1
|
Menezes Ferreira AÁ, da Silva Felix JH, Chaves de Lima RK, Martins de Souza MC, Sousa Dos Santos JC. Advancements and Prospects in Nanorobotic Applications for Ophthalmic Therapy. ACS Biomater Sci Eng 2025; 11:958-980. [PMID: 39818739 DOI: 10.1021/acsbiomaterials.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This study provides a bibliometric and bibliographic review of emerging applications of micro- and nanotechnology in treating ocular diseases, with a primary focus on glaucoma. We aim to identify key research trends and analyze advancements in devices and drug delivery systems for ocular treatments. The methodology involved analyzing 385 documents indexed on the Web of Science using tools such as VOSviewer and Bibliometrix. The results show a marked increase in scientific output, highlighting prominent authors and institutions, with England leading in the field. Key findings suggest that nanotechnology holds the potential to address the limitations of conventional treatments, including low ocular bioavailability and adverse side effects. Nanoparticles, nanovesicles, and polymer-based systems appear promising for prolonged and controlled drug release, potentially offering enhanced therapeutic efficacy. In conclusion, micro- and nanotechnology could transform ocular disease treatment, although challenges remain concerning the biocompatibility and scalability of these devices. Further clinical studies are necessary to establish these innovations within the therapeutic context of ophthalmology.
Collapse
Affiliation(s)
- Antonio Átila Menezes Ferreira
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - John Hebert da Silva Felix
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Rita Karolinny Chaves de Lima
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| |
Collapse
|
2
|
Klézlová A, Bulíř P, Klápšťová A, Netuková M, Šenková K, Horáková J, Studený P. Novel Biomaterials in Glaucoma Treatment. Biomedicines 2024; 12:813. [PMID: 38672168 PMCID: PMC11048501 DOI: 10.3390/biomedicines12040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Glaucoma is a significant cause of blindness worldwide, and its treatment remains challenging. The disease progressively leads to damage to the optic disc and thus loss of visual acuity and visual field. High intraocular pressure (IOP) is a common risk factor. There are three major methods to treat this disease: topical, laser, and surgical. None of these are completely satisfactory; therefore, alternatives using new biomaterials are being sought. Since biomaterial engineering has experienced significant growth in recent decades, its products are gradually being introduced to various branches of medicine, with the exception of ophthalmology. Biomaterials, such as glaucoma drainage implants, have been successfully used to treat glaucoma. There is significant ongoing research on biomaterials as drug delivery systems that could overcome the disadvantages of topical glaucoma treatment, such as poor intraocular penetration or frequent drug administration. This article summarizes the use of novel biomaterials for glaucoma treatment presented in the literature. The literature search was based on articles published in English on PubMed.gov, Cochranelibrary.com, and Scopus.com between 2018 and 2023 using the following term "biomaterials in glaucoma." A total of 103 published articles, including twenty-two reviews, were included. Fifty-nine articles were excluded on the basis of their titles and abstracts.
Collapse
Affiliation(s)
- Adéla Klézlová
- Ophthalmology Department, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Ruská 87, Praha 10, 100 00 Prague, Czech Republic; (P.B.); (M.N.); (K.Š.); (P.S.)
| | - Petr Bulíř
- Ophthalmology Department, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Ruská 87, Praha 10, 100 00 Prague, Czech Republic; (P.B.); (M.N.); (K.Š.); (P.S.)
- Department of Ophthalmology, Regional Hospital Liberec, 460 01 Liberec, Czech Republic
| | - Andrea Klápšťová
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.K.); (J.H.)
| | - Magdaléna Netuková
- Ophthalmology Department, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Ruská 87, Praha 10, 100 00 Prague, Czech Republic; (P.B.); (M.N.); (K.Š.); (P.S.)
| | - Kateřina Šenková
- Ophthalmology Department, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Ruská 87, Praha 10, 100 00 Prague, Czech Republic; (P.B.); (M.N.); (K.Š.); (P.S.)
| | - Jana Horáková
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.K.); (J.H.)
| | - Pavel Studený
- Ophthalmology Department, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Ruská 87, Praha 10, 100 00 Prague, Czech Republic; (P.B.); (M.N.); (K.Š.); (P.S.)
| |
Collapse
|
3
|
Bagul US, Nazirkar MV, Mane AK, Khot SV, Tagalpallewar AA, Kokare CR. Fabrication of architectonic nanosponges for intraocular delivery of Brinzolamide: An insight into QbD driven optimization, in vitro characterization, and pharmacodynamics. Int J Pharm 2024; 650:123746. [PMID: 38145779 DOI: 10.1016/j.ijpharm.2023.123746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
The intricate structure of the eye poses difficulties in drug targeting, which can be surmounted with the help of nanoformulation strategies. With this view, brinzolamide nanosponges (BNS) were prepared using the emulsion solvent evaporation technique and optimized via Box-Behnken statistical design. The optimized BNS were further incorporated into a poloxamer 407 in situ gel (BNS-ISG) and evaluated. The optimized BNS showed spherical morphology, entrapment efficiency of 83.12 ± 1.2 % with particle size of 114 ± 2.32 nm and PDI of 0.11 ± 0.01. The optimized BNS-ISG exhibited a pseudoplastic behavior and depicted a gelling temperature and gelation time of 35 ± 0.5 °C and 10 ± 2 s respectively. In-vitro release and ex- vivo permeation studies of BNS-ISG demonstrated a sustained release pattern as compared to Brinzox®. Additionally, the HET-CAM and in vitro cytotoxicity studies (using SIRC cell line) ensured that the formulation was non-irritant and nontoxic for ophthalmic delivery. The in vivo pharmacodynamic study using rabbit model depicted that BNS-ISG treatment significantly lowers the intra ocular pressure for prolonged period of time when compared with Brinzox®. In conclusion, the BNS-ISG is an efficient and scalable drug delivery system with significant potential as the targeted therapy of posterior segment eye diseases.
Collapse
Affiliation(s)
- Uddhav S Bagul
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule University Pune), Narhe, Pune 411041, Maharashtra, India.
| | - Mayuri V Nazirkar
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule University Pune), Narhe, Pune 411041, Maharashtra, India
| | - Ajay K Mane
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule University Pune), Narhe, Pune 411041, Maharashtra, India
| | - Shubham V Khot
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule University Pune), Narhe, Pune 411041, Maharashtra, India
| | - Amol A Tagalpallewar
- Department of Pharmaceutics, Dr. Vishwanath Karad MIT World Peace University, School of Health Science and Technology, Kothrud, Pune 411038, Maharashtra, India
| | - Chandrakant R Kokare
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule University Pune), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
4
|
Sirirungsee V, Samutrtai P, Sangthong P, Papan P, Leelapornpisid P, Saenjum C, Sirithunyalug B. Electrosprayed Nanoparticles Containing Mangiferin-Rich Extract from Mango Leaves for Cosmeceutical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2931. [PMID: 37999285 PMCID: PMC10674866 DOI: 10.3390/nano13222931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Mango (Mangifera indica L.) is one of the most economically important fruits in Thailand. Mango has been used as a traditional medicine because it possesses many biological activities, such as antioxidant properties, anti-inflammatory properties, microorganism-growth inhibition, etc. Among its natural pharmacologically active compounds, mangiferin is the main active component found in mango leaves. Mangiferin has the potential to treat a variety of diseases due to its multifunctional activities. This study aims to prepare a mangiferin-rich extract (MRE) from mango leaves and develop nanoparticles containing the MRE using an electrospraying technique to apply it in a cosmeceutical formulation. The potential cosmeceutical mechanisms of the MRE were investigated using proteomic analysis. The MRE is involved in actin-filament organization, the positive regulation of cytoskeleton organization, etc. Moreover, the related mechanism to its cosmeceutical activity is metalloenzyme-activity regulation. Nanoparticles were prepared from 0.8% w/v MRE and 2% w/v Eudragit® L100 solution using an electrospraying process. The mean size of the MRE-loaded nanoparticles (MNPs) received was 247.8 nm, with a PDI 0.271. The MRE entrapment by the process was quantified as 84.9%, indicating a high encapsulation efficiency. For the skin-retention study, the mangiferin content in the MNP-containing emulsion-gel membranes was examined and found to be greater than in the membranes of the MRE solution, illustrating that the MNPs produced by the electrospraying technique help transdermal delivery for cosmetic applications.
Collapse
Affiliation(s)
- Vissuta Sirirungsee
- Master’s Degree Program in Cosmetic Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pawitrabhorn Samutrtai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.L.)
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.P.)
| | - Phakorn Papan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.P.)
| | - Pimporn Leelapornpisid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.L.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chalermpong Saenjum
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.L.)
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busaban Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.L.)
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Jansook P, Hnin HM, Loftsson T, Stefánsson E. Cyclodextrin-based formulation of carbonic anhydrase inhibitors for ocular delivery - A review. Int J Pharm 2021; 606:120955. [PMID: 34332063 DOI: 10.1016/j.ijpharm.2021.120955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Carbonic anhydrase inhibitors (CAIs) are used as systemic and topical agents for lowering intraocular pressure (IOP) in patients with glaucoma. Owing to the wide distribution of CAs and their physiological functions in various tissues, systemic administration of CAIs may lead to unwanted side effects. Thus, exploration of drugs targeting the specific CA isoenzyme in ocular tissues and application of the same as topical eye drops would be desirable. However, the anatomical and physiological barriers of the eyes can limit drug availability at the site. The very low aqueous solubility of CAI agents can further hamper drug bioavailability, consequently resulting in insufficient therapeutic efficacy. Solubilization of drugs using cyclodextrin (CD) complexes can enhance both solubility and permeability of the drugs. The use of CD for such purposes and development and testing of topical CAI eye drops containing CD have been discussed in detail. Further, pharmaceutical nanotechnology platforms were discussed in terms of investigation of their IOP-lowering efficacies. Future prospects in drug discovery and the use of CD nanoparticles and CD-based nanocarriers to develop potential topical CAI formulations have also been described here.
Collapse
Affiliation(s)
- Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand.
| | - Hay Marn Hnin
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Einar Stefánsson
- Department of Ophthalmology, Faculty of Medicine, National University Hospital, University of Iceland, Landspitalinn, IS-101 Reykjavik, Iceland
| |
Collapse
|