1
|
Restivo E, Pugliese D, Gallichi-Nottiani D, Sammartino JC, Bloise N, Peluso E, Percivalle E, Janner D, Milanese D, Visai L. Effect of Low Copper Doping on the Optical, Cytocompatible, Antibacterial, and SARS-CoV-2 Trapping Properties of Calcium Phosphate Glasses. ACS OMEGA 2023; 8:42264-42274. [PMID: 38024754 PMCID: PMC10652837 DOI: 10.1021/acsomega.3c04293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Calcium phosphate glasses (CPGs) are acquiring great importance in the biomedical field because of their thermomechanical and bioresorbable properties. In this study, optically transparent copper (1 mol %)-doped calcium phosphate glasses (CPGs_Cu) were prepared through the melt-quenching method, and their biocompatibility and antibacterial and antiviral properties were evaluated and compared with undoped CPGs. Biocompatibility was evaluated on murine fibroblast NIH-3T3 cells as a preliminary study of cytocompatibility. The in vitro tests were performed through indirect and direct cytotoxicity analyses by MTT and Alamar Blue assays and supported by electron microscopy observations. Microbiological analyses were performed against the most common Gram-negative and Gram-positive pathogens that cause nosocomial infections: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and the methicillin-resistant Staphylococcus aureus strain. In addition, the bioglass samples were exposed to SARS-CoV-2 to assess their effects on viral survival. The obtained results assessed the biocompatibility of both bioglass types and their ability to reduce the viral load and trap the virus. In addition, Cu2+-doped bioglass was found to be antibacterial despite its low content (1 mol %) of copper, making this a promising candidate material for biomedical applications, e.g., surgery probes, drug delivery, and photodynamic therapy.
Collapse
Affiliation(s)
- Elisa Restivo
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
| | - Diego Pugliese
- Department
of Applied Science and Technology, UdR INSTM, Politecnico di Torino, Torino10129,Italy
| | | | - José Camilla Sammartino
- Department
of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia27100,Italy
| | - Nora Bloise
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia27100,Italy
| | - Emanuela Peluso
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
| | - Elena Percivalle
- Molecular
Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia27100,Italy
| | - Davide Janner
- Department
of Applied Science and Technology, UdR INSTM, Politecnico di Torino, Torino10129,Italy
| | - Daniel Milanese
- Department
of Engineering and Architecture, UdR INSTM, University of Parma, Parma43121,Italy
| | - Livia Visai
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia27100,Italy
| |
Collapse
|
2
|
Kankilic B, Bayramli E, Korkusuz P, Eroglu H, Sener B, Mutlu P, Korkusuz F. Vancomycin Containing PDLLA and PLGA/β-TCP Inhibit Biofilm Formation but Do Not Stimulate Osteogenic Transformation of Human Mesenchymal Stem Cells. Front Surg 2022; 9:885241. [PMID: 35846965 PMCID: PMC9283789 DOI: 10.3389/fsurg.2022.885241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Aims Chronic osteomyelitis, including implant-related prosthetic joint infection, is extremely difficult to cure. We develop vancomycin containing release systems from poly(d,l-lactide) (PDLLA) and poly(d,l-lactide-co-glycolide) (PLGA) composites with beta-tricalcium phosphate (β-TCP) to treat methicillin-resistant Staphylococcus aureus osteomyelitis. We ask whether vancomycin containing PDLLA/β-TCP and PLGA/β-TCP composites will prevent early biofilm formation, allow cell proliferation and osteogenic differentiation, and stimulate osteogenic signaling molecules in the absence of an osteogenic medium. Methods Composites were produced and characterized with scanning electron microscopy. In vitro vancomycin release was assessed for 6 weeks. Biofilm prevention was calculated by crystal violet staining. Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and osteosarcoma cell (SaOS-2) proliferation and differentiation were assessed with water soluble tetrazolium salt and alkaline phosphatase (ALP) staining. Real-time quantitative polymerase chain reaction defined osteogenic signaling molecules for hBM-MSCs. Results Totally, 3.1 ± 0.2 mg and 3.4 ± 0.4 mg vancomycin released from PDLLA/β-TCP and the PLGA/β-TCP composites, respectively, and inhibited early biofilm formation. hBM-MSCs and SaOS-2 cells proliferated on the composites and stimulated ALP activity of cells. Runt-related transcription factor 2 (RUNX2) and SRY-Box transcription Factor 9 (SOX9) expressions were, however, lower with composites when compared with control. Conclusion Vancomycin containing PDLLA/β-TCP and PLGA/β-TCP composites inhibited early biofilm formation and proliferated and differentiated hBM-MSCs and SaOS-2 cells, but osteogenesis-related RUNX2 and SOX9 transcription factors were not strongly expressed in the absence of an osteogenic medium for 14 days.
Collapse
Affiliation(s)
- Berna Kankilic
- Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
- Correspondence: Berna Kankilic
| | - Erdal Bayramli
- Department of Chemistry, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hakan Eroglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Burcin Sener
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Pelin Mutlu
- Central Laboratory, Molecular Biology and Biotechnology R&D, Middle East Technical University, Ankara, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Zhang M, Liu J, Zhu T, Le H, Wang X, Guo J, Liu G, Ding J. Functional Macromolecular Adhesives for Bone Fracture Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1-19. [PMID: 34939784 DOI: 10.1021/acsami.1c17434] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Compared with traditional internal fixation devices, bone adhesives are expected to exhibit remarkable advantages, such as improved fixation of comminuted fractures and maintained spatial location of fractured scattered bone pieces in treating bone injuries. In this review, different bone adhesives are summarized from the aspects of bone tissue engineering, and the applications of bone adhesives are emphasized. The concepts of "liquid scaffold" and "liquid plate" are proposed to summarize two different research directions of bone adhesives. Furthermore, significant advances of bone adhesives in recent years in mechanical strength, osseointegration, osteoconductivity, and osteoinductivity are discussed. We conclude this topic by providing perspectives on the state-of-the-art research progress and future development trends of bone adhesives. We hope this review will provide a comprehensive summary of bone adhesives and inspire more extensive and in-depth research on this subject.
Collapse
Affiliation(s)
- Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jiaxue Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 5 Jilin Street, Jilin 132000, People's Republic of China
| | - Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Hanxiang Le
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China
| | - Xukai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jinshan Guo
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, 1023 Southern Shatai Road, Guangzhou 510515, People's Republic of China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| |
Collapse
|
4
|
Pitton M, Fiorati A, Buscemi S, Melone L, Farè S, Contessi Negrini N. 3D Bioprinting of Pectin-Cellulose Nanofibers Multicomponent Bioinks. Front Bioeng Biotechnol 2021; 9:732689. [PMID: 34926414 PMCID: PMC8678092 DOI: 10.3389/fbioe.2021.732689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pectin has found extensive interest in biomedical applications, including wound dressing, drug delivery, and cancer targeting. However, the low viscosity of pectin solutions hinders their applications in 3D bioprinting. Here, we developed multicomponent bioinks prepared by combining pectin with TEMPO-oxidized cellulose nanofibers (TOCNFs) to optimize the inks' printability while ensuring stability of the printed hydrogels and simultaneously print viable cell-laden inks. First, we screened several combinations of pectin (1%, 1.5%, 2%, and 2.5% w/v) and TOCNFs (0%, 0.5%, 1%, and 1.5% w/v) by testing their rheological properties and printability. Addition of TOCNFs allowed increasing the inks' viscosity while maintaining shear thinning rheological response, and it allowed us to identify the optimal pectin concentration (2.5% w/v). We then selected the optimal TOCNFs concentration (1% w/v) by evaluating the viability of cells embedded in the ink and eventually optimized the writing speed to be used to print accurate 3D grid structures. Bioinks were prepared by embedding L929 fibroblast cells in the ink printed by optimized printing parameters. The printed scaffolds were stable in a physiological-like environment and characterized by an elastic modulus of E = 1.8 ± 0.2 kPa. Cells loaded in the ink and printed were viable (cell viability >80%) and their metabolic activity increased in time during the in vitro culture, showing the potential use of the developed bioinks for biofabrication and tissue engineering applications.
Collapse
Affiliation(s)
- Matteo Pitton
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Silvia Buscemi
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy.,Centro di Ricerca per l'Energia, l'Ambiente e il Territorio (CREAT), Università Telematica eCampus, Novedrate, Italy
| | - Silvia Farè
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Nicola Contessi Negrini
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| |
Collapse
|
5
|
Preparation, characterization, and in vivo evaluation of levonorgestrel-loaded thermostable microneedles. Drug Deliv Transl Res 2021; 12:944-956. [PMID: 34515951 DOI: 10.1007/s13346-021-01057-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
To facilitate the storage and use of poly (lactic-co-glycolic acid) (PLGA)-based microneedles (MNs) in hot seasons and regions, thermally stable MNs loaded with levonorgestrel (LNG) were developed. Due to its good biocompatibility and high glass transition temperature (Tg), Hydroxypropyl methylcellulose (HPMC) was added to the PLGA-based MNs to increase thermal stability. MNs with HPMC exhibited excellent thermal stability at high temperatures. After the MNs has been applied to the skin for 10 min, the backing layer of the MNs was dissolved by contact with the interstitial fluid of skin, which resulted in the separation of the MN tips from the backing layer. The MN tips were implanted intradermally and sustained-release LNG. Biodegradable polymers were used to encapsulate the LNG, providing long-acting contraception. The in vitro release rate of LNG from the MNs reached 72.78%-83.76% within 21 days. In rats, the MNs maintained plasma concentrations of LNG above the human contraceptive level for 8-12 days. In mice, the time required for complete degradation of the MN tips was 12-16 days. MNs have excellent medication adherence due to the advantages of painlessness, minimally invasive, and self-administered. MNs can make long-acting contraceptives more readily available to humans.
Collapse
|