1
|
Catterson JH, Mouofo EN, López De Toledo Soler I, Lean G, Dlamini S, Liddell P, Voong G, Katsinelos T, Wang YC, Schoovaerts N, Verstreken P, Spires-Jones TL, Durrant CS. Drosophila appear resistant to trans-synaptic tau propagation. Brain Commun 2024; 6:fcae256. [PMID: 39130515 PMCID: PMC11316205 DOI: 10.1093/braincomms/fcae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Alzheimer's disease is the most common cause of dementia in the elderly, prompting extensive efforts to pinpoint novel therapeutic targets for effective intervention. Among the hallmark features of Alzheimer's disease is the development of neurofibrillary tangles comprised of hyperphosphorylated tau protein, whose progressive spread throughout the brain is associated with neuronal death. Trans-synaptic propagation of tau has been observed in mouse models, and indirect evidence for tau spread via synapses has been observed in human Alzheimer's disease. Halting tau propagation is a promising therapeutic target for Alzheimer's disease; thus, a scalable model system to screen for modifiers of tau spread would be very useful for the field. To this end, we sought to emulate the trans-synaptic spread of human tau in Drosophila melanogaster. Employing the trans-Tango circuit mapping technique, we investigated whether tau spreads between synaptically connected neurons. Immunohistochemistry and confocal imaging were used to look for tau propagation. Examination of hundreds of flies expressing four different human tau constructs in two distinct neuronal populations reveals a robust resistance in Drosophila to the trans-synaptic spread of human tau. This resistance persisted in lines with concurrent expression of amyloid-β, in lines with global human tau knock-in to provide a template for human tau in downstream neurons, and with manipulations of temperature. These negative data are important for the field as we establish that Drosophila expressing human tau in subsets of neurons are unlikely to be useful to perform screens to find mechanisms to reduce the trans-synaptic spread of tau. The inherent resistance observed in Drosophila may serve as a valuable clue, offering insights into strategies for impeding tau spread in future studies.
Collapse
Affiliation(s)
- James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Edmond N Mouofo
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | - Gillian Lean
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Stella Dlamini
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Phoebe Liddell
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Graham Voong
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Taxiarchis Katsinelos
- Schaller Research Group at the University of Heidelberg and the DKFZ, German Cancer Research Center, Proteostasis in Neurodegenerative Disease (B180), INF 581, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, INF 234, 69120 Heidelberg, Germany
| | - Yu-Chun Wang
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
2
|
Murakami R, Watanabe H, Hashimoto H, Kashiwagi-Hakozaki M, Hashimoto T, Karch CM, Iwatsubo T, Okano H. Inhibitory Roles of Apolipoprotein E Christchurch Astrocytes in Curbing Tau Propagation Using Human Pluripotent Stem Cell-Derived Models. J Neurosci 2024; 44:e1709232024. [PMID: 38649269 PMCID: PMC11170944 DOI: 10.1523/jneurosci.1709-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Genetic variants in the apolipoprotein E (APOE) gene affect the onset and progression of Alzheimer's disease (AD). The APOE Christchurch (APOE Ch) variant has been identified as the most prominent candidate for preventing the onset and progression of AD. In this study, we generated isogenic APOE3Ch/3Ch human-induced pluripotent stem cells (iPSCs) from APOE3/3 healthy control female iPSCs and induced them into astrocytes. RNA expression analysis revealed the inherent resilience of APOE3Ch/3Ch astrocytes to induce a reactive state in response to inflammatory cytokines. Moreover, cytokine treatment changed astrocytic morphology with more complexity in APOE3/3 astrocytes, but not in APOE3Ch/3Ch astrocytes, indicating resilience of the rare variant to a reactive state. Interestingly, we observed robust morphological alterations containing more intricate processes when cocultured with iPSC-derived cortical neurons, in which APOE3Ch/3Ch astrocytes reduced complexity compared with APOE3/3 astrocytes. To assess the impacts of tau propagation effects, we next developed a sophisticated and sensitive assay utilizing cortical neurons derived from human iPSCs, previously generated from donors of both sexes. We showed that APOE3Ch/3Ch astrocytes effectively mitigated tau propagation within iPSC-derived neurons. This study provides important experimental evidence of the characteristic functions exhibited by APOE3Ch/3Ch astrocytes, thereby offering valuable insights for the advancement of novel clinical interventions in AD research.
Collapse
Affiliation(s)
- Rei Murakami
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Research fellow of Japan Society of the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideko Hashimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mayu Kashiwagi-Hakozaki
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan
| | - Celeste M Karch
- Department of Psychiatry and Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
3
|
Thierry M, Ponce J, Martà-Ariza M, Askenazi M, Faustin A, Leitner D, Pires G, Kanshin E, Drummond E, Ueberheide B, Wisniewski T. The influence of APOE ε4 on the pTau interactome in sporadic Alzheimer's disease. Acta Neuropathol 2024; 147:91. [PMID: 38772917 PMCID: PMC11108952 DOI: 10.1007/s00401-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
APOEε4 is the major genetic risk factor for sporadic Alzheimer's disease (AD). Although APOEε4 is known to promote Aβ pathology, recent data also support an effect of APOE polymorphism on phosphorylated Tau (pTau) pathology. To elucidate these potential effects, the pTau interactome was analyzed across APOE genotypes in the frontal cortex of 10 advanced AD cases (n = 5 APOEε3/ε3 and n = 5 APOEε4/ε4), using a combination of anti-pTau pS396/pS404 (PHF1) immunoprecipitation (IP) and mass spectrometry (MS). This proteomic approach was complemented by an analysis of anti-pTau PHF1 and anti-Aβ 4G8 immunohistochemistry, performed in the frontal cortex of 21 advanced AD cases (n = 11 APOEε3/ε3 and n = 10 APOEε4/ε4). Our dataset includes 1130 and 1330 proteins enriched in IPPHF1 samples from APOEε3/ε3 and APOEε4/ε4 groups (fold change ≥ 1.50, IPPHF1 vs IPIgG ctrl). We identified 80 and 68 proteins as probable pTau interactors in APOEε3/ε3 and APOEε4/ε4 groups, respectively (SAINT score ≥ 0.80; false discovery rate (FDR) ≤ 5%). A total of 47/80 proteins were identified as more likely to interact with pTau in APOEε3/ε3 vs APOEε4/ε4 cases. Functional enrichment analyses showed that they were significantly associated with the nucleoplasm compartment and involved in RNA processing. In contrast, 35/68 proteins were identified as more likely to interact with pTau in APOEε4/ε4 vs APOEε3/ε3 cases. They were significantly associated with the synaptic compartment and involved in cellular transport. A characterization of Tau pathology in the frontal cortex showed a higher density of plaque-associated neuritic crowns, made of dystrophic axons and synapses, in APOEε4 carriers. Cerebral amyloid angiopathy was more frequent and severe in APOEε4/ε4 cases. Our study supports an influence of APOE genotype on pTau-subcellular location in AD. These results suggest a facilitation of pTau progression to Aβ-affected brain regions in APOEε4 carriers, paving the way to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Manon Thierry
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA.
| | - Jackeline Ponce
- Department of Biochemistry and Molecular Pharmacology, Proteomics Laboratory, Grossman School of Medicine, New York University, New York, NY, USA
| | - Mitchell Martà-Ariza
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Arline Faustin
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
| | - Dominique Leitner
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
- Department of Neurology, Comprehensive Epilepsy Center, Grossman School of Medicine, New York University, New York, NY, USA
| | - Geoffrey Pires
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
| | - Evgeny Kanshin
- Department of Biochemistry and Molecular Pharmacology, Proteomics Laboratory, Grossman School of Medicine, New York University, New York, NY, USA
| | - Eleanor Drummond
- Brain and Mind Centre, School of Medical Science, University of Sydney, Sydney, Australia
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, Proteomics Laboratory, Grossman School of Medicine, New York University, New York, NY, USA
| | - Thomas Wisniewski
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA.
- Departments of Pathology and Psychiatry, Grossman School of Medicine, New York University, Science Building, Rm 1017, 435 East 30 Street, New York, NY, 10016, USA.
| |
Collapse
|
4
|
Eisenbaum M, Pearson A, Ortiz C, Koprivica M, Cembran A, Mullan M, Crawford F, Ojo J, Bachmeier C. Repetitive head trauma and apoE4 induce chronic cerebrovascular alterations that impair tau elimination from the brain. Exp Neurol 2024; 374:114702. [PMID: 38301863 PMCID: PMC10922621 DOI: 10.1016/j.expneurol.2024.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Repetitive mild traumatic brain injuries (r-mTBI) sustained in the military or contact sports have been associated with the accumulation of extracellular tau in the brain, which may contribute to the pathogenesis of neurodegenerative tauopathies. The expression of the apolipoprotein E4 (apoE4) isoform has been associated with higher levels of tau in the brain, and worse clinical outcomes after r-mTBI, though the influence of apoE genotype on extracellular tau dynamics in the brain is poorly understood. We recently demonstrated that extracellular tau can be eliminated across blood-brain barrier (BBB), which is progressively impaired following r-mTBI. The current studies investigated the influence of repetitive mild TBI (r-mTBI) and apoE genotype on the elimination of extracellular solutes from the brain. Following intracortical injection of biotin-labeled tau into humanized apoE-Tr mice, the levels of exogenous tau residing in the brain of apoE4 mice were elevated compared to other isoforms, indicating reduced tau elimination. Additionally, we found exposure to r-mTBI increased tau residence in apoE2 mice, similar to our observations in E2FAD animals. Each of these findings may be the result of diminished tau efflux via LRP1 at the BBB, as LRP1 inhibition significantly reduced tau uptake in endothelial cells and decreased tau transit across an in vitro model of the BBB (basolateral-to-apical). Notably, we showed that injury and apoE status, (particularly apoE4) resulted in chronic alterations in BBB integrity, pericyte coverage, and AQP4 polarization. These aberrations coincided with an atypical reactive astrocytic gene signature indicative of diminished CSF-ISF exchange. Our work found that CSF movement was reduced in the chronic phase following r-mTBI (>18 months post injury) across all apoE genotypes. In summary, we show that apoE genotype strongly influences cerebrovascular homeostasis, which can lead to age-dependent deficiencies in the elimination of toxic proteins from the brain, like tau, particularly in the aftermath of head trauma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Joseph Ojo
- The Roskamp Institute, Sarasota, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA; Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
5
|
Pauwels EK, Boer GJ. Alzheimer's Disease: A Suitable Case for Treatment with Precision Medicine? Med Princ Pract 2024; 33:000538251. [PMID: 38471490 PMCID: PMC11324226 DOI: 10.1159/000538251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioural disturbance. Owing to evolving research in biomarkers AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15 - 20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers.
Collapse
Affiliation(s)
- Ernest K.J. Pauwels
- Leiden University and Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard J. Boer
- Netherlands Institute for Brain Research, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|