeting PCSK9 are in clinical development with a major interest in those with a longer duration of action, e.g. RNA silencing, allowing optimal patient compliance. Interest has been expanded to areas not only limited to low-density lipoprotein cholesterol reduction but also investigating other non-lipid pathways raising cardiovascular risk, in particular inflammation associated to raised high-sensitivity C-reactive protein levels, not significantly affected by the present PCSK9 antagonists.
Collapse
Affiliation(s)
- C Macchi
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - M Banach
- 2 Department of Hypertension, Medical University of Lodz, Poland.,3 Polish Mother's Memorial Hospital Research Institute (PMMHRI), Poland.,4 Cardiovascular Research Centre, University of Zielona Gora, Poland
| | - A Corsini
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy.,5 Multimedica IRCCS, Italy
| | - C R Sirtori
- 6 Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Italy
| | - N Ferri
- 7 Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Italy
| | - M Ruscica
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| |
Collapse
|
17
|
Waldmann E, Parhofer KG. Apheresis for severe hypercholesterolaemia and elevated lipoprotein(a). Pathology 2019; 51:227-232. [DOI: 10.1016/j.pathol.2018.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
|
18
|
Sbrana F, Dal Pino B, Bigazzi F, Sampietro T. Effect of proprotein convertase subtilisin/kexin type 9 inhibitors on lipoprotein(a) still to be unravelled. Eur J Prev Cardiol 2019; 26:782. [DOI: 10.1177/2047487319825918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Veljić I, Polovina M, Milinković I, Seferović PM. Lipoprotein apheresis and proprotein convertase subtilisin/kexin type 9 inhibitors: Do we have a vanquishing new strategy? Eur J Prev Cardiol 2018; 26:739-742. [PMID: 30518242 DOI: 10.1177/2047487318817671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ivana Veljić
- 1 Department of Cardiology, Clinical Center of Serbia, Serbia
| | - Marija Polovina
- 1 Department of Cardiology, Clinical Center of Serbia, Serbia.,2 Faculty of Medicine, University of Belgrade, Serbia
| | - Ivan Milinković
- 1 Department of Cardiology, Clinical Center of Serbia, Serbia
| | | |
Collapse
|