1
|
McDonough RV, Rex NB, Ospel JM, Kashani N, Rinkel LA, Sehgal A, Fladt JC, McTaggart RA, Nogueira R, Menon B, Demchuk AM, Poppe A, Hill MD, Goyal M. Association between CT Perfusion Parameters and Hemorrhagic Transformation after Endovascular Treatment in Acute Ischemic Stroke: Results from the ESCAPE-NA1 Trial. AJNR Am J Neuroradiol 2024; 45:887-892. [PMID: 38697793 PMCID: PMC11286015 DOI: 10.3174/ajnr.a8227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND PURPOSE Hemorrhagic transformation can occur as a complication of endovascular treatment for acute ischemic stroke. This study aimed to determine whether ischemia depth as measured by admission CTP metrics can predict the development of hemorrhagic transformation at 24 hours. MATERIALS AND METHODS Patients with baseline CTP and 24-hour follow-up imaging from the ESCAPE-NA1 trial were included. RAPID software was used to generate CTP volume maps for relative CBF, CBV, and time-to-maximum at different thresholds. Hemorrhage on 24-hour imaging was classified according to the Heidelberg system, and volumes were calculated. Univariable and multivariable regression analyses assessed the association between CTP lesion volumes and hemorrhage/hemorrhage subtypes. RESULTS Among 408 patients with baseline CTP, 142 (35%) had hemorrhagic transformation at 24-hour follow-up, with 89 (63%) classified as hemorrhagic infarction (HI1/HI2), and 53 (37%), as parenchymal hematoma (PH1/PH2). Patients with HI or PH had larger volumes of low relative CBF and CBV at each threshold compared with those without hemorrhage. After we adjustied for baseline and treatment variables, only increased relative CBF <30% lesion volume was associated with any hemorrhage (adjusted OR, 1.14; 95% CI, 1.02-1.27 per 10 mL), as well as parenchymal hematoma (adjusted OR, 1.23; 95% CI, 1.06-1.43 per 10 mL). No significant associations were observed for hemorrhagic infarction. CONCLUSIONS Larger "core" volumes of relative CBF <30% were associated with an increased risk of PH following endovascular treatment. This particular metric, in conjunction with other clinical and imaging variables, may, therefore, help estimate the risk of post-endovascular treatment hemorrhagic complications.
Collapse
Affiliation(s)
- Rosalie V McDonough
- From the Department of Radiology (R.V.M., N.B.R., J.M.O., L.A.R., A.S., M.G.), University of Calgary, Calgary, Alberta, Canada
| | - Nathaniel B Rex
- From the Department of Radiology (R.V.M., N.B.R., J.M.O., L.A.R., A.S., M.G.), University of Calgary, Calgary, Alberta, Canada
- Department of Diagnostic Imaging (N.B.R.), Brown University, Providence, Rhode Island
| | - Johanna M Ospel
- From the Department of Radiology (R.V.M., N.B.R., J.M.O., L.A.R., A.S., M.G.), University of Calgary, Calgary, Alberta, Canada
| | - Nima Kashani
- Department of Neurosurgery (N.K.), University of Saskatchewan, Saskatchewan, Canada
| | - Leon A Rinkel
- From the Department of Radiology (R.V.M., N.B.R., J.M.O., L.A.R., A.S., M.G.), University of Calgary, Calgary, Alberta, Canada
- Department of Neurology (L.A.R.), Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Arshia Sehgal
- From the Department of Radiology (R.V.M., N.B.R., J.M.O., L.A.R., A.S., M.G.), University of Calgary, Calgary, Alberta, Canada
| | - Joachim C Fladt
- Department of Neurology and Stroke Center (J.C.F.), University Hospital Basel, Basel, Switzerland
| | - Ryan A McTaggart
- Department of Imaging (R.A.M.), Brown University, Providence, Rhode Island
| | - Raul Nogueira
- Department of Neurology and Neurosurgery (R.N.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Bijoy Menon
- Department of Clinical Neurosciences (B.M., A.M.D., M.D.H., M.G.), University of Calgary, Calgary, Alberta, Canada
| | - Andrew M Demchuk
- Department of Clinical Neurosciences (B.M., A.M.D., M.D.H., M.G.), University of Calgary, Calgary, Alberta, Canada
| | - Alexandre Poppe
- Department of Neurosciences (A.P.), Centre Hospitalier de L'Université de Montréal, Montreal, Quebec, Canada
| | - Michael D Hill
- Department of Clinical Neurosciences (B.M., A.M.D., M.D.H., M.G.), University of Calgary, Calgary, Alberta, Canada
| | - Mayank Goyal
- From the Department of Radiology (R.V.M., N.B.R., J.M.O., L.A.R., A.S., M.G.), University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences (B.M., A.M.D., M.D.H., M.G.), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Soltanpour M, Boulanger P, Buck B. CT Perfusion Map Synthesis from CTP Dynamic Images Using a Learned LSTM Generative Adversarial Network for Acute Ischemic Stroke Assessment. J Med Syst 2024; 48:37. [PMID: 38564061 DOI: 10.1007/s10916-024-02054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Computed tomography perfusion (CTP) is a dynamic 4-dimensional imaging technique (3-dimensional volumes captured over approximately 1 min) in which cerebral blood flow is quantified by tracking the passage of a bolus of intravenous contrast with serial imaging of the brain. To diagnose and assess acute ischemic stroke, the standard method relies on summarizing acquired CTPs over the time axis to create maps that show different hemodynamic parameters, such as the timing of the bolus arrival and passage (Tmax and MTT), cerebral blood flow (CBF), and cerebral blood volume (CBV). However, producing accurate CTP maps requires the selection of an arterial input function (AIF), i.e. a time-concentration curve in one of the large feeding arteries of the brain, which is a highly error-prone procedure. Moreover, during approximately one minute of CT scanning, the brain is exposed to ionizing radiation that can alter tissue composition, and create free radicals that increase the risk of cancer. This paper proposes a novel end-to-end deep neural network that synthesizes CTP images to generate CTP maps using a learned LSTM Generative Adversarial Network (LSTM-GAN). Our proposed method can improve the precision and generalizability of CTP map extraction by eliminating the error-prone and expert-dependent AIF selection step. Further, our LSTM-GAN does not require the entire CTP time series and can produce CTP maps with a reduced number of time points. By reducing the scanning sequence from about 40 to 9 time points, the proposed method has the potential to minimize scanning time thereby reducing patient exposure to CT radiation. Our evaluations using the ISLES 2018 challenge dataset consisting of 63 patients showed that our model can generate CTP maps by using only 9 snapshots, without AIF selection, with an accuracy of 84.37 % .
Collapse
Affiliation(s)
- Mohsen Soltanpour
- Computing Science Department, University of Alberta, Edmonton, Canada.
| | - Pierre Boulanger
- Computing Science Department, University of Alberta, Edmonton, Canada
| | - Brian Buck
- Medicine Deptment, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Khasanova LT, Koltsova EA, Zashezova MK, Okhtova DK, Gavrilova OV, Zhitkevich DI, Egorov VK. [Neuroimaging predictors of hemorrhagic transformation of ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:34-38. [PMID: 39831360 DOI: 10.17116/jnevro202412412234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Hemorrhagic transformation (HT) is a serious complication that worsens outcomes and increases mortality in patients with ischemic stroke (IS). HT can occur both spontaneously and after reperfusion therapy. Severe ischemic injury in IS is not sufficient in itself to cause HT; one of the key elements in its development is reperfusion. Delayed reperfusion in the area of severe ischemic injury mainly increases the likelihood of HT due to disruptions in the blood-brain barrier (BBB), which, in turn, play a key role in the formation of HT in the acute period of IS. Currently, perfusion CT and MRI are the most widely used imaging methods for assessing the patient's condition and predicting clinical outcome. To assess the degree of ischemic injury, there are various neuroimaging indicators that reflect the level of ischemic damage in IS and can be used as predictors of HT. To date, the most reliable tools for assessing the risk of HT include very low cerebral blood volume (VLCBV), time to reach maximum concentration of contrast agent (Tmax), permeability surface-area product (PS), lesion volume in diffusion-weighted images (DWI), and poor collateral circulation.
Collapse
Affiliation(s)
- L T Khasanova
- SavelyevaCity Clinical Hospital No. 31, Moscow, Russia
| | - E A Koltsova
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| | - M K Zashezova
- Chazov National Medical Research Centre of Cardiology, Moscow, Russia
| | - D K Okhtova
- Sochi City Clinical Hospital No. 4, Sochi, Russia
| | - O V Gavrilova
- SavelyevaCity Clinical Hospital No. 31, Moscow, Russia
| | - D I Zhitkevich
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| | - V K Egorov
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| |
Collapse
|
4
|
Larrea A, Elexpe A, Díez-Martín E, Torrecilla M, Astigarraga E, Barreda-Gómez G. Neuroinflammation in the Evolution of Motor Function in Stroke and Trauma Patients: Treatment and Potential Biomarkers. Curr Issues Mol Biol 2023; 45:8552-8585. [PMID: 37998716 PMCID: PMC10670324 DOI: 10.3390/cimb45110539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Neuroinflammation has a significant impact on different pathologies, such as stroke or spinal cord injury, intervening in their pathophysiology: expansion, progression, and resolution. Neuroinflammation involves oxidative stress, damage, and cell death, playing an important role in neuroplasticity and motor dysfunction by affecting the neuronal connection responsible for motor control. The diagnosis of this pathology is performed using neuroimaging techniques and molecular diagnostics based on identifying and measuring signaling molecules or specific markers. In parallel, new therapeutic targets are being investigated via the use of bionanomaterials and electrostimulation to modulate the neuroinflammatory response. These novel diagnostic and therapeutic strategies have the potential to facilitate the development of anticipatory patterns and deliver the most beneficial treatment to improve patients' quality of life and directly impact their motor skills. However, important challenges remain to be solved. Hence, the goal of this study was to review the implication of neuroinflammation in the evolution of motor function in stroke and trauma patients, with a particular focus on novel methods and potential biomarkers to aid clinicians in diagnosis, treatment, and therapy. A specific analysis of the strengths, weaknesses, threats, and opportunities was conducted, highlighting the key challenges to be faced in the coming years.
Collapse
Affiliation(s)
- Ane Larrea
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Ane Elexpe
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| | - Eguzkiñe Díez-Martín
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - María Torrecilla
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Egoitz Astigarraga
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| | - Gabriel Barreda-Gómez
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| |
Collapse
|
5
|
Aderinto N, Olatunji D, Abdulbasit M, Edun M. The essential role of neuroimaging in diagnosing and managing cerebrovascular disease in Africa: a review. Ann Med 2023; 55:2251490. [PMID: 37643607 PMCID: PMC10496522 DOI: 10.1080/07853890.2023.2251490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/11/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Cerebrovascular disease is a significant cause of morbidity and mortality in Africa, and using neuroimaging techniques has improved the diagnosis and management of this disease. However, there is a lack of comprehensive reviews of the role and effectiveness of neuroimaging techniques in the African context. METHODS We reviewed the literature to evaluate the role of neuroimaging in diagnosing and managing cerebrovascular disease in Africa. Our search included electronic databases such as PubMed, Scopus, and Google Scholar from 2000 to April 2023. We included peer-reviewed studies written in English that reported on the use of neuroimaging in diagnosing and managing cerebrovascular disease in African populations. We excluded non-peer-reviewed articles, letters, editorials, and studies unrelated to cerebrovascular disease, neuroimaging, or Africa. A total of 102 potential articles were identified; after applying our exclusion criteria and removing duplicated articles, 51 articles were reviewed. RESULTS Our findings suggest that neuroimaging techniques such as CT, MRI, and Skull x-ray play a crucial role in diagnosing and managing cerebrovascular disease in Africa. CT and MRI were the most commonly used techniques, with CT being more widely available and less expensive than MRI. However, challenges to using neuroimaging in Africa include the high cost of equipment and maintenance, lack of trained personnel, and inadequate infrastructure. These challenges limit the widespread use of neuroimaging in diagnosing and managing cerebrovascular disease in Africa. CONCLUSION Neuroimaging techniques are essential for diagnosing and managing cerebrovascular disease in Africa, but challenges to their use must be addressed to improve healthcare outcomes. Our policy recommendations can help improve the availability and accessibility of neuroimaging services in Africa.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Nigeria
| | - Deji Olatunji
- Department of Medicine and Surgery, University of Ilorin, Nigeria
| | - Muili Abdulbasit
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Nigeria
| | - Mariam Edun
- Department of Medicine and Surgery, University of Ilorin, Nigeria
| |
Collapse
|
6
|
Yang M, Tang L, Hu Z, Tang X. Application of Neuroimaging for the Prediction of Hemorrhagic Transformation after Intravenous Thrombolysis in Acute Ischemic Stroke. Cerebrovasc Dis 2023; 52:1-10. [PMID: 35661647 DOI: 10.1159/000524749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Ischemic stroke is a common cerebrovascular disease with high morbidity, disability, and mortality worldwide. Currently, recombinant tissue plasminogen activator is the main intravenous thrombolysis agent for the treatment of acute ischemic stroke within 4.5 h after onset. Hemorrhagic transformation (HT) is the most serious complication of intravenous thrombolysis, which can significantly aggravate clinical poor prognosis. Therefore, it is important to early predict the risk of post-thrombolysis HT in patients with acute ischemic stroke. SUMMARY Recently, several studies have reported that neuroimaging techniques have potential value in predicting HT after intravenous thrombolysis in patients with acute ischemic stroke. The corresponding neuroimaging parameters may be effective predictors of HT after intravenous thrombolysis. In this review, we summarized and discussed the application of neuroimaging techniques and related parameters in predicting HT after intravenous thrombolysis. KEY MESSAGES Recognizing and understanding the predictive performance of neuroimaging parameters for HT may help assess the risk of HT after intravenous thrombolysis in patients with acute ischemic stroke and make an appropriate treatment decision.
Collapse
Affiliation(s)
- Miaomiao Yang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China,
| | - Lisha Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Xiao C, Chen X, Lu L, Ye Z, Chen X, Dong M, Qin C. Hemodynamic Changes in Patients with Chronic Internal Carotid Artery Occlusion After Recanalization. Neuropsychiatr Dis Treat 2023; 19:1103-1115. [PMID: 37162808 PMCID: PMC10164545 DOI: 10.2147/ndt.s400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
Objective This study aimed to investigate the feasibility and clinical efficacy of endovascular recanalization in patients with chronic internal carotid artery occlusion (CICAO) and explore the application value of computed tomography perfusion (CTP) in endovascular recanalization. Methods This non-randomized controlled study included 41 patients with CICAO. All patients received active medical treatment. In this study, patients with successful endovascular recanalization and those who refused endovascular recanalization were included in the recanalization and medication groups, respectively. Before and 90 days after treatment, cognitive function was evaluated using the Montreal Cognitive Function Assessment, and neurological function was evaluated using the National Institutes of Health Stroke Scale and modified Rankin scale. For patients with successful endovascular recanalization, brain CTP imaging was performed to evaluate hemodynamic changes in patients with CICAO before and three days after treatment. Results Overall, 41 symptomatic patients with CICAO were included, and 20 patients received endovascular recanalization therapy, with a success rate of 60% (12/20). The perioperative complication rate was 15% (3/20); there were no events such as hyperperfusion, distal embolism, vascular rupture, or cerebral hemorrhage, and no stroke-related or death-related events. Patients were divided into a medication group (n=21) and recanalization group (n=12). After 90 days of follow-up, patients in the recanalization group showed greater improvement in overall cognitive and neurological function. In addition, successful endovascular recanalization significantly improved cerebral blood perfusion on the occluded side of patients with CICAO. Conclusion Successful recanalization can effectively improve the overall cognitive and neurological functions of patients in the short term. CTP can be used to quantitatively evaluate not only the cerebral hemodynamic changes after internal carotid artery occlusion but also the improvement of cerebral blood perfusion after successful endovascular recanalization, which provides a reliable method for postoperative follow-up.
Collapse
Affiliation(s)
- Chao Xiao
- Department of Neurology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, People’s Republic of China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Xiuen Chen
- Department of Neurology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, People’s Republic of China
| | - Lizhi Lu
- Department of Neurology, Forsea Life Insurance Nanning Hospital, Nanning, People’s Republic of China
| | - Ziming Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Xiangren Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Meiyu Dong
- The First Clinical Medical College of Guangxi Medical University, Nanning, People’s Republic of China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Correspondence: Chao Qin, Department of Neurology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People’s Republic of China, Email
| |
Collapse
|
8
|
Han S, Huang R, Yao F, Lu Z, Zhu J, Wang H, Li Y. Pre-treatment spectral CT combined with CT perfusion can predict hemorrhagic transformation after thrombolysis in patients with acute ischemic stroke. Eur J Radiol 2022; 156:110543. [PMID: 36179464 DOI: 10.1016/j.ejrad.2022.110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the value of pre-treatment spectral CT angiography (CTA) in predicting hemorrhagic transformation (HT) after intravenous thrombolysis (IVT) treatment in acute ischemic stroke (AIS) patients. MATERIALS AND METHODS AIS patients who underwent IVT with recombinant tissue plasminogen activator and pre-treatment head and neck spectral CTA and head CT perfusion (CTP) from January 2018 to June 2020 were reviewed retrospectively. Finally, 20 patients were included in the HT group and 22 age-matched patients were included in the non-HT group. Spectral and CTP parameters of the region of interest on pre-treatment CTA axial raw images and CTP images, including the infarct core (IC) and ischemic penumbral (IP) regions, were recorded. The differences in clinical variables, CTP, collateral scores and spectral parameters between the two groups were analyzed. Three multivariate logistic regression models were then developed, where model 1 included clinical and spectral parameters, model 2 included clinical and CTP parameters and a combined model included clinical, CTP, and spectral parameters. Receiver operating characteristic analysis was used to evaluate the performance of the multivariate model. RESULTS Patients with HT had higher Safe Implementation of Treatments in Stroke (SITS) score (p = 0.023), the volume of perfusion lesions (p = 0.005), the volume of IP (p = 0.003), the mean transit time (MIT) in the IC area (p = 0.012), as well as the TTP in IP area (p = 0.015) compared with patients without HT. The HT group showed significantly lower CBF in the IC area (p = 0.019), iodine concentration (p = 0.017) and the effective atomic number (p = 0.024) in the IP area than non-HT group. And the slope of the spectral curve of the HT group in the IP region was larger than that of the non-HT group (p = 0.023). Gender, age, SITS score, the volume of entire perfusion lesion, CBF and MIT in the IC area, TTP in the IP area, as well as iodine concentration in the IP area were included in the final multivariate model for predicting HT. And CBF in the IC area (OR = 0.779, 95 % CI:0.609-0.996, p = 0.046) as well as the iodine concentration of IP area (OR = 0.343, 95 % CI: 0.131-0.901, p = 0.030) were proved to be independent predictors for HT. The combined model including clinical, spectral, and CTP parameters, showed improved accuracy compared to the other two models, while the Delong test did not suggest a statistically significant difference (both p values > 0.05). CONCLUSIONS The iodine concentration of IP area derived from pre-treatment spectral CTA was an independent predictor of HT after IVT treatment for AIS patients. Moreover, multivariate models combined with clinical, spectral, and CTP parameters may be able to predict HT.
Collapse
Affiliation(s)
- Shuting Han
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, PR China
| | - Renjun Huang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, PR China
| | - Feirong Yao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, PR China
| | - Ziwei Lu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, PR China
| | - Jingfen Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, PR China
| | - Hui Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, PR China.
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, PR China; Institute of Medical Imaging, Soochow University, Suzhou City, Jiangsu Province 215000, PR China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, PR China.
| |
Collapse
|
9
|
Katyal A, Bhaskar SMM. Value of pre-intervention computed tomography perfusion imaging in the assessment of tissue outcome and long-term clinical prognosis in patients with anterior circulation acute ischemic stroke receiving reperfusion therapy: a systematic review. Acta Radiol 2022; 63:1243-1254. [PMID: 34342497 DOI: 10.1177/02841851211035892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Computed tomography perfusion (CTP) imaging has emerged as an important adjunct to the current armamentarium of acute ischemic stroke (AIS) workflow. However, its adoption in routine clinical practice is far from optimal. PURPOSE To investigate the putative association of CTP imaging biomarkers in the assessment of prognosis in acute ischemic stroke. MATERIAL AND METHODS We performed a systematic review of the literature using MEDLINE, EMBASE, and Cochrane Central Register of Clinical Trials focusing on CTP biomarkers, tissue-based and clinical-based patient outcomes. We included randomized controlled trials, prospective cohort studies, and case-controlled studies published from January 2005 to 28 August 2020. Two independent reviewers conducted the study appraisal, data extraction, and quality assessment of the studies. RESULTS A total of 60 full-text studies were included in the final systematic review analysis. Increasing infarct core volume is associated with reduced odds of achieving functional independence (modified Rankin score 0-2) at 90 days and is correlated with the final infarct volume when reperfusion is achieved. CONCLUSION CTP has value in assessing tissue perfusion status in the hyperacute stroke setting and the long-term clinical prognosis of patients with AIS receiving reperfusion therapy. However, the prognostic use of CTP requires optimization and further validation.
Collapse
Affiliation(s)
- Anubhav Katyal
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, NSW, Australia.,University of New South Wales (UNSW), South West Sydney Clinical School, Sydney, NSW, Australia
| | - Sonu Menachem Maimonides Bhaskar
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, NSW, Australia.,Liverpool Hospital & South West Sydney Local Health District (SWSLHD), Department of Neurology & Neurophysiology, Sydney, NSW, Australia.,NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW, Australia.,Thrombolysis and Endovascular WorkFLOw Network (TEFLON), Sydney, NSW, Australia
| |
Collapse
|
10
|
Timing of anticoagulation after acute ischemic stroke in patients with atrial fibrillation. Neurol Sci 2022:1-12. [PMID: 35762354 DOI: 10.1017/cjn.2022.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke 2022; 53:1473-1486. [PMID: 35387495 PMCID: PMC9038693 DOI: 10.1161/strokeaha.122.036946] [Citation(s) in RCA: 360] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintaining blood-brain barrier (BBB) integrity is crucial for the homeostasis of the central nervous system. Structurally comprising the BBB, brain endothelial cells interact with pericytes, astrocytes, neurons, microglia, and perivascular macrophages in the neurovascular unit. Brain ischemia unleashes a profound neuroinflammatory response to remove the damaged tissue and prepare the brain for repair. However, the intense neuroinflammation occurring during the acute phase of stroke is associated with BBB breakdown, neuronal injury, and worse neurological outcomes. Here, we critically discuss the role of neuroinflammation in ischemic stroke pathology, focusing on the BBB and the interactions between central nervous system and peripheral immune responses. We highlight inflammation-driven injury mechanisms in stroke, including oxidative stress, increased MMP (matrix metalloproteinase) production, microglial activation, and infiltration of peripheral immune cells into the ischemic tissue. We provide an updated overview of imaging techniques for in vivo detection of BBB permeability, leukocyte infiltration, microglial activation, and upregulation of cell adhesion molecules following ischemic brain injury. We discuss the possibility of clinical implementation of imaging modalities to assess stroke-associated neuroinflammation with the potential to provide image-guided diagnosis and treatment. We summarize the results from several clinical studies evaluating the efficacy of anti-inflammatory interventions in stroke. Although convincing preclinical evidence suggests that neuroinflammation is a promising target for ischemic stroke, thus far, translating these results into the clinical setting has proved difficult. Due to the dual role of inflammation in the progression of ischemic damage, more research is needed to mechanistically understand when the neuroinflammatory response begins the transition from injury to repair. This could have important implications for ischemic stroke treatment by informing time- and context-specific therapeutic interventions.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville (E.C-J)
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, the Netherlands (R.M.D.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (T.M.)
| |
Collapse
|
12
|
Zhang XX, Yao FR, Zhu JH, Chen ZG, Shen YP, Qiao YN, Shi HC, Liang JH, Wang XM, Fang Q. Nomogram to predict haemorrhagic transformation after stroke thrombolysis: a combined brain imaging and clinical study. Clin Radiol 2021; 77:e92-e98. [PMID: 34657729 DOI: 10.1016/j.crad.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022]
Abstract
AIM To construct a novel nomogram by integrating computed tomography perfusion (CTP) and clinical parameters for individualised prediction of haemorrhagic transformation (HT) in intravenous thrombolysis (IVT)-treated acute ischaemic stroke (AIS) patients. METHODS Anterior circulation AIS patients who underwent IVT at a single centre from January 2018 to June 2020 were reviewed retrospectively. The CTP parameters of two regions of interest (ROI), the entire perfusion lesion areas, and the infract core areas, were assessed. HT was documented by follow-up CT 24 ± 2 h after IVT. Multivariable logistic regression was conducted by including clinical variables and CTP parameters to identify the independent predictors of HT. A nomogram was developed based on the independent predictors. The discriminative value and calibration of the nomogram were tested by concordance indexes (C-indexes) and calibration plots. Internal validation was performed using fivefold cross-validation. RESULTS The nomogram was generated using the complete data from 341 patients. Seven variables were included in the final nomogram, including: the relative cerebral blood volume (rCBV), permeability surface (PS), and relative PS (rPS) in infract core areas, the relative time to maximum (rTmax) and rPS in entire perfusion lesion areas, the National Institutes of Health Stroke Scale (NIHSS), and atrial fibrillation (AF). The C-indexes were 0.815 and 0.817 for the nomogram and internal validation. The calibration plots showed excellent agreement. CONCLUSION This is the first study establishing a nomogram based on CTP and clinical parameters to predict HT after stroke thrombolysis.
Collapse
Affiliation(s)
- X-X Zhang
- Department of Neurology, Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu Province, China; Department of Neurology, The First Affiliated Hospital of Soochow University, Soochow, 215000, Jiangsu, China
| | - F-R Yao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - J-H Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Soochow, 215000, Jiangsu, China
| | - Z-G Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Soochow, 215000, Jiangsu, China
| | - Y-P Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Y-N Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215000, Jiangsu, China
| | - H-C Shi
- Department of Neurology, Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu Province, China
| | - J-H Liang
- Department of Imaging, Medical College of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - X-M Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Q Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Soochow, 215000, Jiangsu, China.
| |
Collapse
|
13
|
Ande SR, Grynspan J, Aviv RI, Shankar JJS. Imaging for Predicting Hemorrhagic Transformation of Acute Ischemic Stroke-A Narrative Review. Can Assoc Radiol J 2021; 73:194-202. [PMID: 34154379 DOI: 10.1177/08465371211018369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hemorrhagic transformation is caused by extravasation of blood products from vessels after acute ischemic stroke. It is an undesirable and potentially devastating complication, which occurs in 10%-40% of clinical cases. Hemorrhagic transformation is classified into four subtypes based on European cooperative acute stroke study II. Predicting hemorrhagic complications at presentation can be useful life saving/altering decisions for the patient. Also, understanding the mechanisms of hemorrhagic transformation can lead to new treatments and intervention measures. We highlighted various imaging techniques that have been used to predict hemorrhagic transformation. Specifically, we looked at the usefulness of perfusion and permeability imaging for hemorrhagic transformation. Use of imaging to predict hemorrhagic transformation could change patient management that may lead to the prevention of hemorrhagic transformation before it occurs. We concluded that the current evidence is not strong enough to rely on these imaging parameters for predicting hemorrhagic transformation and more studies are required.
Collapse
Affiliation(s)
- Sudharsana Rao Ande
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jonathan Grynspan
- Department of Radiology, Prairie Skies Medical Imaging, Regina, Saskatchewan, Canada
| | - Richard I Aviv
- Department of Radiology, The Ottawa Hospital and University of Ottawa, Ottawa, Ontario, Canada
| | - Jai Jai Shiva Shankar
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Liu N, Liu C, Yang Y, Ma G, Wei G, Liu S, Kong L, Du G. Xiao-Xu-Ming decoction prevented hemorrhagic transformation induced by acute hyperglycemia through inhibiting AGE-RAGE-mediated neuroinflammation. Pharmacol Res 2021; 169:105650. [PMID: 33964468 DOI: 10.1016/j.phrs.2021.105650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/02/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
Stroke is one of the leading causes of death worldwide. Hemorrhagic transformation (HT) is a common serious complication of ischemic stroke (IS) and is related to poor prognosis. Hyperglycemia after stroke is associated with the occurrence of HT and seriously affects the clinical treatment of stroke. Our previous experiments demonstrated that the Xiao-Xu-Ming decoction effective components group (XXMD), which is a Chinese medicine formula reconstituted by active ingredients, has multiple pharmacological effects in the treatment of IS. However, the effects of XXMD on HT after IS remain unclear. Thus, we investigated the preventive effects of XXMD on hyperglycemia-induced HT and further explored the underlying mechanism. Acute hyperglycemia combined with the electrocoagulation cerebral ischemia model was used to establish the HT model. XXMD (37.5, 75, 150 mg/kg/d) was given by gavage for 5 days. Network pharmacology was used to predict potential targets and pathways of XXMD in HT occurrence, and further studies confirmed the related targets. The results showed that hyperglycemia aggravated neurological deficits and blood-brain barrier (BBB) disruption, leading to intracerebral hemorrhage. Pretreatment with XXMD improved neurological function and BBB integrity and inhibited HT occurrence. Network pharmacology revealed that AGE-RAGE-mediated neuroinflammation may be associated with hyperglycemia-induced HT. Further studies confirmed that hyperglycemia activated the AGE-RAGE signaling pathway, increased the expression of HMGB1, TLR4 and p-p65, and induced the release of inflammatory factors and neutrophil infiltration, leading to HT. XXMD could inhibit AGE-RAGE-mediated neuroinflammation. These findings indicated that pretreatment with XXMD alleviated hyperglycemia-induced HT, which may be associated with the inhibition of AGE-RAGE-mediated neuroinflammation. Therefore, XXMD may be a potential therapeutic drug for HT.
Collapse
Affiliation(s)
- Nannan Liu
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Panyu District, Guangdong 510006, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Chengdi Liu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Yujiao Yang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, PR China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Guangyi Wei
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Panyu District, Guangdong 510006, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Shan Liu
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Panyu District, Guangdong 510006, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guanhua Du
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Panyu District, Guangdong 510006, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
15
|
Charbonnier G, Bonnet L, Biondi A, Moulin T. Intracranial Bleeding After Reperfusion Therapy in Acute Ischemic Stroke. Front Neurol 2021; 11:629920. [PMID: 33633661 PMCID: PMC7900408 DOI: 10.3389/fneur.2020.629920] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Intracranial hemorrhage is one of the most feared complications following brain infarct. Ischemic tissues have a natural tendency to bleed. Moreover, the first recanalization trials using intravenous thrombolysis have shown an increase in mild to severe intracranial hemorrhage. Symptomatic intracerebral hemorrhage is strongly associated with poor outcomes and is an important factor in recanalization decisions. Stroke physicians have to weigh the potential benefit of recanalization therapies, first, with different risks of intracranial hemorrhage described in randomized controlled trials, and second with numerous risk markers that have been found to be associated with intracranial hemorrhage in retrospective series. These decisions have become quite complex with different intravenous thrombolytics and mechanical thrombectomy. This review aims to outline some elements of the pathophysiological mechanisms and classifications, describe most of the risk factors identified for each reperfusion therapy, and finally suggest future research directions that could help physicians dealing with these complications.
Collapse
Affiliation(s)
- Guillaume Charbonnier
- Neurology Department, Besançon University Hospital, Besançon, France.,Interventional Neuroradiology Department, Besançon University Hospital, Besançon, France.,EA 481 Neurosciences laboratory, Franche-Comté University, Besançon, France
| | - Louise Bonnet
- Neurology Department, Besançon University Hospital, Besançon, France
| | - Alessandra Biondi
- Interventional Neuroradiology Department, Besançon University Hospital, Besançon, France.,CIC-1431 Inserm, Besançon, France
| | - Thierry Moulin
- Neurology Department, Besançon University Hospital, Besançon, France.,EA 481 Neurosciences laboratory, Franche-Comté University, Besançon, France.,CIC-1431 Inserm, Besançon, France
| |
Collapse
|
16
|
Arba F, Rinaldi C, Caimano D, Vit F, Busto G, Fainardi E. Blood-Brain Barrier Disruption and Hemorrhagic Transformation in Acute Ischemic Stroke: Systematic Review and Meta-Analysis. Front Neurol 2021; 11:594613. [PMID: 33551955 PMCID: PMC7859439 DOI: 10.3389/fneur.2020.594613] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/07/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction: Hemorrhagic transformation (HT) is a complication of reperfusion therapy for acute ischemic stroke. Blood–brain barrier (BBB) disruption is a crucial step toward HT; however, in clinical studies, there is still uncertainty about this relation. Hence, we conducted a systematic review and meta-analysis to summarize the current evidence. Methods: We performed systematic review and meta-analysis of observational studies from January 1990 to March 2020 about the relation between BBB disruption and HT in patients with acute ischemic stroke with both computed tomography (CT) and magnetic resonance (MR) assessment of BBB. The outcome of interest was HT at follow-up imaging evaluation (within 48 h from symptom onset). We pooled data from available univariate odds ratios (ORs) in random-effects models with DerSimonian–Laird weights and extracted cumulative ORs. Results: We included 30 eligible studies (14 with CT and 16 with MR), N = 2,609 patients, with 88% and 70% of patients included in CT and MR studies treated with acute stroke therapy, respectively. The majority of studies were retrospective and had high or unclear risk of bias. BBB disruption was measured with consistent methodology in CT studies, whereas in MR studies, there was more variability. All CT studies provided a BBB disruption cutoff predictive of HT. Four CT and 10 MR studies were included in the quantitative analysis. We found that BBB disruption was associated with HT with both CT (OR = 3.42; 95%CI = 1.62–7.23) and MR (OR = 9.34; 95%CI = 3.16–27.59). There was a likely publication bias particularly for MR studies. Conclusion: Our results confirm that BBB disruption is associated with HT in both CT and MR studies. Compared with MR, CT has been more uniformly applied in the literature and has resulted in more consistent results. However, more efforts are needed for harmonization of protocols and methodology for implementation of BBB disruption as a neuroradiological marker in clinical practice.
Collapse
Affiliation(s)
| | - Chiara Rinaldi
- NEUROFARBA Department, University of Florence, Florence, Italy
| | - Danilo Caimano
- NEUROFARBA Department, University of Florence, Florence, Italy
| | - Federica Vit
- NEUROFARBA Department, University of Florence, Florence, Italy
| | | | - Enrico Fainardi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
17
|
Bernardo-Castro S, Sousa JA, Brás A, Cecília C, Rodrigues B, Almendra L, Machado C, Santo G, Silva F, Ferreira L, Santana I, Sargento-Freitas J. Pathophysiology of Blood-Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front Neurol 2020; 11:594672. [PMID: 33362697 PMCID: PMC7756029 DOI: 10.3389/fneur.2020.594672] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) is a dynamic interface responsible for maintaining the central nervous system homeostasis. Its unique characteristics allow protecting the brain from unwanted compounds, but its impairment is involved in a vast number of pathological conditions. Disruption of the BBB and increase in its permeability are key in the development of several neurological diseases and have been extensively studied in stroke. Ischemic stroke is the most prevalent type of stroke and is characterized by a myriad of pathological events triggered by an arterial occlusion that can eventually lead to fatal outcomes such as hemorrhagic transformation (HT). BBB permeability seems to follow a multiphasic pattern throughout the different stroke stages that have been associated with distinct biological substrates. In the hyperacute stage, sudden hypoxia damages the BBB, leading to cytotoxic edema and increased permeability; in the acute stage, the neuroinflammatory response aggravates the BBB injury, leading to higher permeability and a consequent risk of HT that can be motivated by reperfusion therapy; in the subacute stage (1-3 weeks), repair mechanisms take place, especially neoangiogenesis. Immature vessels show leaky BBB, but this permeability has been associated with improved clinical recovery. In the chronic stage (>6 weeks), an increase of BBB restoration factors leads the barrier to start decreasing its permeability. Nonetheless, permeability will persist to some degree several weeks after injury. Understanding the mechanisms behind BBB dysregulation and HT pathophysiology could potentially help guide acute stroke care decisions and the development of new therapeutic targets; however, effective translation into clinical practice is still lacking. In this review, we will address the different pathological and physiological repair mechanisms involved in BBB permeability through the different stages of ischemic stroke and their role in the development of HT and stroke recovery.
Collapse
Affiliation(s)
| | - João André Sousa
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Brás
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Carla Cecília
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Bruno Rodrigues
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Luciano Almendra
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Cristina Machado
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Gustavo Santo
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Fernando Silva
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
18
|
Elsaid N, Mustafa W, Saied A. Radiological predictors of hemorrhagic transformation after acute ischemic stroke: An evidence-based analysis. Neuroradiol J 2020; 33:118-133. [PMID: 31971093 PMCID: PMC7140299 DOI: 10.1177/1971400919900275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hemorrhagic transformation (HT) is one of the most common adverse events related to acute ischemic stroke (AIS) that affects the treatment plan and clinical outcome. Identification of a sensitive radiological marker may influence the controversial thrombolytic decision in the setting of AIS and may at a minimum indicate more intensive monitoring or further prophylactic interventions. In this article we summarize possible radiological biomarkers and the role of different radiological modalities including computed tomography (CT), magnetic resonance imaging, angiography, and ultrasound in predicting HT. Different radiological indices of early ischemic changes, large ischemic lesion volume, severe blood flow restriction, blood-brain barrier disruption, poor collaterals and high blood flow velocities have been reported to be associated with higher risk of HT. The current levels of evidence of the available studies highlight the role of the different CT perfusion parameters in predicting HT. Further large standardized studies are recommended to compare the sensitivity and specificity of the different radiological markers combined and delineate the most reliable predictor.
Collapse
Affiliation(s)
- Nada Elsaid
- Department of Neurology, University of Mansoura
Faculty of Medicine, Egypt
| | - Wessam Mustafa
- Department of Neurology, University of Mansoura
Faculty of Medicine, Egypt
| | - Ahmed Saied
- Department of Neurology, University of Mansoura
Faculty of Medicine, Egypt
| |
Collapse
|