1
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Geicu OI, Bilteanu L, Serban AI. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur J Med Chem 2022; 232:114175. [PMID: 35151223 PMCID: PMC8813210 DOI: 10.1016/j.ejmech.2022.114175] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
oxidative stress is caused by an abundant generation of reactive oxygen species, associated to a diminished capacity of the endogenous systems of the organism to counteract them. Activation of pro-oxidative pathways and boosting of inflammatory cytokines are always encountered in viral infections, including SARS-CoV-2. So, the importance of counteracting cytokine storm in COVID-19 pathology is highly important, to hamper the immunogenic damage of the endothelium and alveolar membranes. Antioxidants prevent oxidative processes, by impeding radical species generation. It has been proved that vitamin intake lowers oxidative stress markers, alleviates cytokine storm and has a potential role in reducing disease severity, by lowering pro-inflammatory cytokines, hampering hyperinflammation and organ failure. For the approached compounds, direct antiviral roles are also discussed in this review, as these activities encompass secretion of antiviral peptides, modulation of angiotensin-converting enzyme 2 receptor expression and interaction with spike protein, inactivation of furin protease, or inhibition of pathogen replication by nucleic acid impairment induction. Vitamin administration results in beneficial effects. Nevertheless, timing, dosage and mutual influences of these micronutrients should be carefullly regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Liviu Bilteanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Blvd, Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
2
|
Ameliorative effect of enhanced Fischer ratio flaxseed protein hydrolysate in combination with antioxidant micronutrients on ethanol-induced hepatic damage in a rat model. Br J Nutr 2021; 127:696-710. [PMID: 33814015 DOI: 10.1017/s000711452100115x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol abuse causes severe metabolic abnormalities inducing hepatic damage and malnutrition. Since higher Fischer ratio proteins have therapeutic value in liver diseases, an investigation was undertaken to study the ameliorative effect of the enhanced Fischer ratio flaxseed protein hydrolysate (EFR-FPH) alone and in combination with antioxidant micronutrients on ethanol-induced hepatotoxicity in a rat model. The EFR-FPH was prepared by dual enzymatic hydrolysis and charcoal treatment of flaxseed protein. The ratio of the branched-chain:aromatic amino acids (Fischer ratio) was found to be 7·08. The EFR-FPH, characterised using LC-MS/MS, showed the abundance of free leucine and isoleucine compared with phenylalanine and tyrosine. The matrix-assisted laser desorption/ionisation-time of flight MS analysis revealed the larger peptides present in EFR-FPH with mass 2·3 kDa. The EFR-FPH improved the nutritional status, liver function and antioxidant defense in the ethanol hepatotoxicity-induced rat model. The hepatoprotective effect of EFR-FPH was significantly enhanced when combined with selenium or vitamin E. Ethanol-induced changes in the liver tissue were effectively suppressed in the groups receiving EFR-FPH. Flaxseed-based hepatoprotective dietary supplement was formulated incorporating an optimum level of EFR-FPH (10 %) based on sensory acceptability and was fortified with selenium and vitamin E. The hepatoprotective formulation significantly lowered aspartate transaminase, alanine transaminase, alkaline phosphatase and bilirubin by 47, 61, 55 and 78 %, respectively, and improved the antioxidant defense in the ethanol hepatotoxicity-induced rat model. The current investigation suggests that EFR-FPH in synergy with antioxidant micronutrients is potent in ameliorating ethanol-induced hepatotoxicity and has a potential to form a hepatoprotective dietary supplement.
Collapse
|
3
|
Abstract
Vitamin C (Vit C) is an ideal antioxidant as it is easily available, water soluble, very potent, least toxic, regenerates other antioxidants particularly Vit E, and acts as a cofactor for different enzymes. It has received much attention due to its ability in limiting reactive oxygen species, oxidative stress, and nitrosative stress, as well as it helps to maintain some of the normal metabolic functions of the cell. However, over 140 clinical trials using Vit C in different pathological conditions such as myocardial infarction, gastritis, diabetes, hypertension, stroke, and cancer have yielded inconsistent results. Such a divergence calls for new strategies to establish practical significance of Vit C in heart failure or even in its prevention. For a better understanding of Vit C functioning, it is important to revisit its transport across the cell membrane and subcellular interactions. In this review, we have highlighted some historical details of Vit C and its transporters in the heart with a particular focus on heart failure in cancer chemotherapy.
Collapse
|
4
|
Marik PE, Liggett A. Adding an orange to the banana bag: vitamin C deficiency is common in alcohol use disorders. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:165. [PMID: 31077227 PMCID: PMC6511125 DOI: 10.1186/s13054-019-2435-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/12/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND At least a third of the world's population consumes alcohol regularly. Patients with alcohol use disorders (AUDs) are frequently hospitalized for both alcohol-related and unrelated medical conditions. It is well recognized that patients with an AUD are thiamine deficient with thiamine replacement therapy being considered the standard of care. However, the incidence of vitamin C deficiency in this patient population has been poorly defined. METHODS In this retrospective, observational study, we recorded the admission vitamin C level in patients with an AUD admitted to our medical intensive care unit (MICU) over a 1-year period. In addition, we recorded relevant clinical and laboratory data including the day 2 and day 3 vitamin C level following empiric treatment with vitamin C. Septic patients were excluded from this study. RESULTS Sixty-nine patients met the inclusion criteria for this study. The patients' mean age was 53 ± 14 years; 52 patients (75%) were males. Severe alcohol withdrawal syndrome was the commonest admitting diagnosis (46%). Eighteen patients (26%) had cirrhosis as the admitting diagnosis with 18 (13%) patients admitted due to alcohol/drug intoxication. Forty-six patients (67%) had evidence of acute alcoholic hepatitis. The mean admission vitamin C level was 17.0 ± 18.1 μmol/l (normal 40-60 μmol/l). Sixty-one (88%) patients had a level less than 40 μmol/l (subnormal) while 52 patients (75%) had hypovitaminosis C (level < 23 μmol/l). None of the variables recorded predicted the vitamin C level. Various vitamin C replacement dosing strategies were used. A 1.5-g loading dose, followed by 500-mg PO q 6, was effective in restoring blood levels to normal by day 2. CONCLUSION Our results suggest that hypovitaminosis C is exceedingly common in patients with an AUD admitted to an intensive care unit and that all such patients should receive supplementation with vitamin C in addition to thiamine. Additional studies are required to confirm the findings of our observational study and to determine the optimal vitamin C dosing strategy.
Collapse
Affiliation(s)
- Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, 721 Fairfax Ave, Suite 423, Norfolk, VA, 23507, USA.
| | - Amanda Liggett
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, 721 Fairfax Ave, Suite 423, Norfolk, VA, 23507, USA. .,Department of Medicine, Eastern Virginia Medical School, 721 Fairfax ave, Norfolk, VA, 23507, USA.
| |
Collapse
|
5
|
Park SH, Han AL, Kim NH, Shin SR. Liver Histological Improvement After Administration of High-Dose Vitamin C in Guinea Pig with Nonalcoholic Steatohepatitis. INT J VITAM NUTR RES 2019; 88:263-269. [PMID: 30789804 DOI: 10.1024/0300-9831/a000515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Vitamin C is a strong antioxidant, and the health effects of vitamin C megadoses have not been validated despite the apparent health benefits. Therefore, the present study sought to confirm the effects of vitamin C megadoses. Materials and Methods : Four groups of six guinea pigs were used. Each group was fed one of the following diets for three weeks: normal diet, methionine choline-deficient diet, methionine choline-deficient diet + vitamin C megadose (MCD + vit C 2.5 g/kg/day), and methionine-choline deficient diet + ursodeoxycholic acid (MCD + UDCA 30 mg/kg/day). The MCD diet was given to induce nonalcoholic steatohepatitis, and UDCA was used to treat nonalcoholic steatohepatitis. Three weeks after initial diet administration, the results of biochemical tests and liver biopsy were compared between the groups. Results: The cytoplasm state was similar in the MCD + vit C and MCD + UDCA groups, exhibiting clearing of the cytoplasm and ballooning degeneration. However, macrovesicular steatosis was not observed in the MCD + vit C group. Aspartate transaminase and alanine transaminase were elevated significantly following vitamin C administration. Conclusions: The present study confirmed that alone vitamin C megadoses are potential remedies for nonalcoholic steatohepatitis, based on the liver biopsy results of guinea pigs that were unable to synthesize vitamin C.
Collapse
Affiliation(s)
- Seong-Hoon Park
- 2 Departments of Radiology Medicine, Medical Hospital, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - A Lum Han
- 1 Departments of Family Medicine, Medical hospital, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Na-Hyung Kim
- 3 Departments of Oriental Pharmacy, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Sae-Ron Shin
- 1 Departments of Family Medicine, Medical hospital, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| |
Collapse
|
6
|
Abhilash PA, Harikrishnan R, Indira M. Ascorbic acid suppresses endotoxemia and NF-κB signaling cascade in alcoholic liver fibrosis in guinea pigs: a mechanistic approach. Toxicol Appl Pharmacol 2013; 274:215-24. [PMID: 24239723 DOI: 10.1016/j.taap.2013.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 12/12/2022]
Abstract
Alcohol consumption increases the small intestinal bacterial overgrowth (SIBO) and intestinal permeability of endotoxin. The endotoxin mediated inflammatory signaling plays a major role in alcoholic liver fibrosis. We evaluated the effect of ascorbic acid (AA), silymarin and alcohol abstention on the alcohol induced endotoxemia and NF-κB activation cascade pathway in guinea pigs (Cavia porcellus). Guinea pigs were administered ethanol at a daily dose of 4g/kg b.wt for 90days. After 90days, ethanol administration was stopped. The ethanol treated animals were divided into abstention, silymarin (250mg/kg b.wt) and AA (250mg/kg b.wt) supplemented groups and maintained for 30days. The SIBO, intestinal permeability and endotoxin were significantly increased in the ethanol group. The mRNA expressions of intestinal proteins claudin, occludin and zona occludens-1 were significantly decreased in ethanol group. The mRNA levels of inflammatory receptors, activity of IKKβ and the protein expressions of phospho-IκBα, NF-κB, TNF-α, TGF-β1 and IL-6 were also altered in ethanol group. The expressions of fibrosis markers α-SMA, α1 (I) collagen and sirius red staining in the liver revealed the induction of fibrosis. But the supplementation of AA could induce greater reduction of ethanol induced SIBO, intestinal barrier defects, NF-κB activation and liver fibrosis than silymarin. The possible mechanism may be the inhibitory effect of AA on SIBO, intestinal barrier defect and IKKβ, which decreased the activation of NF-κB and synthesis of cytokines. This might have led to suppression of HSCs activation and liver fibrosis.
Collapse
Affiliation(s)
- P A Abhilash
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - R Harikrishnan
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - M Indira
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India.
| |
Collapse
|
7
|
Stanley JA, Sivakumar KK, Nithy TK, Arosh JA, Hoyer PB, Burghardt RC, Banu SK. Postnatal exposure to chromium through mother's milk accelerates follicular atresia in F1 offspring through increased oxidative stress and depletion of antioxidant enzymes. Free Radic Biol Med 2013; 61:179-96. [PMID: 23470461 PMCID: PMC3883978 DOI: 10.1016/j.freeradbiomed.2013.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 12/29/2022]
Abstract
Hexavalent chromium, CrVI, is a heavy metal endocrine disruptor, known as a mutagen, teratogen, and a group A carcinogen. Environmental contamination with CrVI, including drinking water, has been increasing in more than 30 cities in the United States. CrVI is rapidly converted to CrIII intracellularly, and CrIII can cause DNA strand breaks and cancer or apoptosis through different mechanisms. Our previous study demonstrated that lactational exposure to chromium results in a delay or arrest in follicle development and a decrease in steroid hormone levels in F1 female rats, both of which are mitigated (partial inhibition) by vitamin C. The current study tested the hypothesis that lactational exposure to CrIII accelerates follicle atresia in F1 offspring by increasing reactive oxygen species (ROS) and decreasing cellular antioxidants. Results showed that lactational exposure to CrIII dose-dependently increased follicular atresia and decreased steroidogenesis in postnatal day 25, 45, and 65 rats. Vitamin C mitigated or inhibited the effects of CrIII at all doses. CrIII increased hydrogen peroxide and lipid hydroperoxide in plasma and ovary; decreased the antioxidant enzymes (AOXs) GPx1, GR, SOD, and catalase; and increased glutathione S-transferase in plasma and ovary. To understand the effects of CrVI on ROS and AOXs in granulosa (GC) and theca (TC) cell compartments in the ovary, ROS levels and mRNA expression of cytosolic and mitochondrial AOXs, such as SOD1, SOD2, catalase, GLRX1, GSTM1, GSTM2, GSTA4, GR, TXN1, TXN2, TXNRD2, and PRDX3, were studied in GCs and TCs and in a spontaneously immortalized granulosa cell line (SIGC). Overall, CrVI downregulated each of the AOXs; and vitamin C mitigated the effects of CrVI on these enzymes in GCs and SIGCs, but failed to mitigate CrVI effects on GSTM1, GSTM2, TXN1, and TXN2 in TCs. Thus, these data for the first time reveal that lactational exposure to CrIII accelerated follicular atresia and decreased steroidogenesis in F1 female offspring by altering the ratio of ROS and AOXs in the ovary. Vitamin C is able to protect the ovary from CrIII-induced oxidative stress and follicle atresia through protective effects on GCs rather than TCs.
Collapse
Affiliation(s)
- Jone A Stanley
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kirthiram K Sivakumar
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Thamizh K Nithy
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Joe A Arosh
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Patricia B Hoyer
- Department of Physiology, University of Arizona, Tucson, AZ 85724-5051, USA
| | - Robert C Burghardt
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Sakhila K Banu
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
8
|
Abhilash PA, Harikrishnan R, Indira M. Ascorbic acid is superior to silymarin in the recovery of ethanol-induced inflammatory reactions in hepatocytes of guinea pigs. J Physiol Biochem 2013; 69:785-98. [PMID: 23653339 DOI: 10.1007/s13105-013-0255-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/19/2013] [Indexed: 12/18/2022]
Abstract
Both oxidative stress and inflammatory reactions play a major role in alcoholic liver fibrosis. We evaluated the efficacy of ascorbic acid (AA) and silymarin in the regression of alcohol-induced inflammation in hepatocytes of guinea pigs (Cavia porcellus). Animals were administered with ethanol at a daily dose of 4 g/kg body weight (b.wt) for 90 days. On the ninety-first day, ethanol administration was stopped and animals were divided into alcohol abstention group and silymarin- (25 mg/100 g b.wt) and AA- (25 mg/100 g b.wt) supplemented groups and maintained for 30 days. There was a significant increase in the activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase in the serum of the ethanol group. The intracellular reactive oxygen species (ROS) and expressions of cytochrome P4502E1 and nuclear factor κB1, tumor necrosis factor-α, and transforming growth factor-β(1) in hepatocytes were significantly increased in ethanol group. The fibrotic markers α-smooth muscle actin and α(1)(I) collagen and activity of cytotoxicity marker caspase-3 were significantly increased and AA content was significantly reduced in hepatocytes of alcohol-treated guinea pigs. But the AA and silymarin supplementation significantly reduced these changes in comparison with alcohol abstention group. AA could induce greater reduction of inflammatory and fibrotic markers in hepatocytes than silymarin. This indicates that AA is superior to silymarin in inhibiting intracellular ROS generation and thereby reducing the ethanol-induced inflammation in hepatocytes.
Collapse
Affiliation(s)
- P A Abhilash
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | | | | |
Collapse
|
9
|
Boerhaavia diffusa L. attenuates angiotensin II-induced hypertrophy in H9c2 cardiac myoblast cells via modulating oxidative stress and down-regulating NF-κβ and transforming growth factor β1. Br J Nutr 2013; 110:1201-10. [PMID: 23591029 DOI: 10.1017/s0007114513000561] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study evaluated the antihypertrophic potential of the ethanolic extract of Boerhaavia diffusa (BDE), a well-known edible cardiotonic plant reported in Ayurveda against angiotensin II-induced hypertrophy in H9c2 cardiac myoblast cells. Markers of hypertrophy such as cell size, protein content and the concentrations of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) were analysed for the confirmation of hypertrophy induction. Angiotensin II (100 nM) caused an increase in cell volume (69·26 (SD 1·21)%),protein content (48·48 (SD 1·64)%), ANP (81·90 (SD 1·22)%) and BNP (108·57 (SD 1·47)%). BDE treatment significantly reduced cell volume, protein content and the concentrations of ANP and BNP (P#0·05) in H9c2 cells. The activity of various antioxidant enzymes and the concentration of reduced glutathione, which was lowered due to hypertrophy, were increased in BDE-treated cells. The BDE treatment also reduced intracellular reactive oxygen species generation, lipid peroxidation and protein carbonyls in cells. In addition,the expression patterns of NF-kb and transforming growth factor b1 were found to be increased during hypertrophy, and their expressions were reduced on BDE treatment. In vitro chemical assays showed that BDE inhibits angiotensin-converting enzyme and xanthine oxidase in a dose-dependent manner with an estimated 50% effective concentration (EC50) value of 166·12 (SD 2·42) and 60·05 (SD 1·54) mg/ml,respectively. The overall results clearly indicate the therapeutic potential of B. diffusa against cardiac hypertrophy, in addition to its nutritional qualities.
Collapse
|
10
|
Lee SJ, Kim SY, Min H. Effects of vitamin C and E supplementation on oxidative stress and liver toxicity in rats fed a low-fat ethanol diet. Nutr Res Pract 2013; 7:109-14. [PMID: 23610603 PMCID: PMC3627927 DOI: 10.4162/nrp.2013.7.2.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/12/2013] [Accepted: 02/20/2013] [Indexed: 01/29/2023] Open
Abstract
We compared the preventive capacity of high intakes of vitamin C (VC) and vitamin E (VE) on oxidative stress and liver toxicity in rats fed a low-fat ethanol diet. Thirty-two Wistar rats received the low fat (10% of total calories) Lieber-DeCarli liquid diet as follows: either ethanol alone (Alc group, 36% of total calories) or ethanol in combination with VC (Alc + VC group, 40 mg VC/100 g body weight) or VE (Alc + VE group, 0.8 mg VE/100 g body weight). Control rats were pair-fed a liquid diet with the Alc group. Ethanol administration induced a modest increase in alanine aminotransferase (ALT), aspartate aminotransferase (AST), conjugated dienes (CD), and triglycerides but decreased total radical-trapping antioxidant potential (TRAP) in plasma. VE supplementation to alcohol-fed rats restored the plasma levels of AST, CD, and TRAP to control levels. However, VC supplementation did not significantly influence plasma ALT, AST, or CD. In addition, a significant increase in plasma aminothiols such as homocysteine and cysteine was observed in the Alc group, but cysteinylglycine and glutathione (GSH) did not change by ethanol feeding. Supplementing alcohol-fed rats with VC increased plasma GSH and hepatic S-adenosylmethionine, but plasma levels of aminothiols, except GSH, were not influenced by either VC or VE supplementation in ethanol-fed rats. These results indicate that a low-fat ethanol diet induces oxidative stress and consequent liver toxicity similar to a high-fat ethanol diet and that VE supplementation has a protective effect on ethanol-induced oxidative stress and liver toxicity.
Collapse
Affiliation(s)
- Soo-Jung Lee
- Department of Food and Nutrition, College of Bio-Nano Science, Hannam University, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Korea
| | | | | |
Collapse
|
11
|
Protective effect of ascorbic acid against ethanol-induced reproductive toxicity in male guinea pigs. Br J Nutr 2013; 110:689-98. [DOI: 10.1017/s0007114512005739] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was undertaken to elucidate the effect of ascorbic acid on alcohol-induced reproductive toxicity and also to compare it with that of abstention. A total of thirty-six male guinea pigs were divided into two groups and were maintained for 90 d as control and ethanol-treated groups (4 g/kg body weight (b.wt.)). After 90 d, ethanol administration was stopped and animals in the control group were divided into two groups and then maintained for 30 d as the control and control+ascorbic acid groups and those in the ethanol-treated group as ethanol abstention and ethanol+ascorbic acid (25 mg/100 g b. wt.) groups. Animals treated with ethanol showed a significant decline in sperm quality (P< 0·001), decreased activity of steroidogenic enzymes (P< 0·05) and reduced serum testosterone (P< 0·05), luteinising hormone and follicle-stimulating hormone levels, decrease in the activity of testicular succinate dehydrogenase, adenosine triphosphatase, sorbitol dehydrogenase and reduction in fructose content (P< 0·05). It also caused an increase in testicular malondialdehyde levels (P< 0·05) and decrease in the levels of glutathione content (P< 0·001) of testes. Ascorbic acid levels in testes and plasma were also reduced (P< 0·001) in ethanol-fed animals. Ascorbic acid supplementation altered all these parameters and produced a better and faster recovery from alcohol-induced reproductive toxicity than abstention. The mechanism of action of ascorbic acid may be by reducing the oxidative stress and improving antioxidant status, which eventually changed the microenvironment of testes and enhanced the energy needed for motility of sperms, improved the sperm morphology and elevated the testosterone and gonadotropin levels.
Collapse
|
12
|
|
13
|
Prathibha P, Rejitha S, Harikrishnan R, Das SS, Abhilash PA, Indira M. Additive effect of alpha-tocopherol and ascorbic acid in combating ethanol-induced hepatic fibrosis. Redox Rep 2013; 18:36-46. [PMID: 23394495 PMCID: PMC6837559 DOI: 10.1179/1351000212y.0000000038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To investigate the efficacy of combined administration of alpha-tocopherol (AT) and ascorbic acid (AA) in reducing ethanol-induced hepatotoxicity. METHODS Rats were maintained for 90 days and grouped as follows: I-control rats, II-ethanol, III-alpha-tocopherol, IV-ethanol+alpha-tocopherol, V-AA, VI-ethanol+ascorbic acid, VII-alpha-tocopherol+ascorbic acid, VIII-ethanol+alpha-tocopherol+ascorbic acid. At the end of the experimental period, markers of hepatic function, oxidative stress, and the expression of markers of inflammation and fibrosis were assayed. RESULTS The markers of hepatic function, lipid peroxidation products, protein carbonyls, and the expression of nuclear factor kappa B, tumor necrosis factor alpha, transforming growth factor beta 1, cytochrome P4502E1, and collagen Type I were elevated after ethanol administration. All these parameters were reduced in the ethanol group administered AT and AA in combination. The activities of antioxidant enzymes which were reduced by ethanol administration were enhanced on combined administration of AT and AA. The reduction in hepatic fibrosis was almost 20% more in AT and AA co-administered group compared with AT and AA alone treated groups. DISCUSSION Combined administration of fat soluble AT and water soluble AA was beneficial against ethanol-induced hepatotoxicity. This may be due to their different subcellular localizations.
Collapse
Affiliation(s)
- P Prathibha
- Department of BiochemistryUniversity of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - S Rejitha
- Department of BiochemistryUniversity of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - R Harikrishnan
- Department of BiochemistryUniversity of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - S Syam Das
- Department of BiochemistryUniversity of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - P A Abhilash
- Department of BiochemistryUniversity of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - M Indira
- Department of BiochemistryUniversity of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| |
Collapse
|