1
|
Al-Shammri S, Chattopadhyay A, Mustafa AS. Potential pathogenic and protective genotypes and phenotypes of vitamin D binding protein in multiple sclerosis. Front Neurol 2025; 16:1455779. [PMID: 39990260 PMCID: PMC11842254 DOI: 10.3389/fneur.2025.1455779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Background The main carrier protein of vitamin D and its metabolites in plasma is vitamin D binding protein (VDBP) or group-specific component (Gc). Two single nucleotide polymorphisms, rs7041, and rs4588 in the GC gene result in three major VDBP/Gc genotypes, GC1F (c.1296T, c.1307C), GC1S (c.1296G, c.1307C), GC2 (c.1296T, c.1307A), and phenotypes, Gc1F (p.432Asp, p.436Thr), Gc1S (p.432Glu, p.436Thr), and Gc2 (p.432Asp, p.436Lys). This study investigated frequencies of GC genotypes and phenotypes in Kuwaiti multiple sclerosis (MS) patients and healthy controls, and their associations with serum levels of 25 hydroxyvitamin D [25(OH)vitamin D] and VDBP. Methods The genomic DNA was isolated from blood samples of drug-naïve MS patients (N = 151) and controls (N = 127). DNA regions covering the targeted mutations were amplified by PCR, sequenced by the Sanger method, and analyzed to determine GC genotypes and phenotypes. Serum 25(OH)vitamin D and VDBP levels were measured by enzyme immunoassay. SPSS used for statistical analyses. Differences between independent and related groups tested by Mann-Whitney U and Wilcoxon signed-rank tests respectively, Genotype and phenotype frequencies were calculated; p < 0.05 considered significant. Results The study detected four Gc genotypes/phenotypes, namely GC1F/Gc1F (c.1296T, c.1307C/p.432Asp, p.436Thr), GC1S/Gc1S (c.1296G, c.1307C/p.432Glu, p.436Thr), GC2/Gc2 (c.1296T, c.1307A/p.432Asp, p.436Lys), and GC3/Gc3 (c.1296G; c.1307A/p.432Glu, p.436Lys) in both subjects. The frequencies of GC3 genotype (control: 5.51%; patient: 28.48%) and Gc3-containing phenotypic groups (Gc1S/Gc3 + Gc2/Gc3 + Gc3/Gc3) were significantly higher in patients. Moreover, frequencies of GC1F genotype (control: 27.17%; patients: 5.30%) and Gc1F-containing phenotypic groups (Gc1F/Gc1F + Gc1S/Gc1F + Gc2/Gc1F) were higher in controls. Vitamin D levels were deficient in both groups. However, VDBP concentrations were significantly low in MS patients only. Conclusion The VDBP/GC genotypes and phenotypes are associated with MS. Common genotype GC1F might be protective, and GC3, the novel variant found in MS patients appeared to be pathogenetic. Hypovitaminosis-D is prevalent in MS patients and controls.
Collapse
Affiliation(s)
- Suhail Al-Shammri
- Department of Medicine, College of Medicine, Kuwait University, Jabriya, Kuwait
- Department of Medicine, Mubarak Al Kabeer Hospital, Ministry of Health, Jabriya, Kuwait
| | | | - Abu Salim Mustafa
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
2
|
Ingvarsson J, Grut V, Biström M, Berg LP, Stridh P, Huang J, Hillert J, Alfredsson L, Kockum I, Olsson T, Waterboer T, Nilsson S, Sundström P. Rubella virus seropositivity after infection or vaccination as a risk factor for multiple sclerosis. Eur J Neurol 2024; 31:e16387. [PMID: 39023088 DOI: 10.1111/ene.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a demyelinating disease affecting millions of people worldwide. Hereditary susceptibility and environmental factors contribute to disease risk. Infection with Epstein-Barr virus (EBV) and human herpesvirus 6A (HHV-6A) have previously been associated with MS risk. Other neurotropic viruses, such as rubella virus (RV), are possible candidates in MS aetiopathogenesis, but previous results are limited and conflicting. METHODS In this nested case-control study of biobank samples in a Swedish cohort, we analysed the serological response towards RV before the clinical onset of MS with a bead-based multiplex assay in subjects vaccinated and unvaccinated towards RV. The association between RV seropositivity and MS risk was analysed with conditional logistic regression. RESULTS Seropositivity towards RV was associated with an increased risk of MS for unvaccinated subjects, even when adjusting for plausible confounders including EBV, HHV-6A, cytomegalovirus and vitamin D (adjusted odds ratio [AOR] = 4.0, 95% confidence interval [CI] 1.8-8.8). Cases also had stronger antibody reactivity towards rubella than controls, which was not seen for other neurotropic viruses such as herpes simplex or varicella zoster. Furthermore, we observed an association between RV seropositivity and MS in vaccinated subjects. However, this association was not significant when adjusting for the aforementioned confounders (AOR = 1.7, 95% CI 1.0-2.9). CONCLUSIONS To our knowledge, these are the first reported associations between early RV seropositivity and later MS development. This suggests a broadening of the virus hypothesis in MS aetiology, where molecular mimicry between rubella epitopes and human central nervous system molecules could be an attractive possible mechanism.
Collapse
Affiliation(s)
- Jens Ingvarsson
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Viktor Grut
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Martin Biström
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Linn Persson Berg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jesse Huang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Sundström
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Jons D, Grut V, Bergström T, Zetterberg H, Biström M, Gunnarsson M, Vrethem M, Brenner N, Butt J, Blennow K, Nilsson S, Kockum I, Olsson T, Waterboer T, Sundström P, Andersen O. Seroreactivity against lytic, latent and possible cross-reactive EBV antigens appears on average 10 years before MS induced preclinical neuroaxonal damage. J Neurol Neurosurg Psychiatry 2024; 95:325-332. [PMID: 37802637 PMCID: PMC10958269 DOI: 10.1136/jnnp-2023-331868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) and presymptomatic axonal injury appear to develop only after an Epstein-Barr virus (EBV) infection. This association remains to be confirmed across a broad preclinical time range, for lytic and latent EBV seroreactivity, and for potential cross-reacting antigens. METHODS We performed a case-control study with 669 individual serum samples obtained before clinical MS onset, identified through cross-linkage with the Swedish MS register. We assayed antibodies against EBV nuclear antigen 1 (EBNA1), viral capsid antigen p18, glycoprotein 350 (gp350), the potential cross-reacting protein anoctamin 2 (ANO2) and the level of sNfL, a marker of axonal injury. RESULTS EBNA1 (latency) seroreactivity increased in the pre-MS group, at 15-20 years before clinical MS onset, followed by gp350 (lytic) seroreactivity (p=0.001-0.009), ANO2 seropositivity appeared shortly after EBNA1-seropositivity in 16.7% of pre-MS cases and 10.0% of controls (p=0.001).With an average lag of almost a decade after EBV, sNfL gradually increased, mainly in the increasing subgroup of seropositive pre-MS cases (p=8.10-5 compared with non-MS controls). Seropositive pre-MS cases reached higher sNfL levels than seronegative pre-MS (p=0.038). In the EBNA1-seropositive pre-MS group, ANO2 seropositive cases had 26% higher sNfL level (p=0.0026). CONCLUSIONS Seroreactivity against latent and lytic EBV antigens, and in a subset ANO2, was detectable on average a decade before the appearance of a gradually increasing axonal injury occurring in the last decade before the onset of clinical MS. These findings strengthen the hypothesis of latent EBV involvement in the pathogenesis of MS.
Collapse
Affiliation(s)
- Daniel Jons
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Viktor Grut
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Martin Biström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Martin Gunnarsson
- Department of Neurology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Vrethem
- Department of Neurology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Nicole Brenner
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center, Heidelberg, Germany
| | - Julia Butt
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center, Heidelberg, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Staffan Nilsson
- Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Center, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Center, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tim Waterboer
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center, Heidelberg, Germany
| | - Peter Sundström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
4
|
Grut V, Biström M, Salzer J, Stridh P, Lindam A, Alonso-Magdalena L, Andersen O, Jons D, Gunnarsson M, Vrethem M, Hultdin J, Sundström P. Systemic inflammation and risk of multiple sclerosis – A presymptomatic case-control study. Mult Scler J Exp Transl Clin 2022; 8:20552173221139768. [DOI: 10.1177/20552173221139768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background C-reactive protein (CRP) is a marker of systemic inflammation. Increased levels of CRP in young persons have been suggested to decrease the risk of multiple sclerosis (MS). Objectives To assess CRP as a risk factor for MS. Methods Levels of CRP were measured with a high-sensitive immunoassay in biobank samples from 837 individuals who later developed MS and 984 matched controls. The risk of developing MS was analysed by conditional logistic regression on z-scored CRP values. Results Levels of CRP were not associated with MS risk. Conclusions We found no association between CRP levels and risk of MS development.
Collapse
Affiliation(s)
- Viktor Grut
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Martin Biström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Jonatan Salzer
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindam
- Department of Public Health and Clinical Medicine, Unit of Research, Education and Development Östersund Hospital, Umeå University, Umeå, Sweden
| | - Lucia Alonso-Magdalena
- Department of Neurology, Skåne University Hospital and Department of Clinical Sciences, Neurology, Lund University, Lund, Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Jons
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Gunnarsson
- Department of Neurology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Vrethem
- Department of Neurology and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Johan Hultdin
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Peter Sundström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Tremlett H, Munger KL, Makhani N. The Multiple Sclerosis Prodrome: Evidence to Action. Front Neurol 2022; 12:761408. [PMID: 35173664 PMCID: PMC8841819 DOI: 10.3389/fneur.2021.761408] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 01/10/2023] Open
Abstract
A growing body of work points toward the existence of a clinically symptomatic prodromal phase in multiple sclerosis (MS) that might span 5–10 years or more. A prodrome is an early set of signs or symptoms predating the onset of classical disease, which in turn predates a definitive diagnosis. Evidence for a prodromal phase in MS could have major implications for prevention, earlier recognition and treatment, as well as an improved disease course or prognosis. This Perspective provides a succinct overview of the recent advances in our understanding of the MS prodrome and current key challenges. Many of the MS prodromal features characterized thus far are non-specific and are common in the general population; no single feature alone is sufficient to identify an individual with prodromal MS. Biomarkers may increase specificity and accuracy for detecting individuals in the MS prodromal phase, but are yet to be discovered or formally validated. Progress made in the elucidation of prodromal phases in other neurological and immune-mediated diseases suggests that these barriers can be overcome. Therefore, while knowledge of a prodromal phase in MS remains nascent, how best to move from the rapidly growing evidence to research-related action is critical. Immediate implications include refining the concept of the MS continuum to include a prodromal phase. This will help inform the true “at risk” period when considering exposures that might cause MS. Major long-term implications include the earlier recognition of MS, improved prognosis, through earlier disease management, and the future possibility of MS disease prevention.
Collapse
Affiliation(s)
- Helen Tremlett
- Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Helen Tremlett
| | | | - Naila Makhani
- Departments of Pediatrics and Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Uptake of Vitamins D 2, D 3, D 4, D 5, D 6, and D 7 Solubilized in Mixed Micelles by Human Intestinal Cells, Caco-2, an Enhancing Effect of Lysophosphatidylcholine on the Cellular Uptake, and Estimation of Vitamins D' Biological Activities. Nutrients 2021; 13:nu13041126. [PMID: 33805560 PMCID: PMC8067314 DOI: 10.3390/nu13041126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Vitamins D have various biological activities, as well as intestinal calcium absorption. There has been recent concern about insufficient vitamin D intake. In addition to vitamins D2 and D3, there are lesser-known vitamins D4–D7. We synthesized vitamins D5–D7, which are not commercially available, and then evaluated and compared the mixed micelles-solubilized vitamins D uptake by Caco-2 cells. Except for vitamin D5, the uptake amounts of vitamins D4–D7 by differentiated Caco-2 cells were similar to those of vitamins D2 and D3. The facilitative diffusion rate in the ezetimibe inhibited pathway was approximately 20% for each vitamin D type, suggesting that they would pass through the pathway at a similar rate. Lysophosphatidylcholine enhanced each vitamin D uptake by approximately 2.5-fold. Lysophosphatidylcholine showed an enhancing effect on vitamin D uptake by reducing the intercellular barrier formation of Caco-2 cells by reducing cellular cholesterol, suggesting that increasing the uptakes of vitamins D and/or co-ingesting them with lysophosphatidylcholine, would improve vitamin D insufficiency. The various biological activities in the activated form of vitamins D4–D7 were estimated by Prediction of Activity Spectra for Substances (PASS) online simulation. These may have some biological activities, supporting the potential as nutritional components.
Collapse
|
7
|
Ames BN, Grant WB, Willett WC. Does the High Prevalence of Vitamin D Deficiency in African Americans Contribute to Health Disparities? Nutrients 2021; 13:499. [PMID: 33546262 PMCID: PMC7913332 DOI: 10.3390/nu13020499] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
African Americans have higher incidence of, and mortality from, many health-related problems than European Americans. They also have a 15 to 20-fold higher prevalence of severe vitamin D deficiency. Here we summarize evidence that: (i) this health disparity is partly due to insufficient vitamin D production, caused by melanin in the skin blocking the UVB solar radiation necessary for its synthesis; (ii) the vitamin D insufficiency is exacerbated at high latitudes because of the combination of dark skin color with lower UVB radiation levels; and (iii) the health of individuals with dark skin can be markedly improved by correcting deficiency and achieving an optimal vitamin D status, as could be obtained by supplementation and/or fortification. Moderate-to-strong evidence exists that high 25-hydroxyvitamin D levels and/or vitamin D supplementation reduces risk for many adverse health outcomes including all-cause mortality rate, adverse pregnancy and birth outcomes, cancer, diabetes mellitus, Alzheimer's disease and dementia, multiple sclerosis, acute respiratory tract infections, COVID-19, asthma exacerbations, rickets, and osteomalacia. We suggest that people with low vitamin D status, which would include most people with dark skin living at high latitudes, along with their health care provider, consider taking vitamin D3 supplements to raise serum 25-hydroxyvitamin D levels to 30 ng/mL (75 nmol/L) or possibly higher.
Collapse
Affiliation(s)
- Bruce N. Ames
- Molecular and Cell Biology, Emeritus, University of California, Berkeley, CA 94720, USA;
| | - William B. Grant
- Sunlight, Nutrition and Health Research Center, San Francisco, CA 94164-1603, USA
| | - Walter C. Willett
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|