1
|
Sources of Cancer Neoantigens beyond Single-Nucleotide Variants. Int J Mol Sci 2022; 23:ijms231710131. [PMID: 36077528 PMCID: PMC9455963 DOI: 10.3390/ijms231710131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The success of checkpoint blockade therapy against cancer has unequivocally shown that cancer cells can be effectively recognized by the immune system and eliminated. However, the identity of the cancer antigens that elicit protective immunity remains to be fully explored. Over the last decade, most of the focus has been on somatic mutations derived from non-synonymous single-nucleotide variants (SNVs) and small insertion/deletion mutations (indels) that accumulate during cancer progression. Mutated peptides can be presented on MHC molecules and give rise to novel antigens or neoantigens, which have been shown to induce potent anti-tumor immune responses. A limitation with SNV-neoantigens is that they are patient-specific and their accurate prediction is critical for the development of effective immunotherapies. In addition, cancer types with low mutation burden may not display sufficient high-quality [SNV/small indels] neoantigens to alone stimulate effective T cell responses. Accumulating evidence suggests the existence of alternative sources of cancer neoantigens, such as gene fusions, alternative splicing variants, post-translational modifications, and transposable elements, which may be attractive novel targets for immunotherapy. In this review, we describe the recent technological advances in the identification of these novel sources of neoantigens, the experimental evidence for their presentation on MHC molecules and their immunogenicity, as well as the current clinical development stage of immunotherapy targeting these neoantigens.
Collapse
|
2
|
Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. J Control Release 2022; 349:844-875. [PMID: 35908621 DOI: 10.1016/j.jconrel.2022.07.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Breast cancer (BC) is known to be a highly heterogeneous disease that is clinically subdivided into four primary molecular subtypes, each having distinct morphology and clinical implications. These subtypes are principally defined by hormone receptors and other proteins involved (or not involved) in BC development. BC therapeutic vaccines [including peptide-based vaccines, protein-based vaccines, nucleic acid-based vaccines (DNA/RNA vaccines), bacterial/viral-based vaccines, and different immune cell-based vaccines] have emerged as an appealing class of cancer immunotherapeutics when used alone or combined with other immunotherapies. Employing the immune system to eliminate BC cells is a novel therapeutic modality. The benefit of active immunotherapies is that they develop protection against neoplastic tissue and readjust the immune system to an anti-tumor monitoring state. Such immunovaccines have not yet shown effectiveness for BC treatment in clinical trials. In recent years, nanomedicines have opened new windows to increase the effectiveness of vaccinations to treat BC. In this context, some nanoplatforms have been designed to efficiently deliver molecular, cellular, or subcellular vaccines to BC cells, increasing the efficacy and persistence of anti-tumor immunity while minimizing undesirable side effects. Immunostimulatory nano-adjuvants, liposomal-based vaccines, polymeric vaccines, virus-like particles, lipid/calcium/phosphate nanoparticles, chitosan-derived nanostructures, porous silicon microparticles, and selenium nanoparticles are among the newly designed nanostructures that have been used to facilitate antigen internalization and presentation by antigen-presenting cells, increase antigen stability, enhance vaccine antigenicity and remedial effectivity, promote antigen escape from the endosome, improve cytotoxic T lymphocyte responses, and produce humoral immune responses in BC cells. Here, we summarized the existing subtypes of BC and shed light on immunomodulatory and nano-therapeutic strategies for BC vaccination. Finally, we reviewed ongoing clinical trials on BC vaccination and highlighted near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
3
|
Sarnik J, Makowska J. Citrullination good or bad guy? Immunobiology 2022; 227:152233. [DOI: 10.1016/j.imbio.2022.152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/11/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
|
4
|
Liu D, Shi K, Fu M, Chen F. Placenta-specific protein 1 promotes cell proliferation via the AKT/GSK-3β/cyclin D1 signaling pathway in gastric cancer. IUBMB Life 2021; 73:1131-1141. [PMID: 34110086 DOI: 10.1002/iub.2514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer is a malignant tumor with a poor prognosis. Therefore, it is important to search for molecules that play a vital role in the development, diagnosis, and treatment of this disease. Placenta-specific 1 (PLAC1) is one of the cancer-testis antigens; it plays an important role in both placental development and tumorigenesis. However, the role of PLAC1 in gastric cancer has not been fully investigated, and its underlying mechanism needs further study. We first explored the expression and clinical relevance of PLAC1 in gastric cancer and performed gene set enrichment analysis of PLAC1-related genes using online databases. Subsequently, we studied the function and mechanism of PLAC1 in gastric cancer cells through in vitro experiments. Our results showed that PLAC1 is highly expressed in gastric cancer, is associated with poor prognosis, and can promote gastric cancer cell proliferation through the AKT/GSK-3β/cyclin D1 signaling pathway. Moreover, we discovered that AKTi attenuates the effect of PLAC1. Our study further revealed the role and mechanism of PLAC1 in gastric cancer and suggested that this antigen might be a useful molecular marker for gastric cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Dongyang Liu
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Ke Shi
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Mingshi Fu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Feng Chen
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| |
Collapse
|
5
|
Kines RC, Thompson CD, Spring S, Li Z, de Los Pinos E, Monks S, Schiller JT. Virus-Like Particle-Drug Conjugates Induce Protective, Long-lasting Adaptive Antitumor Immunity in the Absence of Specifically Targeted Tumor Antigens. Cancer Immunol Res 2021; 9:693-706. [PMID: 33853825 DOI: 10.1158/2326-6066.cir-19-0974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/24/2020] [Accepted: 04/07/2021] [Indexed: 12/30/2022]
Abstract
This study examined the ability of a papillomavirus-like particle drug conjugate, belzupacap sarotalocan (AU-011), to eradicate subcutaneous tumors after intravenous injection and to subsequently elicit long-term antitumor immunity in the TC-1 syngeneic murine tumor model. Upon in vitro activation with near-infrared light (NIR), AU-011-mediated cell killing was proimmunogenic in nature, resulting in the release of damage-associated molecular patterns such as DNA, ATP, and HMGB-1, activation of caspase-1, and surface relocalization of calreticulin and HSP70 on killed tumor cells. A single in vivo administration of AU-011 followed by NIR caused rapid cell death, leading to long-term tumor regression in ∼50% of all animals. Within hours of treatment, calreticulin surface expression, caspase-1 activation, and depletion of immunosuppressive leukocytes were observed in tumors. Combination of AU-011 with immune-checkpoint inhibitor antibodies, anti-CTLA-4 or anti-PD-1, improved therapeutic efficacy, resulting in 70% to 100% complete response rate that was durable 100 days after treatment, with 50% to 80% of those animals displaying protection from secondary tumor rechallenge. Depletion of CD4+ or CD8+ T cells, either at the time of AU-011 treatment or secondary tumor rechallenge of tumor-free mice, indicated that both cell populations are vital to AU-011's ability to eradicate primary tumors and induce long-lasting antitumor protection. Tumor-specific CD8+ T-cell responses could be observed in circulating peripheral blood mononuclear cells within 3 weeks of AU-011 treatment. These data, taken together, support the conclusion that AU-011 has a direct cytotoxic effect on tumor cells and induces long-term antitumor immunity, and this activity is enhanced when combined with checkpoint inhibitor antibodies.
Collapse
Affiliation(s)
| | - Cynthia D Thompson
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Zhenyu Li
- Aura Biosciences, Cambridge, Massachusetts
| | | | | | - John T Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Shanmugaraj B, Priya LB, Mahalakshmi B, Subbiah S, Hu RM, Velmurugan BK, Baskaran R. Bacterial and viral vectors as vaccine delivery vehicles for breast cancer therapy. Life Sci 2020; 250:117550. [PMID: 32179071 DOI: 10.1016/j.lfs.2020.117550] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
|
7
|
Lopes A, Feola S, Ligot S, Fusciello M, Vandermeulen G, Préat V, Cerullo V. Oncolytic adenovirus drives specific immune response generated by a poly-epitope pDNA vaccine encoding melanoma neoantigens into the tumor site. J Immunother Cancer 2019; 7:174. [PMID: 31291991 PMCID: PMC6621971 DOI: 10.1186/s40425-019-0644-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background DNA vaccines against cancer held great promises due to the generation of a specific and long-lasting immune response. However, when used as a single therapy, they are not able to drive the generated immune response into the tumor, because of the immunosuppressive microenvironment, thus limiting their use in humans. To enhance DNA vaccine efficacy, we combined a new poly-epitope DNA vaccine encoding melanoma tumor associated antigens and B16F1-specific neoantigens with an oncolytic virus administered intratumorally. Methods Genomic analysis were performed to find specific mutations in B16F1 melanoma cells. The antigen gene sequences were designed according to these mutations prior to the insertion in the plasmid vector. Mice were injected with B16F1 tumor cells (n = 7–9) and therapeutically vaccinated 2, 9 and 16 days after the tumor injection. The virus was administered intratumorally at day 10, 12 and 14. Immune cell infiltration analysis and cytokine production were performed by flow cytometry, PCR and ELISPOT in the tumor site and in the spleen of animals, 17 days after the tumor injection. Results The combination of DNA vaccine and oncolytic virus significantly increased the immune activity into the tumor. In particular, the local intratumoral viral therapy increased the NK infiltration, thus increasing the production of different cytokines, chemokines and enzymes involved in the adaptive immune system recruitment and cytotoxic activity. On the other side, the DNA vaccine generated antigen-specific T cells in the spleen, which migrated into the tumor when recalled by the local viral therapy. The complementarity between these strategies explains the dramatic tumor regression observed only in the combination group compared to all the other control groups. Conclusions This study explores the immunological mechanism of the combination between an oncolytic adenovirus and a DNA vaccine against melanoma. It demonstrates that the use of a rational combination therapy involving DNA vaccination could overcome its poor immunogenicity. In this way, it will be possible to exploit the great potential of DNA vaccination, thus allowing a larger use in the clinic. Electronic supplementary material The online version of this article (10.1186/s40425-019-0644-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandra Lopes
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, B-1200, Brussels, Belgium
| | - Sara Feola
- University of Helsinki, Biocenter 2, Viikinkari 5E, Helsinki, Finland
| | - Sophie Ligot
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, B-1200, Brussels, Belgium
| | - Manlio Fusciello
- University of Helsinki, Biocenter 2, Viikinkari 5E, Helsinki, Finland
| | - Gaëlle Vandermeulen
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, B-1200, Brussels, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, B-1200, Brussels, Belgium.
| | - Vincenzo Cerullo
- University of Helsinki, Biocenter 2, Viikinkari 5E, Helsinki, Finland.
| |
Collapse
|
8
|
Mistletoe and Immunomodulation: Insights and Implications for Anticancer Therapies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5893017. [PMID: 31118962 PMCID: PMC6500636 DOI: 10.1155/2019/5893017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/20/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023]
Abstract
In early tumor development, cancer cells develop a plethora of strategies to escape surveillance from the adaptive and innate immune system. Cancer immunotherapies, in particular immune checkpoint inhibitors, are becoming a highly promising cancer therapeutic approach that has remarkable increased progress in combating various cancer types. Unfortunately, their mechanisms of action induce some complications, such as inflammatory reactions and immune-related adverse events. In the management of side effects during anticancer therapy, complementary and integrative therapy approaches are becoming of growing interest. Particularly, mistletoe, Viscum album L. (VA), has a long traditional history of about 100 years as an add-on therapy of cancer treatment in German-speaking countries. Besides antitumoral and quality of life-promoting activities, VA applications reduce side effects of modern conventional anticancer therapies and exert immunomodulatory characteristics. As these properties may provide a good basis for a combination with modern oncological therapies, the biological activities of VA applications and mechanisms involved have to be understood. In this review, the impact of VA compounds on different cellular pathways and immunological reactions in the fight against cancerous cells is discussed.
Collapse
|
9
|
Abstract
Toll-like receptors (TLRs) are associated with tumor growth and immunosuppression, as well as apoptosis and immune system activation. TLRs can activate apoptosis and innate and adaptive immunity pathways, which can be pharmacologically targeted for the development of anticancer oncotherapies. Several studies and clinical trials indicate that TLR agonists are promising adjuvants or elements of novel therapies, particularly when used in conjunction with chemotherapy or radiotherapy. An increasing number of studies suggest that the activation of TLRs in various cancer types is related to oncotherapy; however, before this finding can be applied to clinical practice, additional studies are required. Research suggests that TLR agonists may have potential applications in cancer therapy; nevertheless, because TLR signaling can also promote tumorigenesis, a critical and comprehensive evaluation of TLR action is warranted. This review focuses on recent studies that have assessed the strengths and weaknesses of utilizing TLR agonists as potential anticancer agents.
Collapse
Affiliation(s)
- Caiqi Liu
- Department of Gastroenterology, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Ci Han
- Department of Critical Care Medicine, Third Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Jinfeng Liu
- Department of Pain, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| |
Collapse
|