1
|
Liotta LA, Pappalardo PA, Carpino A, Haymond A, Howard M, Espina V, Wulfkuhle J, Petricoin E. Laser Capture Proteomics: spatial tissue molecular profiling from the bench to personalized medicine. Expert Rev Proteomics 2021; 18:845-861. [PMID: 34607525 PMCID: PMC10720974 DOI: 10.1080/14789450.2021.1984886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Laser Capture Microdissection (LCM) uses a laser to isolate, or capture, specific cells of interest in a complex heterogeneous tissue section, under direct microscopic visualization. Recently, there has been a surge of publications using LCM for tissue spatial molecular profiling relevant to a wide range of research topics. AREAS COVERED We summarize the many advances in tissue Laser Capture Proteomics (LCP) using mass spectrometry for discovery, and protein arrays for signal pathway network mapping. This review emphasizes: a) transition of LCM phosphoproteomics from the lab to the clinic for individualized cancer therapy, and b) the emerging frontier of LCM single cell molecular analysis combining proteomics with genomic, and transcriptomic analysis. The search strategy was based on the combination of MeSH terms with expert refinement. EXPERT OPINION LCM is complemented by a rich set of instruments, methodology protocols, and analytical A.I. (artificial intelligence) software for basic and translational research. Resolution is advancing to the tissue single cell level. A vision for the future evolution of LCM is presented. Emerging LCM technology is combining digital and AI guided remote imaging with automation, and telepathology, to a achieve multi-omic profiling that was not previously possible.
Collapse
Affiliation(s)
- Lance A. Liotta
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Philip A. Pappalardo
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Alan Carpino
- Fluidigm Corporation, South San Francisco, CA, USA
| | - Amanda Haymond
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Marissa Howard
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Virginia Espina
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Julie Wulfkuhle
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Emanuel Petricoin
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
2
|
Ma D, Ma Z, Kudo LC, Karsten SL. Automated Capillary-Based Vacuum Pulse-Assisted Instrument for Single-Cell Acquisition and Concurrent Detachment/Adhesion Assay, A-picK. SLAS Technol 2021; 26:519-531. [PMID: 33615859 DOI: 10.1177/2472630320987219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A large body of evidence points to the importance of cell adhesion molecules in cancer metastasis. Alterations in adhesion and attachment properties of neoplastic cells are important biomarkers of the metastatic potential of cancer. Loss of intracellular adhesion is correlated with more invasive phenotype by increasing the chances of malignant cells escaping from their site of origin, promoting metastasis. Therefore, there is great demand for rapid and accurate measurements of individual cell adhesion and attachment. Current technologies that measure adhesion properties in either suspension or bulk (microfluidics) remain very complex (e.g., atomic force microscopy [AFM], optical tweezers). Moreover, existing tools cannot provide measurements for fully attached individual adherent cells as they operate outside of such a force range. Even more importantly, none of the existing approaches permit concurrent and automated single-cell adhesion measurement and collection, which prohibits direct correlation between single-cell adhesion properties and molecular profile. Here, we report a fully automated and versatile platform, A-picK, that offers single-cell adhesion assay and isolation in parallel. We demonstrate the use of this approach for a time course analysis of human lung carcinoma A549 cells and substrate-specific adhesion potential using seven different substrates, including fibronectin, laminin, poly-l-lysine, carboxyl, amine, collagen, and gelatin.
Collapse
Affiliation(s)
- David Ma
- NeuroInDx, Inc., Torrance, CA, USA
| | | | | | | |
Collapse
|
3
|
Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging. Nat Protoc 2019; 14:2900-2930. [PMID: 31534232 DOI: 10.1038/s41596-019-0206-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/03/2019] [Indexed: 12/27/2022]
Abstract
Multiplexed tissue imaging enables precise, spatially resolved enumeration and characterization of cell types and states in human resection specimens. A growing number of methods applicable to formalin-fixed, paraffin-embedded (FFPE) tissue sections have been described, the majority of which rely on antibodies for antigen detection and mapping. This protocol provides step-by-step procedures for confirming the selectivity and specificity of antibodies used in fluorescence-based tissue imaging and for the construction and validation of antibody panels. Although the protocol is implemented using tissue-based cyclic immunofluorescence (t-CyCIF) as an imaging platform, these antibody-testing methods are broadly applicable. We demonstrate assembly of a 16-antibody panel for enumerating and localizing T cells and B cells, macrophages, and cells expressing immune checkpoint regulators. The protocol is accessible to individuals with experience in microscopy and immunofluorescence; some experience in computation is required for data analysis. A typical 30-antibody dataset for 20 FFPE slides can be generated within 2 weeks.
Collapse
|
4
|
Surrette C, Scherer B, Corwin A, Grossmann G, Kaushik AM, Hsieh K, Zhang P, Liao JC, Wong PK, Wang TH, Puleo CM. Rapid Microbiology Screening in Pharmaceutical Workflows. SLAS Technol 2019; 23:387-394. [PMID: 30027813 DOI: 10.1177/2472630318779758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently advances in miniaturization and automation have been utilized to rapidly decrease the time to result for microbiology testing in the clinic. These advances have been made due to the limitations of conventional culture-based microbiology methods, including agar plate and microbroth dilution, which have long turnaround times and require physicians to treat patients empirically with antibiotics before test results are available. Currently, there exist similar limitations in pharmaceutical sterility and bioburden testing, where the long turnaround times associated with standard microbiology testing drive costly inefficiencies in workflows. These include the time lag associated with sterility screening within drug production lines and the warehousing cost and time delays within supply chains during product testing. Herein, we demonstrate a proof-of-concept combination of a rapid microfluidic assay and an efficient cell filtration process that enables a path toward integrating rapid tests directly into pharmaceutical microbiological screening workflows. We demonstrate separation and detection of Escherichia coli directly captured and analyzed from a mammalian (i.e., CHO) cell culture with a 3.0 h incubation. The demonstration is performed using a membrane filtration module that is compatible with sampling from bioreactors, enabling in-line sampling and process monitoring.
Collapse
Affiliation(s)
- C Surrette
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| | - B Scherer
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| | - A Corwin
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| | - G Grossmann
- 2 Biology and Physics, GE Global Research Center, Niskayuna, NY, USA
| | - A M Kaushik
- 3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - K Hsieh
- 3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - P Zhang
- 3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J C Liao
- 4 Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - P K Wong
- 5 Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - T H Wang
- 3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - C M Puleo
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| |
Collapse
|
5
|
Kai-Hua Chow E. The 2018 SLAS Technology Ten: Translating Life Sciences Innovation. SLAS Technol 2018; 23:1-4. [DOI: 10.1177/2472630317744283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Galligan C, Nguyen C, Nelson J, Spooner P, Miller T, Davis BM, Lenigk R, Puleo CM. High-Capacity Redox Polymer Electrodes: Applications in Molecular and Cellular Processing. SLAS Technol 2017; 23:374-386. [PMID: 29186669 DOI: 10.1177/2472630317743947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We present methods to fabricate high-capacity redox electrodes using thick membrane or fiber casting of conjugated polymer solutions. Unlike common solution casting or printing methods used in current organic electronics, the presented techniques enable production of PEDOT:PSS electrodes with high charge capacity and the capability to operate under applied voltages greater than 100 V without electrochemical overoxidation. The electrodes are shown integrated into several electrokinetic components commonly used in automated bioprocess or bioassay workflows, including electrophoretic DNA separation and extraction, cellular electroporation/lysis, and electroosmotic pumping. Unlike current metal electrodes used in these applications, the high-capacity polymer electrodes are shown to function without electrolysis of solvent (i.e., without production of excess H+, OH-, and H2O2 by-products). In addition, each component fabricated using the electrodes is shown to have superior capabilities compared with those fabricated with common metal electrodes. These innovations in electrokinetics include a low-voltage/high-pressure electroosmotic pump, and a "flow battery" (in which electrochemical discharge is used to generate electroosmotic flow in the absence of an applied potential). The novel electrodes (and electrokinetic demonstrations) enable new applications of organic electronics within the biology, health care, and pharmaceutical fields.
Collapse
Affiliation(s)
- Craig Galligan
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| | - Christopher Nguyen
- 2 Work performed during a summer internship at GE Global Research Center, Niskayuna, NY, USA
| | - John Nelson
- 3 Diagnostics and Biomedical Technologies, GE Global Research Center, Niskayuna, NY, USA
| | - Patrick Spooner
- 3 Diagnostics and Biomedical Technologies, GE Global Research Center, Niskayuna, NY, USA
| | - Todd Miller
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| | - Brian M Davis
- 3 Diagnostics and Biomedical Technologies, GE Global Research Center, Niskayuna, NY, USA
| | - Ralf Lenigk
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| | | |
Collapse
|
7
|
Chow EKH. Welcome to the Digital World of Quantitative Biology. SLAS Technol 2017; 22:367-368. [DOI: 10.1177/2472630317713262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|