1
|
Khaitin AM, Guzenko VV, Bachurin SS, Demyanenko SV. c-Myc and FOXO3a-The Everlasting Decision Between Neural Regeneration and Degeneration. Int J Mol Sci 2024; 25:12621. [PMID: 39684331 DOI: 10.3390/ijms252312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The transcription factors c-Myc and FoxO3a play significant roles in neurodegenerative processes, yet their interaction in neurological disorders remains largely unexplored. In contrast, much of the available information about their relationship comes from cancer research. While it is well-established that FoxO3a inhibits c-Myc activity, this interaction represents only a basic understanding of a far more complex dynamic, which includes exceptions under specific conditions and the involvement of additional regulatory factors. Given the critical need to address this gap for the treatment and prevention of neurodegenerative disorders, this review consolidates current knowledge on the joint roles of these two factors in neuropathology. It also highlights their conformational flexibility, post-translational modifications, and outlines potential directions for future research.
Collapse
Affiliation(s)
- Andrey M Khaitin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Valeria V Guzenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Stanislav S Bachurin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Svetlana V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| |
Collapse
|
2
|
Mills C, Riching A, Keller A, Stombaugh J, Haupt A, Maksimova E, Dickerson SM, Anderson E, Hemphill K, Ebmeier C, Schiel JA, Levenga J, Perkett M, Smith AVB, Strezoska Z. A Novel CRISPR Interference Effector Enabling Functional Gene Characterization with Synthetic Guide RNAs. CRISPR J 2022; 5:769-786. [PMID: 36257604 PMCID: PMC9805873 DOI: 10.1089/crispr.2022.0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/15/2022] [Indexed: 01/31/2023] Open
Abstract
While CRISPR interference (CRISPRi) systems have been widely implemented in pooled lentiviral screening, there has been limited use with synthetic guide RNAs for the complex phenotypic readouts enabled by experiments in arrayed format. Here we describe a novel deactivated Cas9 fusion protein, dCas9-SALL1-SDS3, which produces greater target gene repression than first or second generation CRISPRi systems when used with chemically modified synthetic single guide RNAs (sgRNAs), while exhibiting high target specificity. We show that dCas9-SALL1-SDS3 interacts with key members of the histone deacetylase and Swi-independent three complexes, which are the endogenous functional effectors of SALL1 and SDS3. Synthetic sgRNAs can also be used with in vitro-transcribed dCas9-SALL1-SDS3 mRNA for short-term delivery into primary cells, including human induced pluripotent stem cells and primary T cells. Finally, we used dCas9-SALL1-SDS3 for functional gene characterization of DNA damage host factors, orthogonally to small interfering RNA, demonstrating the ability of the system to be used in arrayed-format screening.
Collapse
Affiliation(s)
- Clarence Mills
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Andrew Riching
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Ashleigh Keller
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Jesse Stombaugh
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Amanda Haupt
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Elena Maksimova
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Sarah M. Dickerson
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Emily Anderson
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Kevin Hemphill
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Chris Ebmeier
- Mass Spectrometry Core Facility, University of Colorado-Boulder, Boulder, Colorado, USA
| | - John A. Schiel
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Josien Levenga
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Matthew Perkett
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Anja van Brabant Smith
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Zaklina Strezoska
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| |
Collapse
|
3
|
van Niekerk EA, Kawaguchi R, Marques de Freria C, Groeniger K, Marchetto MC, Dupraz S, Bradke F, Geschwind DH, Gage FH, Tuszynski MH. Methods for culturing adult CNS neurons reveal a CNS conditioning effect. CELL REPORTS METHODS 2022; 2:100255. [PMID: 35880023 PMCID: PMC9308166 DOI: 10.1016/j.crmeth.2022.100255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/17/2022] [Indexed: 05/30/2023]
Abstract
Neuronal cultures provide a basis for reductionist insights that rely on molecular and pharmacological manipulation. However, the inability to culture mature adult CNS neurons limits our understanding of adult neuronal physiology. Here, we report methods for culturing adult central nervous system neurons in large numbers and across multiple brain regions for extended time periods. Primary adult neuronal cultures develop polarity; they establish segregated dendritic and axonal compartments, maintain resting membrane potentials, exhibit spontaneous and evoked electrical activity, and form neural networks. Cultured adult neurons isolated from different brain regions such as the hippocampus, cortex, brainstem, and cerebellum exhibit distinct cell morphologies, growth patterns, and spontaneous firing characteristics reflective of their regions of origin. Using adult motor cortex cultures, we identify a CNS "conditioning" effect after spinal cord injury. The ability to culture adult neurons offers a valuable tool for studying basic and therapeutic science of the brain.
Collapse
Affiliation(s)
- Erna A van Niekerk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Riki Kawaguchi
- Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Kimberly Groeniger
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Maria C Marchetto
- Department of Anthropology, University of California, San Diego, La Jolla, CA, USA
| | - Sebastian Dupraz
- Laboratory of Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniel H Geschwind
- Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Veterans Administration Medical Center, San Diego, CA, USA
| |
Collapse
|
4
|
Markossian S, Coussens NP, Dahlin JL, Sittampalam GS. Assay Guidance Manual for Drug Discovery: Robust or Go Bust. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:1241-1242. [PMID: 34813395 PMCID: PMC9590373 DOI: 10.1177/24725552211054044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Sarine Markossian
- National Center for Advancing Translational Sciences (NCATS), Rockville, MD, USA
| | - Nathan P Coussens
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jayme L Dahlin
- National Center for Advancing Translational Sciences (NCATS), Rockville, MD, USA
| | - G Sitta Sittampalam
- National Center for Advancing Translational Sciences (NCATS), Rockville, MD, USA
| |
Collapse
|