1
|
Worobey LA, Bernstein J, Ott J, Berner T, Black J, Cabarle M, Roesler T, Scarborough S, Betz K. RESNA position on the application of ultralight manual wheelchairs. Assist Technol 2025; 37:69-86. [PMID: 37530806 DOI: 10.1080/10400435.2023.2221148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
The purpose of this RESNA Position Paper is to provide evidence from the literature and share typical clinical applications supporting the application of ultralight manual wheelchairs (ULWCs) to assist practitioners in decision-making and justification of wheelchair recommendations.
Collapse
Affiliation(s)
- Lynn A Worobey
- Departments of Physical Medicine & Rehabilitation, Bioengineering and Physical Therapy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Theresa Berner
- The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | - Mary Cabarle
- Kessler Institute for Rehabilitation, West Orange, New Jersey, USA
| | | | | | - Kendra Betz
- Veterans Health Administration, Ann Arbor, Michigan, USA
- Department of Rehabilitation Science & Technology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Pomarat Z, Marsan T, Faupin A, Landon Y, Watier B. Wheelchair caster power losses due to rolling resistance on sports surfaces. Disabil Rehabil Assist Technol 2024:1-7. [PMID: 39331701 DOI: 10.1080/17483107.2024.2406450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
The gross mechanical efficiency of the manual wheelchair propulsion movement is particularly low compared to other movements. The energy losses in the manual wheelchair propulsion movement are partly due to energy losses associated with the wheelchair, and especially to the rolling resistance of the wheels. The distribution of mass between the front rear wheels and the caster wheels has a significant impact on the rolling resistance. The study of the caster wheels cannot therefore be neglected due to their involvement in rolling resistance. Thus, this study aimed to evaluate the power dissipated due to rolling resistance by different caster wheels, at different speeds and under different loadings on various terrains. Four caster wheels of different shapes, diameters, and materials were tested on two surfaces representative of indoor sports surfaces at four different speeds and under four loadings. The results showed a minimal dissipated power of 0.4 ± 0.2 W for the skate caster, on the parquet, at 0.5 m/s and under a loading of 50 N. The maximal mean power dissipated was 43.3 ± 27.6 W still for the skate caster, but on the Taraflex, at 1.5 m/s and under loading of 200 N. The power dissipated on the parquet was lower than the one on the Taraflex. The Spherical and Omniwheel caster wheels dissipated less power than the two other casters. This study showed that caster wheels cannot be neglected in the assessment of gross mechanical efficiency, particularly in light of the power dissipated by athletes during propulsion.
Collapse
Affiliation(s)
- Z Pomarat
- Laboratoire JAP2S, Université de Toulon, Toulon, France
| | - T Marsan
- LAAS-CNRS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - A Faupin
- Laboratoire JAP2S, Université de Toulon, Toulon, France
| | - Y Landon
- Institut Clément Ader, UMR CNRS 5312, Université de Toulouse, Toulouse, France
| | - B Watier
- LAAS-CNRS, CNRS, UPS, Université de Toulouse, Toulouse, France
- CNRS-AIST, JRL IRL, Tsukuba, Japan
| |
Collapse
|
3
|
Soleymani H, Cowan R. Relationship between rolling resistance, preferred speed, and manual wheelchair propulsion mechanics in non-disabled adults. Disabil Rehabil Assist Technol 2024; 19:1980-1991. [PMID: 37493253 DOI: 10.1080/17483107.2023.2239297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE To characterize the relationship among rolling resistance (RR), preferred speed, and propulsion mechanics. METHODS N = 11 non-disabled individuals (mean (SD)); Age 24 years (2), BMI 23.8 kg/m2 (4.3) completed a submaximal graded wheelchair exercise test (GXTsubmax, fixed speed, terminated at Rating of Perceived Effort (RPE)=8 (0-10 scale)) and a single-blind, within-subject repeated measures wheelchair propulsion experiment (RME). RR at RPE = 10 (estimated maximum workload, Maxestimated) was estimated from the GXTsubmax RPE-RR relationship. RME consisted of N = 19 1-minute trials (self-selected speed) each followed by 2-minutes rest. The trials included N = 16 unique RR between 25-100% of Maxestimated. Averages of all pushes in N = 16 unique 1-minute trials were computed for average RR (N), speed (m/s), peak force (Fpeak (N)), force rate of rise (Fror (N/s)), push frequency (PF (pushes/min)), and push length (PL (deg)). RESULTS Repeated measures correlation assessed relationships among outcome variables (α = 0.05). RR was associated with decreased speed (r=-0.81, p < 0.001), increased Fpeak (r = 0.92), Fror (r = 0.26), and PL (r = 0.32) (all p > 0.001), and unrelated to PF (r = 0.02, p = 0.848). Increased speed was associated with increased Fror (r = 0.23, p = 0.003) and PF (r = 0.27, p < 0.001) and decreased Fpeak (r=-0.66, p < 0.001) and PL (r=-0.25, p < 0.001). CONCLUSION Increasing RR increases Fpeak despite reducing self-selected speed. RR and speed were strongly and moderately related to Fpeak, respectively, but weakly related to other propulsion mechanics. These results suggest that reducing user-system RR may confer dual benefits of improved mobility and decreased upper extremity loading. Further testing among wheelchair users is required. Clinical trial registration number: NCT04987177.
Collapse
Affiliation(s)
- Hunter Soleymani
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rachel Cowan
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
4
|
van Dijk MP, Heringa LI, Berger MA, Hoozemans MJ, Veeger DHJ. Towards an accurate rolling resistance: Estimating intra-cycle load distribution between front and rear wheels during wheelchair propulsion from inertial sensors. J Sports Sci 2024; 42:611-620. [PMID: 38752925 PMCID: PMC11166049 DOI: 10.1080/02640414.2024.2353405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
Accurate assessment of rolling resistance is important for wheelchair propulsion analyses. However, the commonly used drag and deceleration tests are reported to underestimate rolling resistance up to 6% due to the (neglected) influence of trunk motion. The first aim of this study was to investigate the accuracy of using trunk and wheelchair kinematics to predict the intra-cyclical load distribution, more particularly front wheel loading, during hand-rim wheelchair propulsion. Secondly, the study compared the accuracy of rolling resistance determined from the predicted load distribution with the accuracy of drag test-based rolling resistance. Twenty-five able-bodied participants performed hand-rim wheelchair propulsion on a large motor-driven treadmill. During the treadmill sessions, front wheel load was assessed with load pins to determine the load distribution between the front and rear wheels. Accordingly, a machine learning model was trained to predict front wheel load from kinematic data. Based on two inertial sensors (attached to the trunk and wheelchair) and the machine learning model, front wheel load was predicted with a mean absolute error (MAE) of 3.8% (or 1.8 kg). Rolling resistance determined from the predicted load distribution (MAE: 0.9%, mean error (ME): 0.1%) was more accurate than drag test-based rolling resistance (MAE: 2.5%, ME: -1.3%).
Collapse
Affiliation(s)
- Marit P. van Dijk
- Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Louise I. Heringa
- Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Monique A.M. Berger
- Assistive Technology for Mobility & Sports, The Hague University of Applied Sciences, The Hague, The Netherlands
| | - Marco J.M. Hoozemans
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - DirkJan H.E. J. Veeger
- Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
5
|
van Dijk MP, Hoozemans MJM, Berger MAM, Veeger HEJ. From theory to practice: Monitoring mechanical power output during wheelchair field and court sports using inertial measurement units. J Biomech 2024; 166:112052. [PMID: 38560959 DOI: 10.1016/j.jbiomech.2024.112052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
An important performance determinant in wheelchair sports is the power exchanged between the athlete-wheelchair combination and the environment, in short, mechanical power. Inertial measurement units (IMUs) might be used to estimate the exchanged mechanical power during wheelchair sports practice. However, to validly apply IMUs for mechanical power assessment in wheelchair sports, a well-founded and unambiguous theoretical framework is required that follows the dynamics of manual wheelchair propulsion. Therefore, this research has two goals. First, to present a theoretical framework that supports the use of IMUs to estimate power output via power balance equations. Second, to demonstrate the use of the IMU-based power estimates during wheelchair propulsion based on experimental data. Mechanical power during straight-line wheelchair propulsion on a treadmill was estimated using a wheel mounted IMU and was subsequently compared to optical motion capture data serving as a reference. IMU-based power was calculated from rolling resistance (estimated from drag tests) and change in kinetic energy (estimated using wheelchair velocity and wheelchair acceleration). The results reveal no significant difference between reference power values and the proposed IMU-based power (1.8% mean difference, N.S.). As the estimated rolling resistance shows a 0.9-1.7% underestimation, over time, IMU-based power will be slightly underestimated as well. To conclude, the theoretical framework and the resulting IMU model seems to provide acceptable estimates of mechanical power during straight-line wheelchair propulsion in wheelchair (sports) practice, and it is an important first step towards feasible power estimations in all wheelchair sports situations.
Collapse
Affiliation(s)
- Marit P van Dijk
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands.
| | - Marco J M Hoozemans
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Monique A M Berger
- Centre of Expertise Health Innovation, The Hague University of Applied Sciences, The Hague, the Netherlands
| | - H E J Veeger
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
6
|
van Dijk MP, Hoozemans MJM, Berger MAM, Veeger DHEJ. Trunk motion influences mechanical power estimates during wheelchair propulsion. J Biomech 2024; 163:111927. [PMID: 38211392 DOI: 10.1016/j.jbiomech.2024.111927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
In wheelchair sports, there is an increasing need to monitor mechanical power in the field. When rolling resistance is known, inertial measurement units (IMUs) can be used to determine mechanical power. However, upper body (i.e., trunk) motion affects the mass distribution between the small front and large rear wheels, thus affecting rolling resistance. Therefore, drag tests - which are commonly used to estimate rolling resistance - may not be valid. The aim of this study was to investigate the influence of trunk motion on mechanical power estimates in hand-rim wheelchair propulsion by comparing instantaneous resistance-based power loss with drag test-based power loss. Experiments were performed with no, moderate and full trunk motion during wheelchair propulsion. During these experiments, power loss was determined based on 1) the instantaneous rolling resistance and 2) based on the rolling resistance determined from drag tests (thus neglecting the effects of trunk motion). Results showed that power loss values of the two methods were similar when no trunk motion was present (mean difference [MD] of 0.6 ± 1.6 %). However, drag test-based power loss was underestimated up to -3.3 ± 2.3 % MD when the extent of trunk motion increased (r = 0.85). To conclude, during wheelchair propulsion with active trunk motion, neglecting the effects of trunk motion leads to an underestimated mechanical power of 1 to 6 % when it is estimated with drag test values. Depending on the required accuracy and the amount of trunk motion in the target group, the influence of trunk motion on power estimates should be corrected for.
Collapse
Affiliation(s)
- Marit P van Dijk
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Marco J M Hoozemans
- Department of Human Movement Sciences, Faculty of Behavioural and Movement, Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Monique A M Berger
- Centre of Expertise Health Innovation, The Hague University of Applied Sciences, The Hague, The Netherlands
| | - DirkJan H E J Veeger
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
7
|
Arnet U, Ammann F, Perret C. Comparing rolling resistance of two treadmills and its influence on exercise testing in wheelchair athletics. Front Psychol 2023; 13:1085553. [PMID: 36687865 PMCID: PMC9858561 DOI: 10.3389/fpsyg.2022.1085553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Standardized laboratory exercise testing is common in sport settings and rehabilitation. The advantages of laboratory-based compared to field testing include the use of calibrated equipment and the possibility of keeping environmental conditions within narrow limits, making test results highly comparable and reproducible. However, when using different equipment (e.g., treadmills), the results might deviate and impair comparability. The aim of this study was to compare the biomechanical properties (rolling resistance, speed, inclination) of two treadmills regularly used for exercise testing in elite wheelchair athletes. During the experiment, speed and inclination of two treadmills (same model and producer, different manufacturing year and belt material) were verified. Standardized drag tests were performed to assess rolling resistance. Power output conducted by the athlete during later exercise tests was calculated based on the results. Speed and inclination deviated only slightly from the values indicated by the producer. Rolling resistance caused by different belt material was mainly accountable for the differences in power output between the treadmills. In general, athletes had to deliver 10% more power output on one of the treadmills compared to the other. Concluding from these results: if different treadmills are used for testing, a proper validation is recommended to avoid misleading interpretations of test results.
Collapse
Affiliation(s)
- Ursina Arnet
- Swiss Paraplegic Research, Nottwil, Switzerland,*Correspondence: Ursina Arnet, ✉
| | - Fabian Ammann
- Institute of Sports Medicine, Swiss Paraplegic Center, Nottwil, Switzerland
| | - Claudio Perret
- Swiss Paraplegic Research, Nottwil, Switzerland,Institute of Sports Medicine, Swiss Paraplegic Center, Nottwil, Switzerland
| |
Collapse
|
8
|
Wilson-Jene H, Cowan RE, Pearlman J. A novel approach to directly measuring wheel and caster rolling resistance accurately predicts user-wheelchair system-level rolling resistance. J Rehabil Assist Technol Eng 2023; 10:20556683231180877. [PMID: 37305549 PMCID: PMC10251480 DOI: 10.1177/20556683231180877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Clinical practice guidelines for preservation of upper extremity recommend minimizing wheelchair propulsion forces. Our ability to make quantitative recommendations about the effects of wheelchair configuration changes is limited by system-level tests to measure rolling resistance (RR). We developed a method that directly measures caster and propulsion wheel RR at a component-level. The study purpose is to assess accuracy and consistency of component-level estimates of system-level RR. Methods The RR of N = 144 simulated unique wheelchair-user systems were estimated using our novel component-level method and compared to system-level RR measured by treadmill drag tests, representing combinations of caster types/diameters, rear wheel types/diameters, loads, and front-rear load distributions. Accuracy was assessed by Bland-Altman limits of agreement (LOA) and consistency by intraclass correlation (ICC). Results Overall ICC was 0.94, 95% CI [0.91-0.95]. Component-level estimates were systematically lower than system-level (-1.1 N), with LOA +/-1.3 N. RR force differences between methods were constant over the range of test conditions. Conclusion Component-level estimates of wheelchair-user system RR are accurate and consistent when compared to a system-level test method, evidenced by small absolute LOA and high ICC. Combined with a prior study on precision, this study helps to establish validity for this RR test method.
Collapse
Affiliation(s)
- Holly Wilson-Jene
- Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA, USA
- International Society of Wheelchair Professionals, Pittsburgh, PA, USA
| | - Rachel E Cowan
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan Pearlman
- Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA, USA
- International Society of Wheelchair Professionals, Pittsburgh, PA, USA
| |
Collapse
|