1
|
Li Q, Gao L. TRIM7 knockdown protects against LPS-induced autophagy, ferroptosis, and inflammatory responses in human bronchial epithelial cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4265-4277. [PMID: 39446150 DOI: 10.1007/s00210-024-03546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Asthma is one of the most common respiratory diseases in pediatric department. Several asthma-associated events including inflammatory responses, autophagy, and ferroptosis have been identified as typical pathological processes. TRIM7 is a member of TRIM proteins family associated with several types of diseases. Nevertheless, its role in asthma is still elusive. The current research showed that TRIM7 was involved in the pathogenesis of asthma mainly by regulating the Akt signaling pathway. In detail, we found that TRIM7 was highly expressed in patients with asthma and in an in vitro model of asthma. The following analysis indicated that TRIM7 knockdown attenuated the expression and secretion of inflammatory cytokines including TNF-α, IL-1β and IL-6 in lipopolysaccharide (LPS)-exposed human bronchial epithelial cells (HBECs). Meanwhile, knockdown of TRIM7 exerted inhibitory effects on LPS-induced autophagy and ferroptosis. Further mechanistic studies showed that TRIM7 knockdown inhibited LPS-induced activation of Akt pathway, while overexpression of Akt attenuated the inhibitory effects of TRIM7 knockdown on LPS-exposed HBECs. Collectively, we reported here that TRIM7 knockdown inhibited LPS-induced autophagy, ferroptosis, and inflammatory cytokine secretion in HBECs via regulating the Akt pathway, providing a new insight into the strategies for improving asthma treatments.
Collapse
Affiliation(s)
- Qian Li
- Department of Pediatrics, Nanyang First People's Hospital, Nanyang, China
| | - Ling Gao
- Department of Pediatrics, Nanyang First People's Hospital, Nanyang, China.
| |
Collapse
|
2
|
Domingo C, Busse WW, Hanania NA, Ertugrul M, Millette LA, Maio‐Twofoot T, Jaumont X, Palomares O. The Direct and Indirect Role of IgE on Airway Epithelium in Asthma. Allergy 2025; 80:919-931. [PMID: 39963805 PMCID: PMC11969325 DOI: 10.1111/all.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 04/05/2025]
Abstract
Asthma is a chronic airway inflammatory disorder, affecting over 350 million people worldwide, with allergic asthma being the most common form of the disease. Allergic asthma is characterized by a type 2 (T2) inflammatory response triggered by numerous allergens beginning in the airway epithelium, which acts as a physical barrier to allergens as well as other external irritants including infectious agents, and atmospheric pollutants. T2 inflammation is propagated by several key cell types including T helper 2 (Th2) cells, eosinophils, mast cells, and B cells. Immunoglobulin E (IgE), produced by B cells, is a key molecule in allergic airway disease and plays an important role in T2 inflammation, as well as being central to remodeling processes within the airway epithelium. Blocking IgE with omalizumab has been shown to be efficacious in treating allergic asthma however, the role of IgE on airway epithelial cells is less communicated. Developing a deeper explanation of the complex network of interactions between IgE and the airway epithelium will facilitate an improved understanding of asthma pathophysiology. This review discusses the indirect and direct roles of IgE on airway epithelial cells, with a focus on allergic asthma disease.
Collapse
Affiliation(s)
- Christian Domingo
- Department of Pulmonary Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT‐CERCA)Universitat Autònoma de BarcelonaSabadellSpain
| | - William W. Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Nicola A. Hanania
- Section of Pulmonary, Critical Care and Sleep MedicineBaylor College of MedicineHoustonTexasUSA
| | | | | | | | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| |
Collapse
|
3
|
Fang L, Shen Y, Huang T, Wu M, Duan X. Diagnostic value of IgE, fractional of exhaled nitric oxide, and peripheral blood eosinophils in adult bronchial asthma and their relationship with disease severity. Am J Transl Res 2024; 16:7521-7529. [PMID: 39822497 PMCID: PMC11733331 DOI: 10.62347/isdg3545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE To investigate the diagnostic value of immunoglobulin E (IgE), fractional of exhaled nitric oxide (FeNO), and peripheral blood eosinophils (EOS) in adult bronchial asthma and to analyze their relationship with asthma severity. METHODS A retrospective analysis was conducted on 336 patients diagnosed with bronchial asthma and admitted to Xi'an Fourth Hospital from January 2022 to January 2024, forming the asthma group. Additionally, another 127 healthy subjects were selected as the non-asthmatic control group. The patients in the asthma group were categorized into a mild asthma group (n=138), a moderate asthma group (n=115), and a severe asthma group (n=83) according to the severity of the disease. Clinical data, lung function indices, and IgE, FeNO, and EOS levels were compared across groups. ROC curves were used to assess the diagnostic value of IgE, FeNO, and EOS levels for bronchial asthma. Spearman's rank correlation analysis was used to analyze the correlation between IgE, FeNO, EOS and other indicators and asthma severity. RESULTS The levels of IgE, FeNO, and EOS were significantly higher in the asthma group than those in the non-asthma group, while lung function indices, peak expiratory flow rate (PEF) and forced expiratory volume in 1 s (FEV1), were significantly lower (all P < 0.05). The areas under curve (AUCs) of IgE, FeNO, and EOS for the diagnosis of asthma were 0.79, 0.93, and 0.88, respectively. Significant differences were observed in smoking history, family history of asthma, co-existing allergic rhinitis, and combined atopic eczema across different severity groups (all P < 0.05). Spearman's rank correlation analysis showed that IgE, FeNO, and EOS were positively correlated with asthma severity (all P < 0.05), with r s values of 0.718, 0.679, and 0.540, respectively. CONCLUSION IgE, FeNO, and EOS are valuable in diagnosing bronchial asthma in adults. Higher levels of IgE, FeNO, and EOS correspond to increased asthma severity, making these biomarkers useful for assessing asthma severity.
Collapse
Affiliation(s)
- Liping Fang
- Department of Respiratory and Critical Care Medicine, Xi’an People’s Hospital (Xi’an Fourth Hospital)Xi’an 710100, Shaanxi, China
| | - Yan Shen
- Department of Respiratory Medicine, Hanzhong People’s HospitalHanzhong 723000, Shaanxi, China
| | - Tao Huang
- Department of Orthopedics, The First Affiliated Hospital of Xi’an Medical UniversityXi’an 710005, Shaanxi, China
| | - Meiman Wu
- Department of Respiratory and Critical Care Medicine, Xi’an People’s Hospital (Xi’an Fourth Hospital)Xi’an 710100, Shaanxi, China
| | - Xinglong Duan
- Department of Respiratory Medicine, Hanzhong People’s HospitalHanzhong 723000, Shaanxi, China
| |
Collapse
|
4
|
Geng L, Xiao R, Chang K. Changes and correlation of serum levels of interleukins 33, 15, 4, and interferon γ in children with bronchial asthma at different periods. Postepy Dermatol Alergol 2024; 41:473-478. [PMID: 39606605 PMCID: PMC11589639 DOI: 10.5114/ada.2024.143542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/15/2024] [Indexed: 11/29/2024] Open
Abstract
Aim This work investigated the difference of serum cytokine levels in children with bronchial asthma (BA) in acute attack and clinical remission and the relationship between them. Material and methods A hundred children with BA were included and enrolled into an acute attack group (AA group) and a clinical remission group (CR group) according to their medical history and clinical characteristics, with 50 children in each group. Then, another 50 healthy children in the same hospital for physical examination were randomly selected as controls. Results Interleukin (IL) 4 (IL-4) and interferon-γ (IFN-γ) levels in the AA group were significantly higher than those in controls (p < 0.05), but the IL-4 and IFN-γ levels in the clinical remission phase group were not remarkably different from those in controls (p > 0.05). The IL-15 level in the AA group was much higher than that in children with BA in the clinical remission stage and controls, and the IL-15 level in the CR control was higher than that in controls (p < 0.05). IL-4 level was positively linked with INF-γ level (r = 15.621, p = 0.002) and IL-15 level (r = 9.581, p = 0.008). IL-15, IL-4, and IFN-γ were related to the incidence of BA of children and played a role in the exacerbation of respiratory inflammation during acute attacks. IL-4 was associated with IL-15 and INF-γ, and there was a synergistic relationship in promoting inflammation of BA.
Collapse
Affiliation(s)
- Liangliang Geng
- Department of Paediatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ruixue Xiao
- Department of Paediatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ke Chang
- Department of Paediatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Agarwal S, Doan S, Srinivasan B, Iyer G, Leonardi A. Unraveling the complexity - Insights and interventions of refractory vernal keratoconjunctivitis. Ocul Surf 2024; 34:173-182. [PMID: 39103015 DOI: 10.1016/j.jtos.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Vernal keratoconjunctivitis (VKC) is a chronic severe ocular allergic inflammation mostly observed in children and young adults. The ocular manifestations are the expression of multifactorial immune mechanisms that generally have a good prognosis, however long-term inflammation may remarkably reduce the visual function due to complications and poor therapeutic responses. Lack of responsiveness to a drug or treatment is relatively common in VKC and it is not only due to corneal involvement, which is considered the main sign of severity. The concept of refractory may be relative to multiple factors including the clinical condition, systemic co-morbidities, previous or concomitant drugs or regiments, compliance, patient's psychological condition or expectations, type of exposome and environmental conditions, doctor's experience and expectations, or timing of clinical evaluation. In this narrative review, the authors propose a definition of refractory VKC based on revised literature and clinical experience and consider potential new treatments for refractory patients and surgical management in case of complications.
Collapse
Affiliation(s)
- Shweta Agarwal
- CJ Shah Cornea Services, Medical Research Foundation, Sankara Nethralaya, 18, College Road, Chennai, 600006, Tamil Nadu, India.
| | - Serge Doan
- Bichat Hospital and Foundation A. de Rothschild, Paris, France
| | - Bhaskar Srinivasan
- CJ Shah Cornea Services, Medical Research Foundation, Sankara Nethralaya, 18, College Road, Chennai, 600006, Tamil Nadu, India
| | - Geetha Iyer
- CJ Shah Cornea Services, Medical Research Foundation, Sankara Nethralaya, 18, College Road, Chennai, 600006, Tamil Nadu, India
| | - Andrea Leonardi
- Department of Neuroscience, Ophthalmology Unit, University of Padova, Padova, Italy.
| |
Collapse
|
6
|
Pelaia C, Melhorn J, Hinks TS, Couillard S, Vatrella A, Pelaia G, Pavord ID. Type 2 severe asthma: pathophysiology and treatment with biologics. Expert Rev Respir Med 2024; 18:485-498. [PMID: 38994712 DOI: 10.1080/17476348.2024.2380072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION The hallmark of most patients with severe asthma is type 2 inflammation, driven by innate and adaptive immune responses leading to either allergic or non-allergic eosinophilic infiltration of airways. The cellular and molecular pathways underlying severe type 2 asthma can be successfully targeted by specific monoclonal antibodies. AREAS COVERED This review article provides a concise overview of the pathophysiology of type 2 asthma, followed by an updated appraisal of the mechanisms of action and therapeutic efficacy of currently available biologic treatments used for management of severe type 2 asthma. Therefore, all reported information arises from a wide literature search performed on PubMed. EXPERT OPINION The main result of the recent advances in the field of anti-asthma biologic therapies is the implementation of a personalized medicine approach, aimed to achieve clinical remission of severe asthma. Today this accomplishment is made possible by the right choice of the most beneficial biologic drug for the pathologic traits characterizing each patient, including type 2 severe asthma and its comorbidities.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Calabria, Italy
| | - James Melhorn
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| | - Timothy Sc Hinks
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| | - Simon Couillard
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Ian D Pavord
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Doan S, Papadopoulos NG, Lee JK, Leonardi S, Manti S, Lau S, Rondon C, Sharma V, Pleyer U, Jaumont X, Lazarewicz SB. Vernal keratoconjunctivitis: Current immunological and clinical evidence and the potential role of omalizumab. World Allergy Organ J 2023; 16:100788. [PMID: 37389200 PMCID: PMC10300397 DOI: 10.1016/j.waojou.2023.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 07/01/2023] Open
Abstract
Vernal keratoconjunctivitis (VKC) is a severe ocular allergic disease characterized by chronic inflammation of the cornea and conjunctiva that may lead to loss of visual acuity and blindness. The disease occurs primarily in children and is more common in geographical regions characterized by warm temperatures and high humidity. The clinical manifestations of VKC, when inadequately treated, may lead to severe complications and corneal damage. The prevalence of allergen sensitization, specific serum immunoglobulin E (IgE), and specific tear IgE was reported in approximately 55%-60% of patients with VKC, confirming the involvement of IgE-mediated and non-IgE-mediated mechanisms in the pathophysiology of the condition. This article explores current knowledge on the immunological pathways of VKC and the role of the monoclonal anti-IgE antibody, omalizumab, in its management. The review evaluated the effects of omalizumab beyond the direct IgE-mediated reactions and discusses its potential as a therapeutic target for VKC. Multiple retrospective analyses, case series, and case reports have reported the effectiveness of omalizumab in the management of VKC. A summary of the clinical data from these studies revealed that in children with VKC omalizumab treatment was well tolerated with improvement or resolution of ocular symptoms, reduction in steroid use, and enhancement of quality of life. Omalizumab may serve as a promising treatment option for VKC due to its ability to target both IgE-mediated and non-IgE-mediated pathophysiological pathways. Larger, controlled clinical trials are needed to support these findings.
Collapse
Affiliation(s)
- Serge Doan
- Ophthalmology Department of Fondation A de Rothschild and Hôpital Bichat, 25-29 Rue Manin, 75019, Paris, France
| | - Nikolaos G. Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Jason K. Lee
- Evidence Based Medical Educator Inc., Toronto Allergy and Asthma Clinic, Toronto, Ontario, Canada
| | - Salvatore Leonardi
- Pediatric Respiratory Unit, AOUP “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| | - Sara Manti
- Pediatric Respiratory Unit, AOUP “G. Rodolico-San Marco”, University of Catania, Catania, Italy
- Pediatric Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Susanne Lau
- Department of Pediatrics, Division of Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Rondon
- Allergy Research Group, Instituto de Investigación Biomedica de Malaga (IBIMA)-Plataforma BIONAND.RICORS “Inflammatory Diseases”, ARADyAL, Malaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
| | - Vibha Sharma
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Uwe Pleyer
- Department of Ophthalmology, CVK, Charité Universitätsmedizin, Berlin, Germany
| | | | | |
Collapse
|
8
|
Peng J, Wang M, Wu Y, Shen Y, Chen L. Clinical Indicators for Asthma-COPD Overlap: A Systematic Review and Meta-Analysis. Int J Chron Obstruct Pulmon Dis 2022; 17:2567-2575. [PMID: 36259043 PMCID: PMC9572492 DOI: 10.2147/copd.s374079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022] Open
Abstract
Background Some clinical indicators have been reported to be useful in differentiating asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) from pure asthma/COPD, but the results were inconsistent. This study aims to evaluate the diagnostic value of these indicators for ACO. Methods Databases of PubMed, EMBASE, Ovid and Web of Science were retrieved. Pooled standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated in random-effects models. Results 48 eligible studies were included. The pooled results indicated, compared with pure asthma, ACO patients had lower levels of forced expiratory volume in the first second (FEV1)% predicted (pred) (SMD=−1.09, 95% CI −1.3 to −0.87), diffusion lung capacity for carbon monoxide (DLCO)% pred (SMD=−0.83, 95% CI −1.24 to −0.42), fractional exhaled nitric oxide (FeNO) (SMD=−0.23, 95% CI −0.36 to −0.11), and higher levels of induced sputum neutrophil (SMD = 0.51, 95% CI 0.21 to 0.81), circulating YKL-40 (SMD = 0.96, 95% CI 0.27 to 1.64). However, relative to COPD alone, ACO patients had higher levels of FEV1% pred (SMD = 0.15, 95% CI 0.05 to 0.26), DLCO% pred (SMD = 0.38, 95% CI 0.16 to 0.6), FeNO (SMD = 0.59, 95% CI 0.40 to 0.78), serum total immunoglobulin (Ig)E (SMD = 0.42, 95% CI 0.1 to 0.75), blood eosinophil (SMD = 0.44, 95% CI 0.29 to 0.59), induced sputum eosinophil (SMD = 0.62, 95% CI 0.42 to 0.83), and lower levels of induced sputum neutrophil (SMD=−0.48, 95% CI −0.7 to −0.27), circulating YKL-40 (SMD=−1.09, 95% CI −1.92 to −0.26). Conclusion Compared with pure asthma/COPD, ACO patients have different levels of FEV1% pred, DLCO% pred, FeNO, serum total IgE, blood eosinophil, induced sputum eosinophil/neutrophil, and circulating YKL-40, which could be helpful to establish a clinical diagnosis of ACO.
Collapse
Affiliation(s)
- Junjie Peng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China,Correspondence: Lei Chen; Yongchun Shen, Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China, Email ;
| |
Collapse
|
9
|
Pelaia C, Pelaia G, Crimi C, Maglio A, Armentaro G, Calabrese C, Sciacqua A, Gallelli L, Vatrella A. Biological Therapy of Severe Asthma with Dupilumab, a Dual Receptor Antagonist of Interleukins 4 and 13. Vaccines (Basel) 2022; 10:vaccines10060974. [PMID: 35746582 PMCID: PMC9229960 DOI: 10.3390/vaccines10060974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Interleukin-4 (IL-4) and interleukin-13 (IL-13) are key cytokines involved in the pathophysiology of both immune-inflammatory and structural changes underlying type 2 asthma. IL-4 plays a pivotal role in Th2 cell polarization, immunoglobulin E (IgE) synthesis and eosinophil recruitment into the airways. IL-13 synergizes with IL-4 in inducing IgE production and also promotes nitric oxide (NO) synthesis, eosinophil chemotaxis, bronchial hyperresponsiveness and mucus secretion, as well as the proliferation of airway resident cells such as fibroblasts and smooth muscle cells. The biological effects of IL-4 and IL-13 are mediated by complex signaling mechanisms activated by receptor dimerization triggered by cytokine binding to the α-subunit of the IL-4 receptor (IL-4Rα). The fully human IgG4 monoclonal antibody dupilumab binds to IL-4Rα, thereby preventing its interactions with both IL-4 and IL-13. This mechanism of action makes it possible for dupilumab to effectively inhibit type 2 inflammation, thus significantly reducing the exacerbation of severe asthma, the consumption of oral corticosteroids (OCS) and the levels of fractional exhaled NO (FeNO). Dupilumab has been approved not only for the add-on therapy of severe asthma, but also for the biological treatment of atopic dermatitis and nasal polyposis.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (G.P.); (L.G.)
- Correspondence: ; Tel.: +39-0961-3647007; Fax: +39-0961-3647193
| | - Giulia Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (G.P.); (L.G.)
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Angelantonio Maglio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy; (A.M.); (A.V.)
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (G.A.); (A.S.)
| | - Cecilia Calabrese
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (G.A.); (A.S.)
| | - Luca Gallelli
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (G.P.); (L.G.)
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy; (A.M.); (A.V.)
| |
Collapse
|
10
|
Okwuofu EO, Hui AYC, Woei JLC, Stanslas J. Molecular and Immunomodulatory Actions of New Antiasthmatic Agents: Exploring the Diversity of Biologics in Th2 Endotype Asthma. Pharmacol Res 2022; 181:106280. [PMID: 35661709 DOI: 10.1016/j.phrs.2022.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Asthma is a major respiratory disorder characterised by chronic inflammation and airway remodelling. It affects about 1-8% of the global population and is responsible for over 461,000 deaths annually. Until recently, the pharmacotherapy of severe asthma involved high doses of inhaled corticosteroids in combination with β-agonist for prolonged action, including theophylline, leukotriene antagonist or anticholinergic yielding limited benefit. Although the use of newer agents to target Th2 asthma endotypes has improved therapeutic outcomes in severe asthmatic conditions, there seems to be a paucity of understanding the diverse mechanisms through which these classes of drugs act. This article delineates the molecular and immunomodulatory mechanisms of action of new antiasthmatic agents currently being trialled in preclinical and clinical studies to remit asthmatic conditions. The ultimate goal in developing antiasthmatic agents is based on two types of approaches: either anti-inflammatory or bronchodilators. Biologic and most small molecules have been shown to modulate specific asthma endotypes, targeting thymic stromal lymphopoietin, tryptase, spleen tyrosine kinase (Syk), Janus kinase, PD-L1/PD-L2, GATA-3, and CD38 for the treatment and management of Th2 endotype asthma.
Collapse
Affiliation(s)
- Emmanuel Oshiogwe Okwuofu
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Jonathan Lim Chee Woei
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
Calabrese C, Seccia V, Pelaia C, Spinelli F, Morini P, Rizzi A, Detoraki A. S. aureus and IgE-mediated diseases: pilot or copilot? A narrative review. Expert Rev Clin Immunol 2022; 18:639-647. [PMID: 35507006 DOI: 10.1080/1744666x.2022.2074402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION S. aureus is a major opportunistic pathogen that has been implicated in the pathogenesis of several chronic inflammatory diseases including bronchial asthma, chronic rhinosinusitis with nasal polyps (CRSwNP), chronic spontaneous urticaria (CSU), and atopic dermatitis. S. aureus can induce the production of both polyclonal and specific IgE that can elicit an inflammatory cascade. AREAS COVERED The link between the sensitization to S. aureus enterotoxins and the severity of several chronic inflammatory diseases is reviewed in detail, as well as its therapeutic implications. EXPERT OPINION An anti-IgE strategy to inhibit S. aureus enterotoxins would be a valid approach to treat several endotypes of severe asthma, CRSwNP and CSU in which IgE against S. aureus enterotoxins should represent, not only a marker of severity of the diseases but also a target of a treatment.
Collapse
Affiliation(s)
- Cecilia Calabrese
- Department of Translational Medical Sciences, Institute of Respiratory Diseases, University of Campania "L. Vanvitelli", Naples, Italy
| | - Veronica Seccia
- Otolaryngology Audiology, and Phoniatric Operative Unit, Department of Surgical, Medical, Molecular Pathology, and Critical Care Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | | | | | | | - Aikaterini Detoraki
- Division of Internal Medicine and Clinical Immunology, Department of Internal Medicine, Clinical Immunology, Clinical Pathology and Infectious Diseases, Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| |
Collapse
|
12
|
Pelaia C, Heffler E, Crimi C, Maglio A, Vatrella A, Pelaia G, Canonica GW. Interleukins 4 and 13 in Asthma: Key Pathophysiologic Cytokines and Druggable Molecular Targets. Front Pharmacol 2022; 13:851940. [PMID: 35350765 PMCID: PMC8957960 DOI: 10.3389/fphar.2022.851940] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Interleukins (IL)-4 and -13 play a pivotal role in the pathobiology of type-2 asthma. Indeed, IL-4 is crucially involved in Th2 cell differentiation, immunoglobulin (Ig) class switching and eosinophil trafficking. IL-13 cooperates with IL-4 in promoting IgE synthesis, and also induces nitric oxide (NO) production, goblet cell metaplasia and fibroblast proliferation, as well as elicits contractile responses and hyperplasia of airway smooth muscle cells. IL-4 and IL-13 share common signaling pathways, activated by the binding of both cytokines to receptor complexes including the α-subunit of the IL-4 receptor (IL-4Rα). Therefore, the subsequent receptor dimerization is responsible for the pathophysiologic effects of IL-4 and IL-13. By selectively blocking IL-4Rα, the fully human IgG4 monoclonal antibody dupilumab behaves as a dual receptor antagonist of both IL-4 and IL-13. Through this mechanism of action, dupilumab exerts effective therapeutic actions in type-2 inflammation, thus decreasing asthma exacerbations, FeNO (fractional exhaled NO) levels, and the intake of oral corticosteroids (OCS). In addition to being approved for the add-on biological therapy of severe asthma, dupilumab has also been licensed for the treatment of nasal polyposis and atopic dermatitis.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Angelantonio Maglio
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
13
|
Fan L, Xu J, Lv T, Lu M. Asthma attacks: Patients who survived paraquat poisoning. J Toxicol Sci 2022; 47:147-149. [PMID: 35370242 DOI: 10.2131/jts.47.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Lu Fan
- Department of Emergency, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, China
| | - Jiyang Xu
- Department of Emergency, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, China
| | - Tianyi Lv
- Department of Emergency, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, China
| | - Mingfeng Lu
- Department of Emergency, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, China
| |
Collapse
|
14
|
Lyly A, Laulajainen-Hongisto A, Gevaert P, Kauppi P, Toppila-Salmi S. Monoclonal Antibodies and Airway Diseases. Int J Mol Sci 2020; 21:E9477. [PMID: 33322143 PMCID: PMC7763928 DOI: 10.3390/ijms21249477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies, biologics, are a relatively new treatment option for severe chronic airway diseases, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS). In this review, we focus on the physiological and pathomechanisms of monoclonal antibodies, and we present recent study results regarding their use as a therapeutic option against severe airway diseases. Airway mucosa acts as a relative barrier, modulating antigenic stimulation and responding to environmental pathogen exposure with a specific, self-limited response. In severe asthma and/or CRS, genome-environmental interactions lead to dysbiosis, aggravated inflammation, and disease. In healthy conditions, single or combined type 1, 2, and 3 immunological response pathways are invoked, generating cytokine, chemokine, innate cellular and T helper (Th) responses to eliminate viruses, helminths, and extracellular bacteria/fungi, correspondingly. Although the pathomechanisms are not fully known, the majority of severe airway diseases are related to type 2 high inflammation. Type 2 cytokines interleukins (IL) 4, 5, and 13, are orchestrated by innate lymphoid cell (ILC) and Th subsets leading to eosinophilia, immunoglobulin E (IgE) responses, and permanently impaired airway damage. Monoclonal antibodies can bind or block key parts of these inflammatory pathways, resulting in less inflammation and improved disease control.
Collapse
Affiliation(s)
- Annina Lyly
- Inflammation Centre, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, P.O. Box 160, 00029 HUS Helsinki, Finland;
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, 00029 HUS Helsinki, Finland;
| | - Anu Laulajainen-Hongisto
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, 00029 HUS Helsinki, Finland;
| | - Philippe Gevaert
- Department of Otorhinolaryngology, Upper Airway Research Laboratory, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Paula Kauppi
- Heart and Lung Center, Pulmonary Department, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland;
| | - Sanna Toppila-Salmi
- Inflammation Centre, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, P.O. Box 160, 00029 HUS Helsinki, Finland;
- Medicum, Haartman Institute, University of Helsinki, 00029 HUS Helsinki, Finland
| |
Collapse
|