1
|
Valenta Šobot A, Drakulić D, Todorović A, Janić M, Božović A, Todorović L, Filipović Tričković J. Gentiopicroside and swertiamarin induce non-selective oxidative stress-mediated cytotoxic effects in human peripheral blood mononuclear cells. Chem Biol Interact 2024; 398:111103. [PMID: 38852899 DOI: 10.1016/j.cbi.2024.111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Gentiopicroside (Gp) and swertiamarin (Sm), secoiridoid glycosides commonly found in plants of the Gentianaceae family, differ in one functional group. They exhibit promising cytotoxic effects in cancer cell lines and overall protective outcomes, marking them as promising molecules for developing novel pharmaceuticals. To investigate potential variations in cellular sensitivity to compounds of similar molecular structures, we analyzed the mode of Gp and Sm induced cell death in human peripheral blood mononuclear cells (PBMCs) after 48 h of treatment. The lowest tested concentration that significantly reduces cell viability, 50 μM, was applied. Oxidative stress parameters were estimated by measuring the levels of prooxidative/antioxidative balance, lipid peroxidation products, and 8-oxo-7,8-dihydro-2-deoxyguanosine, while gene expression of DNA repair enzymes was evaluated by employing quantitative real-time PCR. Cellular morphology was analyzed by fluorescent microscopy, and immunoblot analysis of apoptosis and necroptosis-related proteins was used to assess the type of cell death induced by the treatments. The discriminatory impact of Gp/Sm treatments on apoptosis and necroptosis-induced cell death was evaluated by monitoring the cell survival in co-treatment with specific cell death inhibitors. Obtained results show greater cytotoxicity of Gp than Sm suggesting that variations in the molecular structures of the tested compounds can substantially affect their biological effects. Gp/Sm co-treatment with apoptosis and necroptosis inhibitors revealed a distinct, albeit non-specific mechanism of PBMCs cell death. Although the therapeutic may not directly cause a specific type of cell death, its extent can be pivotal in assessing the safety of therapeutic application and developing phytopharmaceuticals with improved features. Since phytopharmaceuticals affect all exposed cells, identification of cytotoxic mechanisms on PBMCs after Gp and Sm treatment is important for addressing the formulation and dosage of potential phytopharmaceuticals.
Collapse
Affiliation(s)
- Ana Valenta Šobot
- "VINČA" Institute of Nuclear Sciences, National Institute of Thе Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Dunja Drakulić
- "VINČA" Institute of Nuclear Sciences, National Institute of Thе Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Ana Todorović
- "VINČA" Institute of Nuclear Sciences, National Institute of Thе Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Marijana Janić
- "VINČA" Institute of Nuclear Sciences, National Institute of Thе Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Ana Božović
- "VINČA" Institute of Nuclear Sciences, National Institute of Thе Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Lidija Todorović
- "VINČA" Institute of Nuclear Sciences, National Institute of Thе Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Jelena Filipović Tričković
- "VINČA" Institute of Nuclear Sciences, National Institute of Thе Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia.
| |
Collapse
|
2
|
Alsabaani NA, Amawi K, Eleawa SM, Nabeel Ibrahim W, Aldhaban W, Alaraj AM, Alkhalaf B, Sami W, Alshaikhli H, Alkhateeb MA. Nrf-2-dependent antioxidant and anti-inflammatory effects underlie the protective effect of esculeoside A against retinal damage in streptozotocin-induced diabetic rats. Biomed Pharmacother 2024; 173:116461. [PMID: 38503237 DOI: 10.1016/j.biopha.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Esculeoside A (ESA) is a tomato-derived glycoside with antioxidant and anti-inflammatory properties. The protective effect of ESA against diabetic retinopathy is not well-investigated and was the core objective of this study. In addition, we tested if such protection involves the activation of Nrf2 signaling. Type 1 diabetes mellitus (T1DM) was induced in adult Wistar male rats by an intraperitoneal injection of streptozotocin (65 mg/kg). Non-diabetic and T1DM rats were divided into two subgroup groups given either the vehicle or ESA (100 mg)/kg. An additional T1DM group was given ESA (100 mg/kg) and an Nrf2 inhibitor (2 mg/kg) (n=8 rats/group). Treatments continued for 12 weeks. In this study, according to the histological features, ESA improved the structure of ganglionic cells and increased the number of cells of the inner nuclear and plexiform layers in the retinas of T1DM rats. Concomitantly, it reduced the retina levels of malondialdehyde (lipid peroxides), vascular endothelial growth factor, interleukin-6, tumor necrosis factor-α, Bax, and caspase-3. In the retinas of the control and diabetic rats, ESA boosted the levels of total glutathione, superoxide dismutase, heme-oxygenase-1, and Bcl2, reduced the mRNA levels of REDD1, and enhanced cytoplasmic and nuclear levels of Nrf2. However, ESA failed to alter the mRNA levels of Nrf2 and keap1, protein levels of keap1, plasma glucose, plasma insulin, serum triglycerides, cholesterol, and LDL-c in both the control and T1DM rats. In conclusion, ESA alleviates retinopathy in T1DM rats by suppressing REDD1-associated degradation and inhibiting the Nrf2/antioxidant axis.
Collapse
Affiliation(s)
- Nasser A Alsabaani
- Department of Ophthalmology, College of Medicine, King Khalid University, Abha P.O.Box 61421, Saudi Arabia.
| | - Kawther Amawi
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa, P.O. Box: 132222, Jordan.
| | - Samy M Eleawa
- Department of Applied Medical Sciences. College of Health Sciences, Public Authority for Applied Education and Training (PAAET), Kuwait P.O. Box: 2378, Kuwait.
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU health, Qatar University, Doha, P.O. Box: 2713, Qatar.
| | - Walid Aldhaban
- Department of Ophthalmology, College of Medicine, King Khalid University, Abha P.O.Box 61421, Saudi Arabia.
| | - Ahmad Mohammad Alaraj
- Department of Ophthalmology, College of Medicine, Qassim University, Qassim P.O. Box 52751, Saudi Arabia.
| | - Badr Alkhalaf
- Department of Environmental Sciences. College of Health Health Sciences, PAAET, Kuwait.
| | - Waqas Sami
- Department of pre-clinical affairs, College of Nursing, QU health, Qatar University, Doha P.O. Box: 2713, Qatar.
| | - Hisham Alshaikhli
- Department of pre-clinical affairs, College of Nursing, QU health, Qatar University, Doha P.O. Box: 2713, Qatar.
| | - Mahmoud A Alkhateeb
- Department of pre-clinical affairs, College of Nursing, QU health, Qatar University, Doha P.O. Box: 2713, Qatar.
| |
Collapse
|
3
|
Berthon JY, Cabannes M, Bouton C, Carre M, Bridon E, Filaire E. In vitro, ex vivo and clinical approaches to evaluate the potential effect of Gentiana lutea extract on skin. Int J Cosmet Sci 2023; 45:688-698. [PMID: 37365865 DOI: 10.1111/ics.12878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/05/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Dark circles affect subjects of all ages and in all skin types. They can be treated by various methods, particular by topical solutions. This investigation was directed towards exploring the effect of gentiopicroside (GP) on the skin around the eyes. For this, an extract of Gentiana lutea (GIE) containing GP (65% by dry matter) was evaluated on oxidant and angiogenesis parameters using in vitro and ex-vivo studies. A clinical experimentation was also realized. METHODS The effect of GIE at different concentrations on antioxidant gene was evaluated in vitro by RT-qPCR after treatment of NHDF. The effect of 2.93 μg mL-1 GIE on the release of VEGF-A and VEGF-C by NHDF was also studied. The effect of 87.9 μg mL-1 GIE was also evaluated on pseudotube formation in a coculture system of normal dermal microvascular endothelial cells (HMVEC-d)-NHDF stimulated or not with VEGF as pro-angiogenic factor. Prior to these assays, preliminary cytotoxicity assays were performed using a standard WST-8 reduction assay. The expressions of carboxymethyl-lysine and glyoxalase-1 were quantified on skin explants topically treated with 147 μg mL-1 GIE in basal and UVA-irradiated conditions. A clinical study was conducted in 22 subjects using topical twice daily for 14 days on eye area (split-face application: cream containing 147 μg mL-1 GIE versus placebo). 3D image acquisition and skin colour measurement were performed at D0 and D14. RESULTS Treatment of GIE upregulated the gene expression of NFE2L2 and downregulated the expression of CXCL8. GIE targeted AGEs pathways and reduced the formation of pseudotubes. A total of 147 μg mL-1 GIE gel cream significantly reduced significantly the average roughness and relief of the upper eyelid skin as well as the redness of dark circles after 14 days of application. CONCLUSION By acting on the pathway of AGEs, VEGF-A and VEFG-C, GIE seems to allow a rejuvenation of the skin resulting, among others, in a decrease in redness. It now would be interesting to evaluate the efficacy of GIE on skin around eyes microbiota, antibacterial gentiopicroside property being well-established.
Collapse
Affiliation(s)
| | | | | | | | | | - Edith Filaire
- UMR 1019 INRAE-University Clermont-Auvergne, UNH (Human Nutrition Unity), ECREIN Team, Clermont-Ferrand, France
- Groupe ICARE. Biopôle. Rue Emile Duclaux, Saint Beauzire, France
| |
Collapse
|
4
|
Wang X, Long D, Hu X, Guo N. Gentiopicroside modulates glucose homeostasis in high-fat-diet and streptozotocin-induced type 2 diabetic mice. Front Pharmacol 2023; 14:1172360. [PMID: 37601073 PMCID: PMC10438990 DOI: 10.3389/fphar.2023.1172360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Gluconeogenesis is closely related to the occurrence and development of type 2 diabetes mellitus (T2DM). Gentiopicroside (GPS) is the main active secoiridoid glycoside in Gentiana manshurica Kitagawa, which can improve chronic complications associated with diabetes and regulate glucose metabolism. However, the effects and potential mechanisms by which GPS affects T2DM understudied and poorly understood. In this study, we systematically explored the pharmacological effects of GPS on T2DM induced by a high-fat diet (HFD) and streptozotocin (STZ) as well as explored its related mechanisms. The results showed that GPS supplementation discernibly decreased blood glucose levels, food intake and water consumption, ameliorated glucose intolerance, abnormal pyruvate tolerance, insulin resistance and dyslipidemia. Furthermore, GPS discernibly ameliorated pathological morphological abnormalities of the liver and pancreas, reduced hepatic steatosis and maintain the balance between α-cells and β-cells in pancreas. Moreover, GPS significantly inhibited gluconeogenesis, as evidenced by the suppressed protein expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) in the liver. Additionally, the results of Western blot analysis revealed that GPS increased p-PI3K, p-AKT, and p-FOXO1 expression levels, and decreased FOXO1 expression at protein level in the liver. Furthermore, the results of the immunostaining and Western blot analysis demonstrated that GPS supplementation increased the expression of zonula occludens-1 (ZO-1) and occludin in the ileum. Collectively, these results indicate that GPS may inhibit hepatic gluconeogenesis by regulating the PI3K/AKT/FOXO1 signaling pathway and maintain intestinal barrier integrity, and ultimately improve T2DM. Together, these findings indicate that GPS is a potential candidate drug for the prevention and treatment of T2DM, and the results of our study will provide experimental basis for further exploration of the possibility of GPS as a therapeutic agent for T2DM.
Collapse
Affiliation(s)
- Xing Wang
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Dongmei Long
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, China
| | - Xianghong Hu
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Nan Guo
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Umar U, Ahmed S, Iftikhar A, Iftikhar M, Majeed W, Liaqat A, Shahzad S, Abbas M, Mehmood T, Anwar F. Phenolics Extracted from Jasminum sambac Mitigates Diabetic Cardiomyopathy by Modulating Oxidative Stress, Apoptotic Mediators and the Nfr-2/HO-1 Pathway in Alloxan-Induced Diabetic Rats. Molecules 2023; 28:5453. [PMID: 37513325 PMCID: PMC10383516 DOI: 10.3390/molecules28145453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder defined as hyperglycemia and pancreatic β-cell deterioration, leading to other complications such as cardiomyopathy. The current study assessed the therapeutic effects of phenolic acids extracted from Jasminum sambac phenols of leaves (JSP) against diabetes-induced cardiomyopathy in rats. The rats were divided into four groups, with each group consisting of 20 rats. The rats were given intraperitoneal injections of alloxan monohydrate (150 mg/kg) to induce diabetes. The diabetes-induced groups (III and IV) received treatment for six weeks that included 250 and 500 mg/kg of JSP extract, respectively. In the treated rats, the results demonstrated that JSP extract restored fasting glucose, serum glucose, and hyperlipidemia. Alloxan induced cardiomyopathy, promoted oxidative stress, and altered cardiac function biomarkers, including cardiac troponin I, proBNP, CK-MB, LDH, and IMA. The JSP extract-treated rats showed improved cardiac function indicators, apoptosis, and oxidative stress. In diabetic rats, the mRNA expression of caspase-3, BAX, and Bcl-2 was significantly higher, while Bcl-2, Nrf-2, and HO-,1 was significantly lower. In the treated groups, the expression levels of the BAX, Nrf-2, HO-1, Caspase-3, and Bcl-2 genes were dramatically returned to normal level. According to our findings, the JSP extract prevented cardiomyopathy and heart failure in the hyperglycemic rats by improving cardiac biomarkers and lowering the levels of hyperlipidemia, oxidative stress, apoptosis, hyperglycemia, and hyperlipidemia.
Collapse
Affiliation(s)
- Urooj Umar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Sibtain Ahmed
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Maryam Iftikhar
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Wafa Majeed
- Department of Pharmacy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Atika Liaqat
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Sana Shahzad
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Mateen Abbas
- Quality Operations Laboratory, Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tahir Mehmood
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 53700, Pakistan
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
6
|
Wang M, Sheng KJ, Fang JC, Zhao H, Lu SM, Liu ZY, Chen BT. Redox signaling in diabetic retinopathy and opportunity for therapeutic intervention through natural products. Eur J Med Chem 2022; 244:114829. [DOI: 10.1016/j.ejmech.2022.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
|
7
|
Xiao H, Sun X, Lin Z, Yang Y, Zhang M, Xu Z, Liu P, Liu Z, Huang H. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Acta Pharm Sin B 2022; 12:2887-2904. [PMID: 35755276 PMCID: PMC9214054 DOI: 10.1016/j.apsb.2021.12.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
The obstruction of post-insulin receptor signaling is the main mechanism of insulin-resistant diabetes. Progestin and adipoQ receptor 3 (PAQR3), a key regulator of inflammation and metabolism, can negatively regulate the PI3K/AKT signaling pathway. Here, we report that gentiopicroside (GPS), the main bioactive secoiridoid glycoside of Gentiana manshurica Kitagawa, decreased lipid synthesis and increased glucose utilization in palmitic acid (PA) treated HepG2 cells. Additionally, GPS improved glycolipid metabolism in streptozotocin (STZ) treated high-fat diet (HFD)-induced diabetic mice. Our findings revealed that GPS promoted the activation of the PI3K/AKT axis by facilitating DNA-binding protein 2 (DDB2)-mediated PAQR3 ubiquitinated degradation. Moreover, results of surface plasmon resonance (SPR), microscale thermophoresis (MST) and thermal shift assay (TSA) indicated that GPS directly binds to PAQR3. Results of molecular docking and cellular thermal shift assay (CETSA) revealed that GPS directly bound to the amino acids of the PAQR3 NH2-terminus including Leu40, Asp42, Glu69, Tyr125 and Ser129, and spatially inhibited the interaction between PAQR3 and the PI3K catalytic subunit (P110α) to restore the PI3K/AKT signaling pathway. In summary, our study identified GPS, which inhibits PAQR3 expression and directly targets PAQR3 to restore insulin signaling pathway, as a potential drug candidate for the treatment of diabetes.
Collapse
Affiliation(s)
- Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaohong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Meng Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhanchi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Corresponding authors.
| | - Zhongqiu Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Corresponding authors.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Corresponding authors.
| |
Collapse
|
8
|
Khazeei Tabari MA, Mirjalili R, Khoshhal H, Shokouh E, Khandan M, Hasheminasabgorji E, Hafezi-Moghadam A, Bagheri A. Nature against Diabetic Retinopathy: A Review on Antiangiogenic, Antioxidant, and Anti-Inflammatory Phytochemicals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4708527. [PMID: 35310030 PMCID: PMC8926515 DOI: 10.1155/2022/4708527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
Background and Purpose. Diabetes mellitus (DM), hyperglycemia, and hypertension can result in diabetic retinopathy (DR), which is a major cause of blindness on a global scale. Development of DR is associated with decreased endothelial cells, increased basal membrane thickness, permeation of the retinal blood barrier, and neovascularization in patients. The purpose of the present review is to provide an overview of the findings regarding applications of phytochemicals for DR treatment and could be a beneficial resource for further clinical studies and also a basis for pharmaceutical purposes for drug design. Materials and Methods. A narrative literature review was performed from electronic databases including Web of Science, PubMed, and Scopus to analyze the effects of different phytochemicals to prevent or treat oxidation, angiogenesis, and inflammation in diabetic retinopathy. The inclusion criteria were original studies, which included the effects of different phytochemicals on diabetic retinopathy. The exclusion criteria included studies other than original articles, studies which assessed the effects of phytochemicals on nondiabetic retinopathy, and studies which used phytochemical-rich extracts. Results and Conclusions. Studies have shown that increased levels of inflammatory cytokines, angiogenic, and oxidative stress factors are involved in the progression and pathogenesis of DR. Therefore, phytochemicals with their anti-inflammatory, antiangiogenic, and antioxidant properties can prevent DR progression and retinal damage through various cellular mechanisms. It is also shown that some phytochemicals can simultaneously affect the inflammation, oxidation, and angiogenesis in DR.
Collapse
Affiliation(s)
- Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Razie Mirjalili
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hooman Khoshhal
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elahe Shokouh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohanna Khandan
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasheminasabgorji
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Zhang L, Chu W, Zheng L, Li J, Ren Y, Xue L, Duan W, Wang Q, Li H. Zinc oxide nanoparticles from
Cyperus rotundus
attenuates diabetic retinopathy by inhibiting NLRP3 inflammasome activation in STZ‐induced diabetic rats. J Biochem Mol Toxicol 2020; 34:e22583. [PMID: 32692483 DOI: 10.1002/jbt.22583] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Liwei Zhang
- Department of Ophthalmology The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Wen Chu
- Department of Preventive Dentistry The Second People's Hospital of Yunnan and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Lei Zheng
- Shenzhen Eye Hospital Shenzhen University School of Medicine Shenzhen Guangdong China
| | - Juanjuan Li
- Department of Ophthalmology The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Yuling Ren
- Department of Ophthalmology The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Liping Xue
- Department of Ophthalmology The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Wenhua Duan
- Department of Ophthalmology The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Qing Wang
- Department of Oncology The First People's Hospital of Qujing Qujing Yunan China
| | - Hua Li
- Department of Ophthalmology The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| |
Collapse
|
10
|
Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy. Pharmacol Res 2019; 151:104559. [PMID: 31759089 DOI: 10.1016/j.phrs.2019.104559] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023]
Abstract
Our previous studies indicated that the G-protein-coupled bile acid receptor, Gpbar1 (TGR5), inhibits inflammation by inhibiting the NF-κB signalling pathway, eventually attenuating diabetic nephropathy (DN). Gentiopicroside (GPS), the main active secoiridoid glycoside of Gentiana manshurica Kitagawa, has been demonstrated to inhibit inflammation in various diseases via inhibiting the inflammatory signalling pathways. However, whether GPS inhibits the NF-κB signalling pathway by activating TGR5 and regulates the pathological progression of diabetic renal fibrosis requires further investigation. In this study, we found that GPS significantly reversed the downregulation of TGR5 and inhibited the overproduction of fibronectin (FN), transforming growth factor β1 (TGF-β1), intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) in glomerular mesangial cells (GMCs) exposed to high glucose (HG). Additionally, GPS prevented the phosphorylation and degradation of IκBα, and subsequently inhibited the activation of the NF-κB signalling pathway. Further investigation found that GPS enhanced the stabilization of IκBα by promoting the interaction of β-arrestin2 with IκBα via TGR5 activation, which contributed to the inhibition of NF-κB signalling pathway. Importantly, the depletion of TGR5 blocked the inhibition of the NF-κB signalling pathway and reversed the downregulation of FN, ICAM-1, VCAM-1 and TGF-β1 by GPS in HG-induced GMCs. Moreover, GPS increased the TGR5 protein levels and promoted the interaction between IκBα and β-arrestin2, thereby inhibiting the reduction of IκBα and blocked NF-κB p65 nuclear translocation in the kidneys of STZ-induced diabetic mice. Collectively, these data suggested that GPS regulates the TGR5-β-arrestin2-NF-κB signalling pathway to prevent inflammation in the kidneys of diabetic mice, and ultimately ameliorates the pathological progression of diabetic renal fibrosis.
Collapse
|