1
|
Carulli E, McGarvey M, Chabok M, Panoulas V, Rosser G, Akhtar M, Smith R, Chandra N, Al-Hussaini A, Kabir T, Barker L, Bruno F, Konstantinou K, de Silva R, Hill J, Xu Y, Lane R, Bucciarelli-Ducci C, Luescher T, Dalby M. Transcoronary cooling and dilution for cardioprotection during revascularisation for ST-segment elevation myocardial infarction: Design and rationale of the STEMI-Cool study. Am Heart J 2025; 282:40-50. [PMID: 39742936 DOI: 10.1016/j.ahj.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND ST-segment elevation myocardial infarction (STEMI) is treated with immediate primary percutaneous coronary intervention (pPCI) to restore coronary blood flow in the acutely ischaemic territory, but is associated with reperfusion injury limiting the benefit of the therapy. No treatment has proven effective in reducing reperfusion injury. Transcoronary hypothermia has been tested in clinical studies and is well tolerated, but is generally established after crossing the occlusion with a guidewire therefore after initial reperfusion, which might have contributed to the neutral outcomes. Transcatheter strategies may also offer additional benefit through haemodilution and the resultant controlled reperfusion, but this has not been fully investigated for pPCI. DESIGN STEMI-Cool is a pragmatic, registry-based randomised clinical pilot trial to test the recruitment rate, feasibility, and safety of a simple transcoronary cooling and dilution protocol. Sixty STEMI patients undergoing pPCI will be randomised 1:1 to standard of care or continuous infusion of room temperature saline through the guiding catheter to achieve intracoronary temperature reductions of 6 to 8°C, commencing before crossing the coronary occlusion with a guidewire. Mechanistic outcome measures will include microvascular resistance, biomarkers of inflammation before infusion and at 24 hour, and magnetic resonance imaging of myocardial salvage and infarct size. CONCLUSIONS STEMI-Cool will investigate the recruitment rate, feasibility and safety of an innovative and simple cooling and diluting strategy for cardioprotection before and during reperfusion with pPCI, aiming to address limitations faced in other studies. Mechanistic outcome measures will allow insight into inflammatory, microvascular and structural changes induced by transcoronary cooling and dilution.
Collapse
Affiliation(s)
- Ermes Carulli
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; Doctoral school in Translational Medicine, University of Milan, Milan, Italy.
| | - Michael McGarvey
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; Department of Cardiovascular Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Mohssen Chabok
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Vasileios Panoulas
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Gareth Rosser
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Mohammed Akhtar
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Robert Smith
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Navin Chandra
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Abtehale Al-Hussaini
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Tito Kabir
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Laura Barker
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Francesco Bruno
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | | | - Ranil de Silva
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Jonathan Hill
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Rebecca Lane
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Chiara Bucciarelli-Ducci
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Thomas Luescher
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; Cardiovascular Academic Group, King's College London, London, UK
| | - Miles Dalby
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; Cardiovascular Academic Group, King's College London, London, UK
| |
Collapse
|
2
|
Zhang M, Duan X, Wang L, Wen J, Fang P. Deregulation of HSF1-mediated endoplasmic reticulum unfolded protein response promotes cisplatin resistance in lung cancer cells. FEBS J 2022; 290:2706-2720. [PMID: 36536996 DOI: 10.1111/febs.16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/03/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Mild hypothermia can induce apoptotic cell death in many cancer cells, but the underlying mechanisms remain unclear. In a genetic screen in Caenorhabditis elegans, we found that impaired endoplasmic reticulum unfolded protein response (UPRER ) increased animal survival after cold shock. Consistently, in normal human lung cells, decreasing culture temperature from 37 to 30 °C activated UPRER and promoted cell death. However, lung adenocarcinoma cells were impaired in UPRER induction and resistant to hypothermia-induced cell death. Mechanistically, hypothermic stress increased HSF1 levels, which in turn activated UPRER to promote apoptotic cell death. HSF1 expression was associated with UPRER genes in normal tissues, but such association was lost in many cancers, especially lung adenocarcinoma. Activating UPRER enhanced the cytotoxicity of chemotherapy drugs cisplatin preferentially in cancer cells. Consistently, cancer patients with higher UPRER expression had generally better prognosis. Together, our study on hypothermia has led to the discovery of HSF1-UPRER in the regulation of drug sensitivity in lung cancer cells, providing novel thoughts on developing new strategies against chemoresistance.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiaoyu Duan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Lu Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jing Wen
- Department of Pharmacy, The Third Hospital of Changsha, China
| | - Pingfei Fang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
3
|
Jung KT, Bapat A, Kim YK, Hucker WJ, Lee K. Therapeutic hypothermia for acute myocardial infarction: a narrative review of evidence from animal and clinical studies. Korean J Anesthesiol 2022; 75:216-230. [PMID: 35350095 PMCID: PMC9171548 DOI: 10.4097/kja.22156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial infarction (MI) is the leading cause of death from coronary heart disease and requires immediate reperfusion therapy with thrombolysis, primary percutaneous coronary intervention, or coronary artery bypass grafting. However, myocardial reperfusion therapy is often accompanied by cardiac ischemia/reperfusion (I/R) injury, which leads to myocardial injury with detrimental consequences. The causes of I/R injury are unclear, but are multifactorial, including free radicals, reactive oxygen species, calcium overload, mitochondria dysfunction, inflammation, and neutrophil-mediated vascular injury. Mild hypothermia has been introduced as one of the potential inhibitors of myocardial I/R injury. Although animal studies have demonstrated that mild hypothermia significantly reduces or delays I/R myocardium damage, human trials have not shown clinical benefits in acute MI (AMI). In addition, the practice of hypothermia treatment is increasing in various fields such as surgical anesthesia and intensive care units. Adequate sedation for anesthetic procedures and protection from body shivering has become essential during therapeutic hypothermia. Therefore, anesthesiologists should be aware of the effects of therapeutic hypothermia on the metabolism of anesthetic drugs. In this paper, we review the existing data on the use of therapeutic hypothermia for AMI in animal models and human clinical trials to better understand the discrepancy between perceived benefits in preclinical animal models and the absence thereof in clinical trials thus far.
Collapse
Affiliation(s)
- Ki Tae Jung
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology and Pain Medicine, College of Medicine and Medical School, Chosun University, Gwangju, Korea
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Young-Kug Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - William J. Hucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Kichang Lee
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Spankovich C, Walters BJ. Mild Therapeutic Hypothermia and Putative Mechanisms of Hair Cell Survival in the Cochlea. Antioxid Redox Signal 2021; 36:1203-1214. [PMID: 34619988 PMCID: PMC9221161 DOI: 10.1089/ars.2021.0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
Significance: Sensorineural hearing loss has significant implications for quality of life and risk for comorbidities such as cognitive decline. Noise and ototoxic drugs represent two common risk factors for acquired hearing loss that are potentially preventable. Recent Advances: Numerous otoprotection strategies have been postulated over the past four decades with primary targets of upstream redox pathways. More recently, the application of mild therapeutic hypothermia (TH) has shown promise for otoprotection for multiple forms of acquired hearing loss. Critical Issues: Systemic antioxidant therapy may have limited application for certain ototoxic drugs with a therapeutic effect on redox pathways and diminished efficacy of the primary drug's therapeutic function (e.g., cisplatin for tumors). Future Directions: Mild TH likely targets multiple mechanisms, contributing to otoprotection, including slowed metabolics, reduced oxidative stress, and involvement of cold shock proteins. Further work is needed to identify the mechanisms of mild TH at play for various forms of acquired hearing loss.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology-Head and Neck Surgery and University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Bradley J. Walters
- Department of Otolaryngology-Head and Neck Surgery and University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
5
|
Fischesser DM, Bo B, Benton RP, Su H, Jahanpanah N, Haworth KJ. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J Cardiovasc Pharmacol Ther 2021; 26:504-523. [PMID: 34534022 DOI: 10.1177/10742484211046674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac reperfusion injury is a well-established outcome following treatment of acute myocardial infarction and other types of ischemic heart conditions. Numerous cardioprotection protocols and therapies have been pursued with success in pre-clinical models. Unfortunately, there has been lack of successful large-scale clinical translation, perhaps in part due to the multiple pathways that reperfusion can contribute to cell death. The search continues for new cardioprotection protocols based on what has been learned from past results. One class of cardioprotection protocols that remain under active investigation is that of controlled reperfusion. This class consists of those approaches that modify, in a controlled manner, the content of the reperfusate or the mechanical properties of the reperfusate (e.g., pressure and flow). This review article first provides a basic overview of the primary pathways to cell death that have the potential to be addressed by various forms of controlled reperfusion, including no-reflow phenomenon, ion imbalances (particularly calcium overload), and oxidative stress. Descriptions of various controlled reperfusion approaches are described, along with summaries of both mechanistic and outcome-oriented studies at the pre-clinical and clinical phases. This review will constrain itself to approaches that modify endogenously-occurring blood components. These approaches include ischemic postconditioning, gentle reperfusion, controlled hypoxic reperfusion, controlled hyperoxic reperfusion, controlled acidotic reperfusion, and controlled ionic reperfusion. This review concludes with a discussion of the limitations of past approaches and how they point to potential directions of investigation for the future.
Collapse
Affiliation(s)
- Demetria M Fischesser
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Bin Bo
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Rachel P Benton
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Haili Su
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Newsha Jahanpanah
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
6
|
Park DH, Kim TW, Kim MS, Han W, Lee DE, Kim GS, Jeong CY. Cardiac arrest caused by accidental severe hypothermia and myocardial infarction during general anesthesia. J Int Med Res 2021; 49:300060520987945. [PMID: 33499678 PMCID: PMC7844464 DOI: 10.1177/0300060520987945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Therapeutic hypothermia is often used for traumatic brain injury because of its neuroprotective effect and decreased secondary brain injury. However, this procedure lacks clinical evidence supporting its efficacy, and adverse outcomes have been reported during general anesthesia. A 61-year-old man with a history of percutaneous coronary intervention (PCI) was admitted with traumatic brain injury. Immediately after admission, he underwent mild therapeutic hypothermia with a target temperature of 33.0°C for neuroprotection. During general anesthesia for emergency surgery because he developed a mass effect, hypothermic cardiac arrest occurred following an additional decrease in the core body temperature. Moreover, myocardial infarction caused by restenosis of the previous PCI lesion also contributed to the cardiac arrest. Although the patient recovered spontaneous circulation after an hour-long cardiopulmonary resuscitation with rewarming, he eventually died of subsequent repetitive cardiac arrests. When anesthetizing patients undergoing therapeutic hypothermia, caution is required to prevent adverse outcomes that can be caused by unintentional severe hypothermia and exacerbation of underlying heart disease.
Collapse
Affiliation(s)
- Dong Ho Park
- Department of Anesthesiology and Pain Medicine, Eulji University Medical Center, Daejeon, Korea
| | - Tae Woo Kim
- Department of Anesthesiology and Pain Medicine, Eulji University Medical Center, Daejeon, Korea
| | - Mo Se Kim
- Department of Anesthesiology and Pain Medicine, Eulji University Medical Center, Daejeon, Korea
| | - Woong Han
- Department of Anesthesiology and Pain Medicine, Eulji University Medical Center, Daejeon, Korea
| | - Da Eun Lee
- Department of Anesthesiology and Pain Medicine, Eulji University Medical Center, Daejeon, Korea
| | - Gyu Seong Kim
- Department of Anesthesiology and Pain Medicine, Eulji University Medical Center, Daejeon, Korea
| | - Chang Young Jeong
- Department of Anesthesiology and Pain Medicine, Eulji University Medical Center, Daejeon, Korea
| |
Collapse
|
7
|
Xu JH, Wang Z, Mou JJ, Wang CL, Huang WM, Xue HL, Wu M, Chen L, Xu LX. Up-Regulation of Glycogen Synthesis and Degradation Enzyme Level Maintained Myocardial Glycogen in Huddling Brandt's Voles Under Cool Environments. Front Physiol 2021; 12:593129. [PMID: 33841168 PMCID: PMC8033036 DOI: 10.3389/fphys.2021.593129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Small mammals exhibit limited glucose use and glycogen accumulation during hypothermia. Huddling is a highly evolved cooperative behavioral strategy in social mammals, allowing adaptation to environmental cooling. However, it is not clear whether this behavior affects the utilization of glycogen in cold environments. Here, we studied the effects of huddling on myocardial glycogen content in Brandt’s voles (Lasiopodomys brandtii) under a mild cold environment (15°C). Results showed that (1) Compared to the control (22°C) group (CON), the number of glycogenosomes more than tripled in the cool separated group (CS) in both males and females; whereas the number of glycogenosomes increased in females but was maintained in males in the cool huddling group (CH). (2) Glycogen synthase (GS) activity in the CS group remained unchanged, whereas glycogen phosphorylase (GYPL) activity decreased, which mediated the accumulation of glycogen content of the CS group. (3) Both GS and GYPL activity increased which may contribute to the stability of glycogen content in CH group. (4) The expression levels of glucose transporters GLUT1 and GLUT4 increased in the CS group, accompanied by an increase in glucose metabolism. These results indicate that the reduced glycogen degradation enzyme level and enhanced glucose transport may lead to an increase in myocardial glycogen content of the separated voles under cool environment; while the up-regulation of glycogen synthesis and degradation enzyme level maintained myocardial glycogen content in the huddling vole.
Collapse
Affiliation(s)
- Jin-Hui Xu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Zhe Wang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Jun-Jie Mou
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Chuan-Li Wang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Wei-Mei Huang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Hui-Liang Xue
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Ming Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Lei Chen
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Lai-Xiang Xu
- College of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
8
|
Wang Z, Xu JH, Mou JJ, Kong XT, Zou JW, Xue HL, Wu M, Xu LX. Novel ultrastructural findings on cardiac mitochondria of huddling Brandt's voles in mild cold environment. Comp Biochem Physiol A Mol Integr Physiol 2020; 249:110766. [DOI: 10.1016/j.cbpa.2020.110766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
|
9
|
Stokes SM, Bertin FR, Stefanovski D, Poulsen L, Belknap JK, Medina-Torres CE, Pollitt CC, van Eps AW. The effect of continuous digital hypothermia on lamellar energy metabolism and perfusion during laminitis development in two experimental models. Equine Vet J 2020; 52:585-592. [PMID: 31793047 DOI: 10.1111/evj.13215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/22/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Continuous digital hypothermia (CDH) prevents lamellar failure in the euglycaemic hyperinsulinaemic clamp (EHC) and oligofructose (OF) laminitis models, but the mechanisms remain unclear. OBJECTIVES To evaluate the effects of CDH on lamellar energy metabolism and perfusion in healthy horses and during EHC and OF laminitis models. STUDY DESIGN In vivo experiment. METHODS Archived samples were used from Standardbred geldings that received no treatment (CON) (n = 8) or underwent EHC (n = 8) or OF (n = 6) laminitis models. Both forelimbs were instrumented with a lamellar microdialysis system, and one forelimb was cooled (CDH) with the other maintained at ambient temperature (AMB). Microdialysate was collected every 6 hours and analysed for glucose, lactate and pyruvate concentrations and lactate to pyruvate ratio (L:P). Microdialysis urea clearance was used to estimate lamellar tissue perfusion. Data were analysed using a mixed-effects linear regression model. RESULTS Glucose did not change in CDH limbs relative to AMB in CON (P = .3), EHC (P = .3) or OF (P = .6) groups. There was a decrease in lactate (P < .001) and pyruvate (P < .01) in CDH limbs relative to AMB in all groups. L:P decreased in CON CDH relative to CON AMB (P < .001) but was not different in EHC (P = .6) and OF (P = .07) groups. Urea clearance decreased in CDH limbs relative to AMB in CON (P = .002) and EHC (P < .001), but not in OF (P = .4). MAIN LIMITATIONS The EHC model may not mimic natural endocrinopathic laminitis. CONCLUSIONS CDH caused a marked decrease in lamellar glucose metabolism (CON, EHC and OF) and perfusion (CON and EHC) without affecting lamellar glucose concentration. Although cellular energy failure is not a primary pathophysiological event in EHC and OF laminitis models, CDH may act by limiting energy supply to pathologic cellular processes whilst preserving those critical to lamellar homoeostasis.
Collapse
Affiliation(s)
- Simon M Stokes
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Francois-Rene Bertin
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Darko Stefanovski
- New Bolton Center, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Lea Poulsen
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | - James K Belknap
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Carlos E Medina-Torres
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Christopher C Pollitt
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Andrew W van Eps
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia.,New Bolton Center, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| |
Collapse
|
10
|
Ndongson-Dongmo B, Lang GP, Mece O, Hechaichi N, Lajqi T, Hoyer D, Brodhun M, Heller R, Wetzker R, Franz M, Levy FO, Bauer R. Reduced ambient temperature exacerbates SIRS-induced cardiac autonomic dysregulation and myocardial dysfunction in mice. Basic Res Cardiol 2019; 114:26. [DOI: 10.1007/s00395-019-0734-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
|
11
|
Impact of Donor Core Body Temperature on Graft Survival After Heart Transplantation. Transplantation 2019; 102:1891-1900. [PMID: 29994980 DOI: 10.1097/tp.0000000000002337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND A previous donor intervention trial found that induction of mild therapeutic hypothermia in the brain-dead donor reduced the dialysis requirement after kidney transplantation. Consequences on the performance of cardiac allografts after transplantation were not explored to date. METHODS Cohort study investigating 3-year heart allograft survival according to spontaneous core body temperature (CBT) assessed on the day of organ procurement. The study is nested in the database of the randomized trial of donor pretreatment with low-dose dopamine (ClinicalTrials.gov identifier: NCT000115115). RESULTS Ninety-nine heart transplant recipients who had received a cardiac allograft from a multiorgan donor enrolled in the dopamine trial were grouped by tertiles of the donor's CBT assessed by a mere temperature reading 4 to 20 hours before procurement (lowest, 32.0-36.2°C; middle, 36.3-36.8°C; highest, 36.9-38.8°C). Baseline characteristics considering demographics of donors and recipients, concomitant donor treatments, donor hemodynamic, and respiratory parameters as well as underlying cardiac diseases in recipients, pretransplant hemodynamic assessments, including pretransplant inotropic/mechanical support, urgency, and waiting time were similar. A lower CBT was associated with inferior heart allograft survival (hazard ratio, 0.53; 95% confidence interval, 0.31-0.93, per tertile; P = 0.02, and hazard ratio, 0.68; 95% confidence interval, 0.50-0.93°C; P = 0.02) when CBT was included as continuous explanatory variable in the Cox regression analysis. CONCLUSIONS A lower CBT in the brain-dead donor before procurement may associate with an unfavorable clinical course after heart transplantation. More research is required, before therapeutic hypothermia can routinely be used in multiorgan donors when a cardiac transplantation is intended.
Collapse
|
12
|
Wang YS, Zhang J, Li YF, Chen BR, Khurwolah MR, Tian YF, Shi HJ, Yang ZJ, Wang LS. A pilot clinical study of adjunctive therapy with selective intracoronary hypothermia in patients with ST-segment elevation myocardial infarction. Catheter Cardiovasc Interv 2018; 92:E433-E440. [PMID: 30265431 DOI: 10.1002/ccd.27864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/31/2018] [Accepted: 08/12/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES We aimed to assess the effect of selective intracoronary hypothermia on outcomes in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). BACKGROUND Intracoronary hypothermia, the feasibility and safety of which has been validated in humans, induced by selective trans-coronary infusion of saline at different temperatures can reduce infarct size (IS) prior to reperfusion in animal models of STEMI. METHODS Sixty STEMI patients presenting with thrombolysis in myocardial infarction (TIMI) flow grade 0/1 were randomized after coronary artery angiography. Intracoronary hypothermia was induced by selective trans-coronary infusion of saline at 4°C to the endangered myocardium in the 30 patients. The primary endpoint, absolute IS expressed as IS/myocardium at risk (MaR), was assessed by cardiac magnetic resonance imaging at day 7 post-PPCI in 50 patients. Clinical follow-up was undertaken at day 30 after procedure. RESULTS Intracoronary hypothermia was successfully performed in hypothermia group, without increase in arrhythmia or hemodynamic instability. The mean temperature reduction of 5.8 ± 1.1°C in distal coronary artery was achieved before reperfusion. Mean IS/MaR was predominantly reduced in the hypothermia group (44.85 ± 5.89% vs. 50.69 ± 10.75%, P = 0.022), especially in the anterior STEMI subgroup (46.12 ± 7.54% vs. 55.27 ± 11.175%, P = 0.023). The clinical events appeared no statistical difference between the two groups at the 30-day follow-up. CONCLUSION The statistical difference in IS/MaR by intracoronary hypothermia as adjunctive therapy to PPCI is an important observation and warrants a larger pivotal trial fully powered for efficacy.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Fei Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bing-Rui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mohammad Reeaze Khurwolah
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun-Fan Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao-Jie Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Jian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Eskla KL, Porosk R, Reimets R, Visnapuu T, Vasar E, Hundahl CA, Luuk H. Hypothermia augments stress response in mammalian cells. Free Radic Biol Med 2018; 121:157-168. [PMID: 29704622 DOI: 10.1016/j.freeradbiomed.2018.04.571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 12/22/2022]
Abstract
Mild hypothermia (32 °C) is routinely used in medical practice to alleviate hypoxic ischemic damage, however, the mechanisms that underlie its protective effects remain uncertain. Using a systems approach based on genome-wide expression screens, reporter assays and biochemical studies, we find that cellular hypothermia response is associated with the augmentation of major stress-inducible transcription factors Nrf2 and HIF1Α affecting the antioxidant system and hypoxia response pathways, respectively. At the same time, NF-κB, a transcription factor involved in the control of immune and inflammatory responses, was not induced by hypothermia. Furthermore, mild hypothermia did not trigger unfolded protein response. Lower temperatures (27 °C and 22 °C) did not activate Nrf2 and HIF1A pathways as efficiently as mild hypothermia. Current findings are discussed in the context of the thermodynamic hypothesis of therapeutic hypothermia. We argue that the therapeutic effects are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component). We argue that systems coping with cellular stressors are plausible targets of therapeutic hypothermia and deserve more attention in clinical hypothermia research.
Collapse
Affiliation(s)
- Kattri-Liis Eskla
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia.
| | - Rando Porosk
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, Tartu, Estonia
| | - Riin Reimets
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia
| | - Tanel Visnapuu
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Christian Ansgar Hundahl
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia
| | - Hendrik Luuk
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
Otterspoor LC, van Nunen LX, van ‘t Veer M, Johnson NP, Pijls NH. Intracoronary Hypothermia Before Reperfusion to Reduce Reperfusion Injury in Acute Myocardial Infarction: A Novel Hypothesis and Technique. Ther Hypothermia Temp Manag 2017; 7:199-205. [DOI: 10.1089/ther.2017.0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Luuk C. Otterspoor
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | | | - Marcel van ‘t Veer
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Nils P. Johnson
- Division of Cardiology, Weatherhead PET Center, McGovern Medical School, UTHealth and Memorial Hermann Hospital, Houston, Texas
| | - Nico H.J. Pijls
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
15
|
Hassager C, Kjaergaard J. Therapeutic hypothermia in cardiology - a growing field? EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2017; 6:142-143. [PMID: 27060131 DOI: 10.1177/2048872616644173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Christian Hassager
- Department of Cardiology, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|