1
|
Eastman AC, Rosson G, Kim N, Kang S, Raraigh K, Goff LA, Merlo C, Lechtzin N, Cutting GR, Sharma N. Establishment of a conditionally reprogrammed primary eccrine sweat gland culture for evaluation of tissue-specific CFTR function. J Cyst Fibros 2024; 23:1173-1179. [PMID: 38969603 PMCID: PMC11624101 DOI: 10.1016/j.jcf.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Sweat chloride concentration is used both for CF diagnosis and for tracking CFTR modulator efficacy over time, but the relationship between sweat chloride and lung health is heterogeneous and informed by CFTR genotype. Here, we endeavored to characterize ion transport in eccrine sweat glands (ESGs). METHODS First, ESGs were microdissected from a non-CF skin donor to analyze individual glands. We established primary cultures of ESG cells via conditional reprogramming for functional testing of ion transport by short circuit current measurement and examined cell composition by single-cell RNA-sequencing (scRNA-seq) comparing with whole dissociated ESGs. Secondly, we cultured nasal epithelial (NE) cells and ESGs from two people with CF (pwCF) to assess modulator efficacy. Finally, NEs and ESGs were grown from one person with the CFTR genotype F312del/F508del to explore genotype-phenotype heterogeneity. RESULTS ESG primary cells from individuals without CF demonstrated robust ENaC and CFTR function. scRNA-seq demonstrated both secretory and ductal ESG markers in cultured ESG cells. In both NEs and ESGs from pwCF homozygous for F508del, minimal baseline CFTR function was observed, and treatment with CFTR modulators significantly enhanced function. Notably, NEs from an individual bearing F312del/F508del exhibited significant baseline CFTR function, whereas ESGs from the same person displayed minimal CFTR function, consistent with observed phenotype. CONCLUSIONS This study has established a novel primary culture technique for ESGs that allows for functional ion transport measurement to assess modulator efficacy and evaluate genotype-phenoytpe heterogeneity. To our knowledge, this is the first reported application of conditional reprogramming and scRNA-seq of microdissected ESGs.
Collapse
Affiliation(s)
- Alice C Eastman
- Johns Hopkins School of Medicine, Department of Human Genetics, Miller Research Building, 733N Broadway, Baltimore, MD 21205, USA
| | - Gedge Rosson
- Johns Hopkins Medicine, Department of Plastic and Reconstructive Surgery, 601N Caroline St, Baltimore, MD 21287, USA
| | - Noori Kim
- Johns Hopkins School of Medicine, Department Medicine, Division of Dermatology, 601N Caroline St, Baltimore, MD 21287, USA
| | - Sewon Kang
- Johns Hopkins School of Medicine, Department Medicine, Division of Dermatology, 601N Caroline St, Baltimore, MD 21287, USA
| | - Karen Raraigh
- Johns Hopkins School of Medicine, Department of Human Genetics, Miller Research Building, 733N Broadway, Baltimore, MD 21205, USA
| | - Loyal A Goff
- Johns Hopkins School of Medicine, Department of Human Genetics, Miller Research Building, 733N Broadway, Baltimore, MD 21205, USA
| | - Christian Merlo
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Noah Lechtzin
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Garry R Cutting
- Johns Hopkins School of Medicine, Department of Human Genetics, Miller Research Building, 733N Broadway, Baltimore, MD 21205, USA
| | - Neeraj Sharma
- Johns Hopkins School of Medicine, Department of Human Genetics, Miller Research Building, 733N Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Wu J, Wang X, Zhao Y, Hou Y, Gong P. Overview of CFTR activators and their recent studies for dry eye disease: a review. RSC Med Chem 2023; 14:2459-2472. [PMID: 38107177 PMCID: PMC10718525 DOI: 10.1039/d3md00448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/23/2023] [Indexed: 12/19/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) gets activated via the cAMP signaling pathway and is present in various secretory epithelial cells, including conjunctival and corneal epithelial cells. Activation of CFTR leads to fluid secretion in both mouse and human ocular surfaces. Dry eye disease is a significant health problem for which limited therapeutic options are available. In this review, on the one hand, small molecule CFTR activators with different chemical structures are summarized, and on the other hand, the pharmacological activity test and structural optimization of small molecule CFTR activators in the treatment of dry eye are outlined. The purpose of this review is to highlight the important role of CFTR activators in the treatment of dry eye disease and their potential as a new strategy for the treatment of dry eye disease.
Collapse
Affiliation(s)
- Jie Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Xiaoqian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| |
Collapse
|
3
|
Wu Q, Ma L, Joesch-Cohen L, Schmidt M, Uzun EDG, Morrow EM. Targeting NHE6 gene expression identifies lysosome and neurodevelopmental mechanisms in a haploid in vitro cell model. Biol Open 2023; 12:bio059778. [PMID: 37747131 PMCID: PMC10695175 DOI: 10.1242/bio.059778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Christianson syndrome (CS) is an X-linked disorder resulting from loss-of-function (LoF) mutations in SLC9A6 encoding the endosomal Na+/H+ exchanger 6 (NHE6). CS presents with developmental delay, seizures, intellectual disability, nonverbal status, postnatal microcephaly, and ataxia. To define transcriptome signatures of NHE6 LoF, we conducted in-depth RNA-sequencing (RNA-seq) analysis on a haploid NHE6 null cell model. CRIPSR/Cas9 genome editing introduced multiple LoF mutations into SLC9A6 in the near haploid human cell line Hap1. Isogenic, paired parental controls were also studied. NHE6 mutant cell lines were confirmed to have intra-endosomal over-acidification as was seen in other NHE6 null cells. RNA-seq analysis was performed by two widely used pipelines: HISAT2-StringTie-DEseq2 and STAR-HTseq-DEseq2. We identified 1056 differentially expressed genes in mutant NHE6 lines, including genes associated with neurodevelopment, synapse function, voltage-dependent calcium channels, and neuronal signaling. Weighted gene co-expression network analysis was then applied and identified a critical module enriched for genes governing lysosome function. By identifying significantly changed gene expression that is associated with lysosomal mechanisms in NHE6-null cells, our analyses suggest that loss of NHE6 function may converge on mechanisms implicated in lysosome-related neurologic disease. Further, this haploid cell model will serve as an important tool for translational science in CS.
Collapse
Affiliation(s)
- Qing Wu
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Center for Computational Molecular Biology, Providence, RI 02912, USA
| | - Li Ma
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Lena Joesch-Cohen
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Center for Computational Molecular Biology, Providence, RI 02912, USA
| | - Michael Schmidt
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ece D. Gamsiz Uzun
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Center for Computational Molecular Biology, Providence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Eric M. Morrow
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Center for Computational Molecular Biology, Providence, RI 02912, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
4
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
5
|
Shishido H, Yoon JS, Skach WR. A small molecule high throughput screening platform to profile conformational properties of nascent, ribosome-bound proteins. Sci Rep 2022; 12:2509. [PMID: 35169219 PMCID: PMC8847357 DOI: 10.1038/s41598-022-06456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Genetic mutations cause a wide spectrum of human disease by disrupting protein folding, both during and after synthesis. Transient de-novo folding intermediates therefore represent potential drug targets for pharmacological correction of protein folding disorders. Here we develop a FRET-based high-throughput screening (HTS) assay in 1,536-well format capable of identifying small molecules that interact with nascent polypeptides and correct genetic, cotranslational folding defects. Ribosome nascent chain complexes (RNCs) containing donor and acceptor fluorophores were isolated from cell free translation reactions, immobilized on Nickel-NTA/IDA beads, and imaged by high-content microscopy. Quantitative FRET measurements obtained from as little as 0.4 attomole of protein/bead enabled rapid assessment of conformational changes with a high degree of reproducibility. Using this assay, we performed a pilot screen of ~ 50,000 small molecules to identify compounds that interact with RNCs containing the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) harboring a disease-causing mutation (A455E). Screen results yielded 133 primary hits and 1 validated hit that normalized FRET values of the mutant nascent peptide. This system provides a scalable, tractable, structure-based discovery platform for screening small molecules that bind to or impact the folding of protein substrates that are not amenable to traditional biochemical analyses.
Collapse
Affiliation(s)
- Hideki Shishido
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA.,Generate Biomedicines, Inc., 26 Landsdowne St, Cambridge, MA, 02139, USA
| | - Jae Seok Yoon
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - William R Skach
- Cystic Fibrosis Foundation, 4550 Montgomery Ave., Suite 1100N, Bethesda, MD, 20814, USA.
| |
Collapse
|