1
|
Shorey AE, King CJ, Whiteford KL, Stilp CE. Musical training is not associated with spectral context effects in instrument sound categorization. Atten Percept Psychophys 2024; 86:991-1007. [PMID: 38216848 DOI: 10.3758/s13414-023-02839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/14/2024]
Abstract
Musicians display a variety of auditory perceptual benefits relative to people with little or no musical training; these benefits are collectively referred to as the "musician advantage." Importantly, musicians consistently outperform nonmusicians for tasks relating to pitch, but there are mixed reports as to musicians outperforming nonmusicians for timbre-related tasks. Due to their experience manipulating the timbre of their instrument or voice in performance, we hypothesized that musicians would be more sensitive to acoustic context effects stemming from the spectral changes in timbre across a musical context passage (played by a string quintet then filtered) and a target instrument sound (French horn or tenor saxophone; Experiment 1). Additionally, we investigated the role of a musician's primary instrument of instruction by recruiting French horn and tenor saxophone players to also complete this task (Experiment 2). Consistent with the musician advantage literature, musicians exhibited superior pitch discrimination to nonmusicians. Contrary to our main hypothesis, there was no difference between musicians and nonmusicians in how spectral context effects shaped instrument sound categorization. Thus, musicians may only outperform nonmusicians for some auditory skills relevant to music (e.g., pitch perception) but not others (e.g., timbre perception via spectral differences).
Collapse
Affiliation(s)
- Anya E Shorey
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, 40292, USA.
| | - Caleb J King
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, 40292, USA.
| | - Kelly L Whiteford
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christian E Stilp
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
2
|
Griffiths TD. Predicting speech-in-noise ability in normal and impaired hearing based on auditory cognitive measures. Front Neurosci 2023; 17:1077344. [PMID: 36824211 PMCID: PMC9941633 DOI: 10.3389/fnins.2023.1077344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Problems with speech-in-noise (SiN) perception are extremely common in hearing loss. Clinical tests have generally been based on measurement of SiN. My group has developed an approach to SiN based on the auditory cognitive mechanisms that subserve this, that might be relevant to speakers of any language. I describe how well these predict SiN, the brain systems for them, and tests of auditory cognition based on them that might be used to characterise SiN deficits in the clinic.
Collapse
Affiliation(s)
- Timothy D. Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Holmes E, Kinghorn EE, McGarry LM, Busari E, Griffiths TD, Johnsrude IS. Pitch discrimination is better for synthetic timbre than natural musical instrument timbres despite familiarity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:31. [PMID: 35931555 PMCID: PMC9800047 DOI: 10.1121/10.0011918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Pitch discrimination is better for complex tones than pure tones, but how pitch discrimination differs between natural and artificial sounds is not fully understood. This study compared pitch discrimination thresholds for flat-spectrum harmonic complex tones with those for natural sounds played by musical instruments of three different timbres (violin, trumpet, and flute). To investigate whether natural familiarity with sounds of particular timbres affects pitch discrimination thresholds, this study recruited non-musicians and musicians who were trained on one of the three instruments. We found that flautists and trumpeters could discriminate smaller differences in pitch for artificial flat-spectrum tones, despite their unfamiliar timbre, than for sounds played by musical instruments, which are regularly heard in everyday life (particularly by musicians who play those instruments). Furthermore, thresholds were no better for the instrument a musician was trained to play than for other instruments, suggesting that even extensive experience listening to and producing sounds of particular timbres does not reliably improve pitch discrimination thresholds for those timbres. The results show that timbre familiarity provides minimal improvements to auditory acuity, and physical acoustics (e.g., the presence of equal-amplitude harmonics) determine pitch discrimination thresholds more than does experience with natural sounds and timbre-specific training.
Collapse
Affiliation(s)
- Emma Holmes
- Department of Speech Hearing and Phonetic Sciences, University College London, London WC1N 1PF, United Kingdom
| | - Elizabeth E Kinghorn
- Don Wright Faculty of Music, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Lucy M McGarry
- Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Elizabeth Busari
- UCL Ear Institute, University College London, London WC1E 6BT, United Kingdom
| | - Timothy D Griffiths
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ingrid S Johnsrude
- Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
4
|
Lad M, Billig AJ, Kumar S, Griffiths TD. A specific relationship between musical sophistication and auditory working memory. Sci Rep 2022; 12:3517. [PMID: 35241747 PMCID: PMC8894429 DOI: 10.1038/s41598-022-07568-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022] Open
Abstract
Previous studies have found conflicting results between individual measures related to music and fundamental aspects of auditory perception and cognition. The results have been difficult to compare because of different musical measures being used and lack of uniformity in the auditory perceptual and cognitive measures. In this study we used a general construct of musicianship, musical sophistication, that can be applied to populations with widely different backgrounds. We investigated the relationship between musical sophistication and measures of perception and working memory for sound by using a task suitable to measure both. We related scores from the Goldsmiths Musical Sophistication Index to performance on tests of perception and working memory for two acoustic features-frequency and amplitude modulation. The data show that musical sophistication scores are best related to working memory for frequency in an analysis that accounts for age and non-verbal intelligence. Musical sophistication was not significantly associated with working memory for amplitude modulation rate or with the perception of either acoustic feature. The work supports a specific association between musical sophistication and working memory for sound frequency.
Collapse
Affiliation(s)
- Meher Lad
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | - Timothy D Griffiths
- Human Brain Research Laboratory, University of Iowa, Iowa, USA
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
5
|
Jennings SG. The role of the medial olivocochlear reflex in psychophysical masking and intensity resolution in humans: a review. J Neurophysiol 2021; 125:2279-2308. [PMID: 33909513 PMCID: PMC8285664 DOI: 10.1152/jn.00672.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 02/01/2023] Open
Abstract
This review addresses the putative role of the medial olivocochlear (MOC) reflex in psychophysical masking and intensity resolution in humans. A framework for interpreting psychophysical results in terms of the expected influence of the MOC reflex is introduced. This framework is used to review the effects of a precursor or contralateral acoustic stimulation on 1) simultaneous masking of brief tones, 2) behavioral estimates of cochlear gain and frequency resolution in forward masking, 3) the buildup and decay of forward masking, and 4) measures of intensity resolution. Support, or lack thereof, for a role of the MOC reflex in psychophysical perception is discussed in terms of studies on estimates of MOC strength from otoacoustic emissions and the effects of resection of the olivocochlear bundle in patients with vestibular neurectomy. Novel, innovative approaches are needed to resolve the dissatisfying conclusion that current results are unable to definitively confirm or refute the role of the MOC reflex in masking and intensity resolution.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
6
|
Liu Y, Xu R, Gong Q. Human Auditory-Frequency Tuning Is Sensitive to Tonal Language Experience. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:4277-4288. [PMID: 33151817 DOI: 10.1044/2020_jslhr-20-00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Purpose The aim of this study is to investigate whether human auditory frequency tuning can be influenced by tonal language experience. Method Perceptual tuning measured via psychophysical tuning curves and cochlear tuning derived via stimulus-frequency otoacoustic emission suppression tuning curves in 14 native speakers of a tonal language (Mandarin) were compared to those of 14 native speakers of a nontonal language (English) at 1 and 4 kHz. Results Group comparisons of both psychophysical tuning curves (p = .046) and stimulus-frequency otoacoustic emission suppression tuning curves (p = .007) in the 4-kHz region indicated sharper frequency tuning in the Mandarin-speaking group relative to the English-speaking group. The auditory tuning was better at the higher (4 kHz) than the lower (1 kHz) probe frequencies (p < .001). Conclusions The sharper auditory tuning in the 4-kHz cochlear region is associated with long-term tonal language (i.e., Mandarin) experience. Experience-dependent plasticity of tonal language may occur before the sound signal reaches central neural stages, as peripheral as the cochlea.
Collapse
Affiliation(s)
- Yin Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Runyi Xu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, Shanghai University, China
| |
Collapse
|
7
|
Tarnowska E, Wicher A, Moore BCJ. No Influence of Musicianship on the Effect of Contralateral Stimulation on Frequency Selectivity. Trends Hear 2020; 24:2331216520939776. [PMID: 32840175 PMCID: PMC7450455 DOI: 10.1177/2331216520939776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The efferent system may control the gain of the cochlea and thereby
influence frequency selectivity. This effect can be assessed using
contralateral stimulation (CS) applied to the ear opposite to that
used to assess frequency selectivity. The effect of CS may be stronger
for musicians than for nonmusicians. To assess whether this was the
case, psychophysical tuning curves (PTCs) were compared for 12
musicians and 12 nonmusicians. The PTCs were measured with and without
a 60-dB sound pressure level (SPL) pink-noise CS, using signal
frequencies of 2 and 4 kHz. The sharpness of the PTCs was quantified
using the measure Q10, the signal frequency divided by the PTC
bandwidth measured 10 dB above the level at the tip. Q10 values were
lower in the presence of the CS, but this effect did not differ
significantly for musicians and nonmusicians. The main effect of group
(musicians vs. nonmusicians) on the Q10 values was not significant.
Overall, these results do not support the idea that musicianship
enhances contralateral efferent gain control as measured using the
effect of CS on PTCs.
Collapse
Affiliation(s)
- Emilia Tarnowska
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Andrzej Wicher
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
8
|
Tarnowska E, Wicher A, Moore BCJ. The effect of musicianship, contralateral noise, and ear of presentation on the detection of changes in temporal fine structure. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1. [PMID: 31370621 DOI: 10.1121/1.5114820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
Musicians are better than non-musicians at discriminating changes in the fundamental frequency (F0) of harmonic complex tones. Such discrimination may be based on place cues derived from low resolved harmonics, envelope cues derived from high harmonics, and temporal fine structure (TFS) cues derived from both low and high harmonics. The present study compared the ability of highly trained violinists and non-musicians to discriminate changes in complex sounds that differed primarily in their TFS. The task was to discriminate harmonic (H) and frequency-shifted inharmonic (I) tones that were bandpass filtered such that the components were largely or completely unresolved. The effect of contralateral noise and ear of presentation was also investigated. It was hypothesized that contralateral noise would activate the efferent system, helping to preserve the neural representation of envelope fluctuations in the H and I stimuli, thereby improving their discrimination. Violinists were significantly better than non-musicians at discriminating the H and I tones. However, contralateral noise and ear of presentation had no effect. It is concluded that, compared to non-musicians, violinists have a superior ability to discriminate complex sounds based on their TFS, and this ability is unaffected by contralateral stimulation or ear of presentation.
Collapse
Affiliation(s)
- Emilia Tarnowska
- Department of Psychoacoustics and Room Acoustics, Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań, Umultowska 85, 61-614 Poland
| | - Andrzej Wicher
- Department of Psychoacoustics and Room Acoustics, Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań, Umultowska 85, 61-614 Poland
| | - Brian C J Moore
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|