1
|
Chen L, Huang R, Huang C, Nong G, Mo Y, Ye L, Lin K, Chen A. Cell therapy for scleroderma: progress in mesenchymal stem cells and CAR-T treatment. Front Med (Lausanne) 2025; 11:1530887. [PMID: 39882532 PMCID: PMC11774712 DOI: 10.3389/fmed.2024.1530887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Cell therapy is an emerging strategy for precision treatment of scleroderma. This review systematically summarizes the research progress of mesenchymal stem cell (MSC) and chimeric antigen receptor T cell (CAR-T) therapies in scleroderma and discusses the challenges and future directions for development. MSCs possess multiple functions, including immunomodulation, anti-fibrosis, and promotion of vascular regeneration, all of which can improve multiple pathological processes associated with scleroderma. Studies have demonstrated that MSCs can alleviate skin fibrosis by inhibiting CCL2 production and reducing the recruitment of pathological macrophages; their paracrine effects can exert extensive regulatory functions. CAR-T cell therapy ca specifically target and eliminate autoreactive immune cells, exhibiting enhanced specificity and personalized potential. Different cell therapies may have complementary and synergistic effects in treating scleroderma, such as MSCs exerting their effects through paracrine mechanisms while CAR-T cells specifically eliminate pathological cells. Furthermore, cell-free therapies derived from MSCs, such as extracellular vesicles or exosomes, may help circumvent the limitations of MSC therapy. Although cell therapy has opened new avenues for the precision treatment of scleroderma, it still faces numerous challenges. In the future, it is essential to strengthen integration of basic and clinical research, establish standardized protocols for cell preparation and quality control, develop personalized treatment plans, and rationally combine cell therapy with existing treatment methods to maximize its advantages and improve patient prognosis and quality of life.
Collapse
Affiliation(s)
- Liting Chen
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Rongshan Huang
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Chaoshuo Huang
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Guiming Nong
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Yuanyuan Mo
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Lvyin Ye
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Kunhong Lin
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Anping Chen
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
- Minda Hospital of Hubei Minzu University, Enshi, China
| |
Collapse
|
2
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
3
|
Takamura N, Yamaguchi Y. Involvement of caveolin-1 in skin diseases. Front Immunol 2022; 13:1035451. [PMID: 36532050 PMCID: PMC9748611 DOI: 10.3389/fimmu.2022.1035451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
The skin is the outermost layer and largest organ in the human body. Since the skin interfaces with the environment, it has a variety of roles, including providing a protective barrier against external factors, regulating body temperature, and retaining water in the body. It is also involved in the immune system, interacting with immune cells residing in the dermis. Caveolin-1 (CAV-1) is essential for caveolae formation and has multiple functions including endocytosis, lipid homeostasis, and signal transduction. CAV-1 is known to interact with a variety of signaling molecules and receptors and may influence cell proliferation and migration. Several skin-related disorders, especially those of the inflammatory or hyperproliferative type such as skin cancers, psoriasis, fibrosis, and wound healing, are reported to be associated with aberrant CAV-1 expression. In this review, we have explored CAV-1 involvement in skin physiology and skin diseases.
Collapse
|
4
|
Kuca-Warnawin E, Olesińska M, Szczȩsny P, Kontny E. Impact and Possible Mechanism(s) of Adipose Tissue-Derived Mesenchymal Stem Cells on T-Cell Proliferation in Patients With Rheumatic Disease. Front Physiol 2022; 12:749481. [PMID: 35095547 PMCID: PMC8793746 DOI: 10.3389/fphys.2021.749481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives: Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are chronic wasting, incurable rheumatic diseases of autoimmune background, in which T cells play a critical pathogenic role. Autologous adipose tissue-derived mesenchymal stem cells (ASCs) may represent an alternative therapeutic option for SLE and SSc patients, but the biology of these cells is poorly understood. Methods: Herein, we evaluated the anti-proliferative impact of ASCs of healthy donors (HD/ASCs, 5 reference cell lines), SLE patients (n = 20), and SSc patients (n = 20) on T lymphocytes. To assess the direct and indirect pathway of ASCs action, peripheral blood mononuclear cells (PBMCs) and purified CD4+ T cells of HD were activated and co-cultured in cell-to-cell contact (C-C) and transwell (T-W) conditions with untreated or cytokine (TNF + IFNΥ, TI)-licensed ASCs, then analyzed by flow cytometry to rate the proliferation response of CD8+ and/or CD4+ T cells. The concentrations of kynurenines, prostaglandin E2 (PGE2), interleukin 10 (IL-10), and transforming growth factor β (TGFβ) were measured from culture supernatants. Specific inhibitors of these factors (1-MT, indomethacin, and cytokine-neutralizing antibody) were used to assess their contribution to anti-proliferative ASCs action. Results: All tested ASCs significantly decreased the number of proliferating CD4+ and CD8+ T cells, the number of division/proliferating cell (PI), and fold expansion (RI), and similarly upregulated kynurenines and PGE2, but not cytokine levels, in the co-cultures with both types of target cells. However, TI-treated SLE/ASCs and SSc/ASCs exerted a slightly weaker inhibitory effect on CD4+ T-cell replication than their respective HD/ASCs. All ASCs acted mainly via soluble factors. Their anti-proliferative effect was stronger, and kynurenine levels were higher in the T-W condition than the C-C condition. Blocking experiments indicated an involvement of kynurenine pathway in inhibiting the number of proliferating cells, PI, and RI values as well as PGE2 role in decreasing the number of proliferating cells. TGFβ did not contribute to ASCs anti-proliferative capabilities, while IL-10 seems to be involved in such activity of only SLE/ASCs. Conclusion: The results indicate that SLE/ASCs and SSc/ASCs retain their capability to restrain the expansion of allogeneic CD4+ and CD8+ T cells and act by similar mechanisms as ASCs of healthy donors and thus may have therapeutic value.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesińska
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Szczȩsny
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
5
|
Zanin-Silva DC, Santana-Gonçalves M, Kawashima-Vasconcelos MY, Oliveira MC. Management of Endothelial Dysfunction in Systemic Sclerosis: Current and Developing Strategies. Front Med (Lausanne) 2021; 8:788250. [PMID: 35004754 PMCID: PMC8727451 DOI: 10.3389/fmed.2021.788250] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic Sclerosis (SSc) is an autoimmune disease marked by dysregulation of the immune system, tissue fibrosis and dysfunction of the vasculature. Vascular damage, remodeling and inadequate endothelial repair are hallmarks of the disease. Since early stages of SSc, damage and apoptosis of endothelial cells (ECs) can lead to perivascular inflammation, oxidative stress and tissue hypoxia, resulting in multiple clinical manifestations. Raynaud's phenomenon, edematous puffy hands, digital ulcers, pulmonary artery hypertension, erectile dysfunction, scleroderma renal crisis and heart involvement severely affect quality of life and survival. Understanding pathogenic aspects and biomarkers that reflect endothelial damage in SSc is essential to guide therapeutic interventions. Treatment approaches described for SSc-associated vasculopathy include pharmacological options to improve blood flow and tissue perfusion and, more recently, cellular therapy to enhance endothelial repair, promote angiogenesis and heal injuries. This mini-review examines the current knowledge on cellular and molecular aspects of SSc vasculopathy, as well as established and developing therapeutic approaches for improving the vascular compartment.
Collapse
Affiliation(s)
- Djúlio César Zanin-Silva
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Basic and Applied Immunology Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maynara Santana-Gonçalves
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Oncology, Stem Cell and Cell-Therapy Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marianna Yumi Kawashima-Vasconcelos
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Internal Medicine Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Romano E, Rosa I, Fioretto BS, Cerinic MM, Manetti M. The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: from Origin to Therapeutic Targeting. Curr Mol Med 2021; 22:209-239. [PMID: 33823766 DOI: 10.2174/0929867328666210325102749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disorder characterized by multisystem clinical manifestations resulting from immune dysregulation/autoimmunity, vasculopathy and, most notably, progressive fibrosis of the skin and internal organs. In recent years, it has emerged that the main drivers of SSc-related tissue fibrosis are myofibroblasts, a type of mesenchymal cells with both the extracellular matrix-synthesizing features of fibroblasts and the cytoskeletal characteristics of contractile smooth muscle cells. The accumulation and persistent activation of pro-fibrotic myofibroblasts during SSc development and progression result into elevated mechanical stress and reduced matrix plasticity within the affected tissues and may be ascribed to a reduced susceptibility of these cells to pro-apoptotic stimuli, as well as their increased formation from tissue-resident fibroblasts or transition from different cell types. Given the crucial role of myofibroblasts in SSc pathogenesis, finding the way to inhibit myofibroblast differentiation and accumulation by targeting their formation, function and survival may represent an effective approach to hamper the fibrotic process or even halt or reverse established fibrosis. In this review, we discuss the role of myofibroblasts in SSc-related fibrosis, with a special focus on their cellular origin and the signaling pathways implicated in their formation and persistent activation. Furthermore, we provide an overview of potential therapeutic strategies targeting myofibroblasts that may be able to counteract fibrosis in this pathological condition.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence. Italy
| |
Collapse
|
7
|
Rosa I, Romano E, Fioretto BS, Matucci-Cerinic M, Manetti M. Adipose-derived stem cells: Pathophysiologic implications vs therapeutic potential in systemic sclerosis. World J Stem Cells 2021; 13:30-48. [PMID: 33584978 PMCID: PMC7859990 DOI: 10.4252/wjsc.v13.i1.30] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) residing in the stromal vascular fraction (SVF) of white adipose tissue are recently emerging as an alternative tool for stem cell-based therapy in systemic sclerosis (SSc), a complex connective tissue disorder affecting the skin and internal organs with fibrotic and vascular lesions. Several preclinical and clinical studies have reported promising therapeutic effects of fat grafting and autologous SVF/ADSC-based local treatment for facial and hand cutaneous manifestations of SSc patients. However, currently available data indicate that ADSCs may represent a double-edged sword in SSc, as they may exhibit a pro-fibrotic and anti-adipogenic phenotype, possibly behaving as an additional pathogenic source of pro-fibrotic myofibroblasts through the adipocyte-to-myofibroblast transition process. Thus, in the perspective of a larger employ of SSc-ADSCs for further therapeutic applications, it is important to definitely unravel whether these cells present a comparable phenotype and similar immunosuppressive, anti-inflammatory, anti-fibrotic and pro-angiogenic properties in respect to healthy ADSCs. In light of the dual role that ADSCs seem to play in SSc, this review will provide a summary of the most recent insights into the preclinical and clinical studies employing SVF and ADSCs for the treatment of the disease and, at the same time, will focus on the main findings highlighting the possible involvement of these stem cells in SSc-related fibrosis pathogenesis.
Collapse
Affiliation(s)
- Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy.
| |
Collapse
|
8
|
Manetti M. Could autologous adipose-derived stromal vascular fraction turn out an unwanted source of profibrotic myofibroblasts in systemic sclerosis? Ann Rheum Dis 2020; 79:e55. [PMID: 30867149 DOI: 10.1136/annrheumdis-2019-215288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence I-50134, Italy
| |
Collapse
|
9
|
Kuca-Warnawin E, Skalska U, Janicka I, Musiałowicz U, Bonek K, Głuszko P, Szczęsny P, Olesińska M, Kontny E. The Phenotype and Secretory Activity of Adipose-Derived Mesenchymal Stem Cells (ASCs) of Patients with Rheumatic Diseases. Cells 2019; 8:E1659. [PMID: 31861245 PMCID: PMC6952982 DOI: 10.3390/cells8121659] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have immunosuppressive and regenerative properties. Adipose tissue is an alternative source of MSCs, named adipose-derived mesenchymal stem cells (ASCs). Because the biology of ASCs in rheumatic diseases (RD) is poorly understood, we performed a basic characterization of RD/ASCs. The phenotype and expression of adhesion molecules (intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1) on commercially available healthy donors (HD), ASC lines (n = 5) and on ASCs isolated from patients with systemic lupus erythematosus (SLE, n = 16), systemic sclerosis (SSc, n = 17) and ankylosing spondylitis (AS, n = 16) were analyzed by flow cytometry. The secretion of immunomodulatory factors by untreated and cytokine-treated ASCs was measured by ELISA. RD/ASCs have reduced basal levels of CD90 and ICAM-1 expression, correlated with interleukin (IL)-6 and transforming growth factor (TGF)-β1 release, respectively. Compared with HD/ASCs, untreated and tumour necrosis factor (TNF) + interferon (IFN)-γ (TI)-treated RD/ASCs produced similar amounts of prostaglandin E2 (PGE2), IL-6, leukemia inhibiting factor (LIF), and TGF-β1, more IL-1Ra, soluble human leukocyte antigen G (sHLA-G) and tumor necrosis factor-inducible gene (TSG)-6, but less kynurenines and galectin-3. Basal secretion of galectin-3 was inversely correlated with the patient's erythrocyte sedimentation rate (ESR) value. IFN-α and IL-23 slightly raised galectin-3 release from SLE/ASCs and AS/ASCs, respectively. TGF-β1 up-regulated PGE2 secretion by SSc/ASCs. In conclusion, RD/ASCs are characterized by low basal levels of CD90 and ICAM-1 expression, upregulated secretion of IL-1Ra, TSG-6 and sHLA-G, but impaired release of kynurenines and galectin-3. These abnormalities may modify biological activities of RD/ASCs.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (U.S.); (I.J.); (U.M.); (E.K.)
| | - Urszula Skalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (U.S.); (I.J.); (U.M.); (E.K.)
| | - Iwona Janicka
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (U.S.); (I.J.); (U.M.); (E.K.)
| | - Urszula Musiałowicz
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (U.S.); (I.J.); (U.M.); (E.K.)
| | - Krzysztof Bonek
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (K.B.); (P.G.)
| | - Piotr Głuszko
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (K.B.); (P.G.)
| | - Piotr Szczęsny
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (P.S.); (M.O.)
| | - Marzena Olesińska
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (P.S.); (M.O.)
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (U.S.); (I.J.); (U.M.); (E.K.)
| |
Collapse
|
10
|
VELIER M, SIMONCINI S, ABELLAN M, FRANCOIS P, EAP S, LAGRANGE A, BERTRAND B, DAUMAS A, GRANEL B, DELORME B, DIGNAT GEORGE F, MAGALON J, SABATIER F. Adipose-Derived Stem Cells from Systemic Sclerosis Patients Maintain Pro-Angiogenic and Antifibrotic Paracrine Effects In Vitro. J Clin Med 2019; 8:E1979. [PMID: 31739569 PMCID: PMC6912239 DOI: 10.3390/jcm8111979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Innovative therapies based on autologous adipose-derived stem/stromal cells (ASC) are currently being evaluated for treatment of systemic sclerosis (SSc). Although paracrine angiogenic and antifibrotic effects are considered the predominant mechanisms of ASC therapeutic potential, the impact of SSc on ASC paracrine functions remains controversial. In this study, phenotype, senescence, differentiation potential, and molecular profile were determined in ASC from SSc patients (SSc-ASC) (n = 7) and healthy donors (HD-ASC) (n = 7). ASC were co-cultured in indirect models with dermal fibroblasts (DF) from SSc patients or endothelial cells to assess their pro-angiogenic and antifibrotic paracrine effects. The angiogenic activity of endothelial cells was measured in vitro using tube formation and spheroid assays. DF collagen and alpha smooth muscle actin (αSMA) content were quantified after five days of co-culture with ASC. Differentiation capacity, senescence, and mRNA profiles did not differ significantly between SSc-ASC and HD-ASC. SSc-ASC retained the ability to stimulate angiogenesis through paracrine mechanisms; however, functional assays revealed reduced potential compared to HD-ASC. DF fibrosis markers were significantly decreased after co-culture with SSc-ASC. Together, these results indicate that SSc effects do not significantly compromise the angiogenic and the antifibrotic paracrine properties of ASC, thereby supporting further development of ASC-based autologous therapies for SSc treatment.
Collapse
Affiliation(s)
- Mélanie VELIER
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 13005 Marseille, France
| | | | - Maxime ABELLAN
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, 13005 Marseille, France
| | - Pauline FRANCOIS
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 13005 Marseille, France
| | - Sandy EAP
- R&D Department, Macopharma, 59420 Mouvaux, France
| | | | - Baptiste BERTRAND
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, 13005 Marseille, France
| | - Aurélie DAUMAS
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Internal Medicine Department, Hôpital Nord & Hôpital de la Timone, AP-HM, 13005 Marseille, France
| | - Brigitte GRANEL
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Internal Medicine Department, Hôpital Nord & Hôpital de la Timone, AP-HM, 13005 Marseille, France
| | | | | | - Jérémy MAGALON
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 13005 Marseille, France
| | - Florence SABATIER
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 13005 Marseille, France
| |
Collapse
|
11
|
Manetti M, Romano E, Rosa I, Fioretto BS, Praino E, Guiducci S, Iannone F, Ibba-Manneschi L, Matucci-Cerinic M. Systemic Sclerosis Serum Steers the Differentiation of Adipose-Derived Stem Cells Toward Profibrotic Myofibroblasts: Pathophysiologic Implications. J Clin Med 2019; 8:E1256. [PMID: 31430950 PMCID: PMC6723717 DOI: 10.3390/jcm8081256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
Systemic sclerosis (SSc; scleroderma) is characterized by life-threatening progressive multiorgan fibrosis orchestrated by profibrotic myofibroblasts originating from different sources. Because recent data demonstrated that the majority of myofibroblasts in a murine scleroderma model arise from adipocytic progenitors through the adipocyte-myofibroblast transition process, we sought to determine whether the SSc microenvironment may affect the differentiation potential of adipose-derived stem cells (ADSC). Normal human ADSC from three donors were treated with serum from SSc patients (n = 6), serum from healthy individuals (n = 6), or recombinant human transforming growth factor-β1 (TGFβ1) as positive control of myofibroblastic phenotype induction. ADSC were subjected to in vitro adipogenic differentiation for up to 21 days in the presence of different stimuli followed by lipid content quantification. In selected experiments, adipocytic and mesenchymal/myofibroblast marker gene and protein expression levels were assessed by Real-Time PCR, immunoblotting and immunofluorescence after administration of different stimuli for 72 and 96 h, respectively. Cell contractile phenotype was assayed by collagen gel contraction assay. Likewise stimulation with TGFβ1, SSc serum was able to significantly inhibit the adipocyte differentiation of ADSC as testified by a strong decrease in red-colored lipid droplets after 21 days of adipogenic induction. Treatment of ADSC either with SSc serum or TGFβ1 resulted in the acquisition of a myofibroblast-like phenotype characterized by a reduced expression of the adipocytic markers perilipin and adiponectin, a significant upregulation of the mesenchymal/myofibroblast markers α-SMA+ stress fibers, S100A4 and type I collagen, and an ability to effectively contract collagen gels. In SSc, the pathologic environment may favor the differentiation of ADSC into profibrotic and contractile myofibroblast-like cells. These findings strengthen the notion that the generation of myofibroblasts from ADSC may be relevant in SSc pathophysiology potentially representing a new target for the prevention/treatment of multiorgan fibrosis.
Collapse
Affiliation(s)
- Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Eloisa Romano
- Division of Rheumatology and Scleroderma Unit, AOUC, Department of Geriatric Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Division of Rheumatology and Scleroderma Unit, AOUC, Department of Geriatric Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Bianca Saveria Fioretto
- Division of Rheumatology and Scleroderma Unit, AOUC, Department of Geriatric Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Emanuela Praino
- Rheumatology Unit, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy
| | - Serena Guiducci
- Division of Rheumatology and Scleroderma Unit, AOUC, Department of Geriatric Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Florenzo Iannone
- Rheumatology Unit, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy
| | - Lidia Ibba-Manneschi
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Matucci-Cerinic
- Division of Rheumatology and Scleroderma Unit, AOUC, Department of Geriatric Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|