1
|
Bates M, Sunderam S. Hand-worn devices for assessment and rehabilitation of motor function and their potential use in BCI protocols: a review. Front Hum Neurosci 2023; 17:1121481. [PMID: 37484920 PMCID: PMC10357516 DOI: 10.3389/fnhum.2023.1121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Various neurological conditions can impair hand function. Affected individuals cannot fully participate in activities of daily living due to the lack of fine motor control. Neurorehabilitation emphasizes repetitive movement and subjective clinical assessments that require clinical experience to administer. Methods Here, we perform a review of literature focused on the use of hand-worn devices for rehabilitation and assessment of hand function. We paid particular attention to protocols that involve brain-computer interfaces (BCIs) since BCIs are gaining ground as a means for detecting volitional signals as the basis for interactive motor training protocols to augment recovery. All devices reviewed either monitor, assist, stimulate, or support hand and finger movement. Results A majority of studies reviewed here test or validate devices through clinical trials, especially for stroke. Even though sensor gloves are the most commonly employed type of device in this domain, they have certain limitations. Many such gloves use bend or inertial sensors to monitor the movement of individual digits, but few monitor both movement and applied pressure. The use of such devices in BCI protocols is also uncommon. Discussion We conclude that hand-worn devices that monitor both flexion and grip will benefit both clinical diagnostic assessment of function during treatment and closed-loop BCI protocols aimed at rehabilitation.
Collapse
Affiliation(s)
- Madison Bates
- Neural Systems Lab, F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
2
|
Stoykov ME, Heidle C, Kang S, Lodesky L, Maccary LE, Madhavan S. Sensory-Based Priming for Upper Extremity Hemiparesis After Stroke: A Scoping Review. OTJR-OCCUPATION PARTICIPATION AND HEALTH 2022; 42:65-78. [PMID: 34311607 PMCID: PMC8665014 DOI: 10.1177/15394492211032606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sensory priming is a technique to facilitate neuroplasticity and improve motor skills after injury. Common sensory priming modalities include peripheral nerve stimulation/somatosensory electrical stimulation (PNS/SES), transient functional deafferentation (TFD), and vibration. The aim of this study was to determine whether sensory priming with a motor intervention results in improved upper limb motor impairment or function after stroke. PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Web of Science, and EMBASE were the databases used to search the literature in July 2020. This scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and recommendations for the Cochrane collaboration. In total, 30 studies were included in the analysis: three studies examined TFD, 16 examined PNS/SES, 10 studied vibration, and one combined the three stimulation techniques. Most studies reported significant improvements for participants receiving sensory priming. Given the low risk, it may be advantageous to use sensory-based priming prior to or concurrent with upper limb training after stroke.
Collapse
Affiliation(s)
- Mary E. Stoykov
- Arms & Hands Lab, Shirley Ryan Abilitylab
- Department of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University
| | - Courtney Heidle
- Department of Occupational Therapy, University of Illinois at Chicago
| | - Shamshir Kang
- Department of Occupational Therapy, University of Illinois at Chicago
| | - Lisa Lodesky
- Department of Occupational Therapy, University of Illinois at Chicago
| | | | | |
Collapse
|
3
|
Osuagwu BA, Timms S, Peachment R, Dowie S, Thrussell H, Cross S, Shirley R, Segura-Fragoso A, Taylor J. Home-based rehabilitation using a soft robotic hand glove device leads to improvement in hand function in people with chronic spinal cord injury:a pilot study. J Neuroeng Rehabil 2020; 17:40. [PMID: 32138780 PMCID: PMC7057671 DOI: 10.1186/s12984-020-00660-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Loss of hand function following high level spinal cord injury (SCI) is perceived as a high priority area for rehabilitation. Following discharge, it is often impractical for the specialist care centre to provide ongoing therapy for people living with chronic SCI at home, which can lead to further deterioration of hand function and a direct impact on an individual's capability to perform essential activities of daily living (ADL). OBJECTIVE This pilot study investigated the therapeutic effect of a self-administered home-based hand rehabilitation programme for people with cervical SCI using the soft extra muscle (SEM) Glove by Bioservo Technologies AB. METHODS Fifteen participants with chronic cervical motor incomplete (AIS C and D) SCI were recruited and provided with the glove device to use at home to complete a set task and perform their usual ADL for a minimum of 4 h a day for 12 weeks. Assessment was made at Week 0 (Initial), 6, 12 and 18 (6-week follow-up). The primary outcome measure was the Toronto Rehabilitation Institute hand function test (TRI-HFT), with secondary outcome measures including pinch dynamometry and the modified Ashworth scale. RESULTS The TRI-HFT demonstrated improvement in hand function at Week 6 of the therapy including improvement in object manipulation (58.3 ±3.2 to 66.9 ±1.8, p ≈ 0.01), and palmar grasp assessed as the length of the wooden bar that can be held using a pronated palmar grip (29.1 ±6.0 cm to 45.8 ±6.8 cm, p <0.01). A significant improvement in pinch strength, with reduced thumb muscle hypertonia was also detected. Improvements in function were present during the Week 12 assessment and also during the follow-up. CONCLUSIONS Self-administered rehabilitation using the SEM Glove is effective for improving and retaining gross and fine hand motor function for people living with chronic spinal cord injury at home. Retention of improved hand function suggests that an intensive activity-based rehabilitation programme in specific individuals is sufficient to improve long-term neuromuscular activity. Future studies should characterise the neuromuscular mechanism of action and the minimal rehabilitation programme necessary with the assistive device to improve ADL tasks following chronic cervical SCI. TRIAL REGISTRATION NUMBER Trial registration: ISRCTN, ISRCTN98677526, Registered 01/June/2017 - Retrospectively registered, http://www.isrctn.com/ISRCTN98677526.
Collapse
Affiliation(s)
- Bethel A.C. Osuagwu
- National Spinal Injuries Centre, Stoke Mandeville Hospital, Mandeville Road, Aylesbury, HP21 8AL UK
| | - Sarah Timms
- National Spinal Injuries Centre, Stoke Mandeville Hospital, Mandeville Road, Aylesbury, HP21 8AL UK
| | - Ruth Peachment
- National Spinal Injuries Centre, Stoke Mandeville Hospital, Mandeville Road, Aylesbury, HP21 8AL UK
| | - Sarah Dowie
- National Spinal Injuries Centre, Stoke Mandeville Hospital, Mandeville Road, Aylesbury, HP21 8AL UK
| | - Helen Thrussell
- National Spinal Injuries Centre, Stoke Mandeville Hospital, Mandeville Road, Aylesbury, HP21 8AL UK
| | - Susan Cross
- National Spinal Injuries Centre, Stoke Mandeville Hospital, Mandeville Road, Aylesbury, HP21 8AL UK
| | - Rebecca Shirley
- Bucks Healthcare Plastics, Stoke Mandeville Hospital, Mandeville Road, Aylesbury, HP21 8AL UK
| | | | - Julian Taylor
- Instituto de Ciencias de la Salud, Talavera de la Reina, Castilla-La Mancha, 45600 Spain
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, 45071 Spain
| |
Collapse
|
4
|
Vinstrup J, Calatayud J, Jakobsen MD, Sundstrup E, Jørgensen JR, Casaña J, Andersen LL. Hand strengthening exercises in chronic stroke patients: Dose-response evaluation using electromyography. J Hand Ther 2019; 31:111-121. [PMID: 28527751 DOI: 10.1016/j.jht.2017.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 02/03/2023]
Abstract
STUDY DESIGN Cross-sectional. PURPOSE OF THE STUDY This study evaluates finger flexion and extension strengthening exercises using elastic resistance in chronic stroke patients. METHODS Eighteen stroke patients (mean age: 56.8 ± 7.6 years) with hemiparesis performed 3 consecutive repetitions of finger flexion and extension, using 3 different elastic resistance levels (easy, moderate, and hard). Surface electromyography was recorded from the flexor digitorum superficialis (FDS) and extensor digitorum (ED) muscles and normalized to the maximal electromyography of the non-paretic arm. RESULTS Maximal grip strength was 39.2 (standard deviation: 12.5) and 7.8 kg (standard deviation: 9.4) in the nonparetic and paretic hand, respectively. For the paretic hand, muscle activity was higher during finger flexion exercise than during finger extension exercise for both ED (30% [95% confidence interval {CI}: 19-40] vs 15% [95% CI: 5-25] and FDS (37% [95% CI: 27-48] vs 24% [95% CI: 13-35]). For the musculature of both the FDS and ED, no dose-response association was observed for resistance and muscle activity during the flexion exercise (P > .05). CONCLUSION The finger flexion exercise showed higher muscle activity in both the flexor and extensor musculature of the forearm than the finger extension exercise. Furthermore, greater resistance did not result in higher muscle activity during the finger flexion exercise. The present results suggest that the finger flexion exercise should be the preferred strengthening exercise to achieve high levels of muscle activity in both flexor and extensor forearm muscles in chronic stroke patients. The finger extension exercise may be performed with emphasis on improving neuromuscular control. LEVEL OF EVIDENCE 4b.
Collapse
Affiliation(s)
- Jonas Vinstrup
- Department of Musculoskeletal Disorders, National Research Centre for the Working Environment, Copenhagen Ø, Denmark; Department of Health Science and Technology, Physical Activity and Human Performance group, SMI, Aalborg University, Aalborg, Denmark.
| | - Joaquin Calatayud
- Department of Musculoskeletal Disorders, National Research Centre for the Working Environment, Copenhagen Ø, Denmark; Department of Physical Education and Sports, Laboratory of Physical Activity and Health, University of Valencia, Valencia, Spain; Department of Physiotherapy, Exercise intervention for health research group, University of Valencia, Valencia, Spain
| | - Markus D Jakobsen
- Department of Musculoskeletal Disorders, National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Emil Sundstrup
- Department of Musculoskeletal Disorders, National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Jørgen R Jørgensen
- Center for Rehabilitation of Brain Injury, University of Copenhagen, Copenhagen, Denmark
| | - Jose Casaña
- Department of Physiotherapy, Exercise intervention for health research group, University of Valencia, Valencia, Spain
| | - Lars L Andersen
- Department of Musculoskeletal Disorders, National Research Centre for the Working Environment, Copenhagen Ø, Denmark; Department of Health Science and Technology, Physical Activity and Human Performance group, SMI, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Lopez-Rosado R, Kimalat A, Bednarczyk M, Sullivan JE. Sensory Amplitude Electrical Stimulation via Sock Combined With Standing and Mobility Activities Improves Walking Speed in Individuals With Chronic Stroke: A Pilot Study. Front Neurosci 2019; 13:337. [PMID: 31040763 PMCID: PMC6477056 DOI: 10.3389/fnins.2019.00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/22/2019] [Indexed: 11/18/2022] Open
Abstract
Objective: To determine if sensory amplitude electrical stimulation (SES) delivered via sock electrode combined with standing and mobility activities improved gait speed, sensation, balance, and participation in chronic stroke. It was hypothesized that SES would enhance the effectiveness of exercise, resulting in reduced impairment and improved function. Design: Case Series. Setting: Home-based intervention. Participants: Thirteen adults (56.5 + 7.84 years old) with chronic stroke (8.21 + 4.36 years post) and hemiparesis completed the study. Participants were community ambulators. Intervention: Participants completed 6 weeks of self-administered SES delivered via sock electrode concurrent with standing and mobility activities for a minimum of 5 days/week for 30-min, twice daily. Outcome Measures: Berg Balance Scale (BBS), Stroke Rehabilitation Assessment of Movement—LE subscale (STREAM), 10 Meter Walk Test (10 MWT), Activities-Specific Balance Confidence Scale (ABC), Stroke Impact Scale (SIS), Perceptual Threshold of Electrical Stimulation (PTTES), and Monofilament testing were administered at pre-test, post-test, and 3-month follow up. Results: Baseline sensory scores and change scores on functional outcomes were analyzed using Pearson Product-Movement Correlation Coefficients, Friedman test, and Linear mixed models. There was a significant change with 10 MWT self-selected pace (Friedman's p = 0.038). Pre-post intervention changes in other outcome measures were not significant. According to the Cohen's effect size classification, there were medium effect sizes for both the STREAM-LE and Monofilaments. Conclusion: The use of home-based SES via sock electrode combined with standing and mobility activities may contribute to improve gait speed in chronic stroke.
Collapse
Affiliation(s)
- Roberto Lopez-Rosado
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrea Kimalat
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Jane E Sullivan
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Valkenborghs SR, Callister R, Visser MM, Nilsson M, van Vliet P. Interventions combined with task-specific training to improve upper limb motor recovery following stroke: a systematic review with meta-analyses. PHYSICAL THERAPY REVIEWS 2019. [DOI: 10.1080/10833196.2019.1597439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sarah R. Valkenborghs
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Centre for Research Excellence in Stroke Rehabilitation and Recovery, Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Biomedical Science and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia
| | - Robin Callister
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Newcastle, NSW, Australia
- Centre for Research Excellence in Stroke Rehabilitation and Recovery, Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Biomedical Science and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia
| | - Milanka M. Visser
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Centre for Research Excellence in Stroke Rehabilitation and Recovery, Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Paulette van Vliet
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Centre for Research Excellence in Stroke Rehabilitation and Recovery, Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
7
|
Khallaf ME. Effect of Gravity and Task Specific Training of Elbow Extensors on Upper Extremity Function after Stroke. Neurol Res Int 2018; 2018:4172454. [PMID: 30112205 PMCID: PMC6077607 DOI: 10.1155/2018/4172454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/10/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In individuals with hemiparetic stroke, reaching with the paretic arm can be impaired by abnormal muscle coactivation. Prior trails for improving upper extremity functions after stroke have underestimated the role of gravitational force in motor planning and execution. OBJECTIVE The aims this trial were to study the effect of gravity as a facilitator for elbow extension and to estimate the immediate and retention effects of task specific training of elbow extensors on upper extremity function after stroke. METHODS Twenty-six right handed patients with first ever stroke represented the sample of the study. The participants were randomly assigned into two equal groups. The study group received treatment through two phases. Phase one included training for the elbow extensors in an antigravity position. Phase two included a set of task specific exercise for 16 weeks. The control group received traditional passive stretch and range of motion exercises. Manual dexterity and upper limb function were assessed by Nine-Hole Peg Test and Fugl-Meyer upper extremity. Goniometry was used for measuring elbow extension and forearm supination active ranges of motion. RESULTS Significant improvements were observed in Nine-Hole Peg Test, Fugl-Meyer upper extremity, and ranges of motion at postintervention and follow-up compared to preintervention at P≤0.05. CONCLUSIONS The results of this study provide an evidence that antigravity positions can be used as a centrally presented facilitator of elbow extension. Additionally, task specific training was effective in improving upper extremity function and elbow extension range of motion.
Collapse
Affiliation(s)
- Mohamed E. Khallaf
- Department of Physical Therapy for Neuromuscular Disorders and Its Surgery, Faculty of Physical Therapy, Cairo University, Egypt
| |
Collapse
|
8
|
Doucet BM, Mettler JA. Pilot Study Combining Electrical Stimulation and a Dynamic Hand Orthosis for Functional Recovery in Chronic Stroke. Am J Occup Ther 2018; 72:7202345030p1-7202345030p6. [PMID: 29426393 PMCID: PMC5807404 DOI: 10.5014/ajot.2018.025007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We investigated the effect of a combined neuromuscular electrical stimulation (ES) and dynamic hand orthosis (DHO) regimen with a group of people with chronic stroke to improve performance on specific daily tasks. METHOD Four people with chronic stroke participated in an ES-DHO regimen using the affected upper extremity 5×/wk for 6 wk. Outcome measures included grip strength, range of motion (ROM), and analysis of muscle activation-deactivation during release of grasp through electromyography. Ability to perform specific daily living tasks was assessed using the Assessment of Motor and Process Skills (AMPS). RESULTS Results suggested that improvements in strength, ROM, and grasp deactivation are possible with the combined ES-DHO regimen. All participants' AMPS motor scores improved. CONCLUSIONS An ES-DHO regimen may improve motor skills needed for functional task performance in people with chronic stroke. Results should be interpreted cautiously because of the pilot nature of the study and the small sample size.
Collapse
Affiliation(s)
- Barbara M Doucet
- Barbara M. Doucet, PhD, LOTR, is Associate Professor, Department of Occupational Therapy, Health Sciences Center, School of Allied Health Professions, Louisiana State University, New Orleans;
| | - Joni A Mettler
- Joni A. Mettler, PhD, is Assistant Professor, Division of Exercise and Sport Science, Department of Health and Human Performance, Texas State University, San Marcos
| |
Collapse
|